
Salable Computing: Pratie and ExperieneVolume 8, Number 1, pp. 79�86. http://www.spe.org ISSN 1895-1767© 2007 SWPSSTABILITY, OPTIMALITY AND COMPLEXITY OF NETWORK GAMES WITH PRICINGAND PLAYER DROPOUTSANDREW LOMONOSOV∗ AND MEERA SITHARAM†Abstrat. We study basi properties of a lass of nonooperative games whose players are sel�sh, distributed users of a networkand the game's broad objetive is to optimize Quality of Servie (QoS) provision. This lass of games was previously introduedby the authors and is a generalization of well-studied network ongestion games.The overall goal is to determine a minimal set of stati game rules based on priing that result in stable and near optimal QoSprovision.We show the following. (i) Standard tehniques for exhibiting stability or existene of Nash equilibria fail for these games�spei�ally, neither are the utility funtions onvex, nor does a generalized potential funtion exist. (ii) The problem of �ndingwhether a spei� game instane in this lass has a Nash equilibrium is NP-omplete.To o�set the apparent instability of these games, we show positive results. (iii) For natural sublasses of these games, althoughgeneralized potential funtions do not exist, approximate Nash equilibria do exist and are easy to ompute. (iv) These gamesperform well in terms of �prie of stability� and �prie of anarhy.� I.e., all of these approximate Nash equilibria nearly optimize aommunal (or soial) welfare funtion, and there is atleast one Nash equilibrium that is optimal.Finally, we give omputer experiments illustrating the basi dynamis of these games whih indiate that prie thresholds ouldspeed up onvergene to Nash equilibria.Key words. Congestion games, Sel�sh routing, Atomi unsplittable model, Nash Equilbria, Network priing1. Introdution. Reently muh researh has been done in applying game-theoreti onepts and generaleonomis tehniques to analysis of omputer network tra� [2, 3, 5, 10, 11, 12, 16, 14, 20, 21, 24℄. For a generalsurvey see [1℄. Stability in games refers to whether the game reahes a Nash equilibrium, a state where no playerhas inentive to move. Optimality is a measure of how lose a Nash equilibrium is to optimizing a soial orommunal welfare funtion, usually the sum of the individual players' utility funtions.We onsider primarily atomi games, where the number of players (network users) is �nite. The ase ofnon-atomi games where there is an in�nite number of in�nitesimally small players is easier to analyze. Forsimilar reasons, spittable games, where network users an split their volume onto many servie lasses are easierto analyze and have more orderly behavior than unsplittable games, where eah user is fored to plae all theirvolume onto the same lass.The atomi splittable network game model has been studied [20, 12℄, with early results in the transportationliterature. E�ieny (or optimality) of Nash equilibria in atomi splittable network games was studied in [24℄and [28℄.Here we onsider primarily the unsplittable ase that has also been studied for some time, for example [26℄.Most of the researh deals with ongestion games where payo� to a player depends only on the player'sstrategy and on the number of players hoosing the same strategy. Thanks to [26℄ it is known that suhgames always have Nash equilibrium. Two ommon tehniques that are used to demonstrate existene of NashEquilbria are the following. When the player utility funtions are onvex, Kakutani's �xed point theorem [25℄diretly shows existene. Also when suh onvexity properties are not present, potential funtions, [18℄, ertainfuntions that inrease after every move, are used to show existene. These have a long history, for example, asLyapunov stability funtions lassially used to desribe equilibria in dynamial systems.The [23℄ network games have realisti features that make them somewhat di�erent from ongestion games:in partiular, players have non-onvex utility funtions aused by a threshold of total tra� volume in servielasses that they are willing to tolerate. In addition in the [15℄ games, the players are allowed to refrain frompartiipation, or to dropout, if their tra� quality demands are not satis�ed. Hene existene of Nash equilibriaor potential funtions is not guaranteed for these lasses of games. However, we were able to show existene ofNash equilibria for some of these lasses of games by onstruting generalized potential funtions. (Generalized)potential funtions have also been used by others to study versions of ongestion and other games e.g., [7, 21, 22℄.For the lasses of games in [15, 16℄ we additionally showed that the Nash equilibria established via general-ized potential funtions are easy to ompute. In general, however, while potential funtions guarantee existeneof Nash equilibrium, the problem of atually �nding suh an equilibrium remains omputationally hallenging.
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80 A. Lomonosov and M. SitharamIt has been shown [7℄ that the problem of �nding Nash Equilbrium in ongestion games is PLS-Complete,whih intuitively means �as hard to ompute as any objet whose existene is guaranteed by a potential fun-tion�.Considerable researh has gone into the prie of anarhy and prie of stability of Nash equilibria [27℄. Thesenotions desribe how far or how lose Nash equilbria an be to the System Optimum of a game, where systemoptimum is a on�guration (not neessarily a Nash equilibrium) that has greatest ommunal welfare.We showed that for the lasses of games with Nash equilibria in [15, 16℄, the ommunal welfare at theseequilibria was poor, i. e., they are far from the system optimum. To retify this, we further generalized ourlasses of games by introduing priing inentives (not to be onfused with the word �prie� in the previousparagraph). The e�et of priing on ongestion games has also been studied in [9, 6, 8℄. Our original goal wasto modify our original lass of games so that the Nash equilibria would be lose to system optima. However,the pried games were shown to not have Nash equilibria, in general. We instead showed that there is trade-o�between game stability (existene of Nash Equilbria) and ommunal welfare ahieved by suh games. I.e., whilethe pried games did not always have Nash equilibria, the Nash equilibria, when they existed, were lose to thesystem optima.This trade-o� has sine been formalized by examining approximate Nash equilibria i. e. states where noplayer an improve their individual welfare by more than a ertain fator, and the value of ommunal welfare atsuh approximate equilibria [4℄. For example, [2℄ demonstrated a tradeo� between welfare and stability whenosts funtions are semionvex.In this paper, our overall goal is to analyze our lasses of realisti network ongestion games with respet tothese stability and ommunal welfare measures; investigate mehanisms for games to optimize these measures;and to pose formal questions about the struture of game lasses imposed by suh measures.More spei�ally, the original lasses of games introdued in [15℄ were: the lass Q where players were solelymotivated by their tra� quality demands and lasses PQ where players were also in�uned by pries imposedon tra�. Stability of games in Q was demonstrated by means of general potential funtions, and onreteexamples of instability of PQ were then given.In this paper, we establish the NP-ompleteness of determining existene of Nash equilibria and for om-puting Nash Equilbria in PQ. We further study stability and ommunal welfare of (a modi�ed version of)approximate Nash equilibria in PQ, as ompared to lass Q (i. e. e�et of priing on stability and soial welfarein our games).We also brie�y look at game dynamis, i. e. number of steps that it atually takes to onverge to NashEquilbria for some of our games and ondut omputer experiments to study trade-o� between willingness topay and speed of onvergene.Setion 2 presents preliminary de�nitions, Setion 3 presents previous results on the lass Q of games,Setion 4 presents the main results of this paper onerning the lass PQ, and Setion 5 onludes by tabulatingand omparing the results of Setions 3 and 4, followed by open problems.2. De�nitions. A game (instane) G in the base lass of QoS provision network games is spei�ed by thegame parameters G = 〈n, m ∈ N, {λi ∈ R+ : 1 ≤ i ≤ n}, {bi,j ∈ R+ : 1 ≤ i ≤ n; 1 ≤ j ≤ m}, {pj : R+ →
R, 1 ≤ j ≤ m}〉. The best way to de�ne G is by identifying it with its �nite game on�guration graph (formallyde�ned below) whih onsists of a set of feasible game on�gurations (verties) and the valid or sel�sh gamemoves (oriented edges). The game G is played by n users or players eah wanting to send a tra� of λi unitsthrough one of m network servie lasses and (for onveniene of analysis) an over�ow or Dummy Class withindex 0, referred to as DC. Eah player i additionally has a volume threshold bi,j (to be desribed below) foreah lass j. A prie funtion pj() for eah servie lass is a noninreasing funtion that maps the total (tra�)volume in the lass to a unit prie. (Unit prie typially dereases with inreasing ongestion or total volume inany servie lass). The prie for using DC is 0. A feasible on�guration Λ of G is fully spei�ed by an alloation
JΛ : {1, . . . , n} → {1, . . . , m} whih desribes whih servie lass JΛ(i) that the user or player i has deided toplae their hunk λi of tra�. This alloation JΛ results in a total tra� volume qΛ,j =

∑
i:1≤i≤n∧JΛ(i)=j λi ineah lass 1 ≤ j ≤ m at the game on�guration Λ. The set of feasible game on�gurations F form the vertexset of the game on�guration graph Ω. Individual utility funtion Ui(Λ) is a type of step funtion based on i'svolume threshold being met at the on�guration Λ, and on the unit prie inurred by the player i in its lass

j = JΛ(i). Ui(Λ) is:
• 0 if j = 0 (user i is in DC)
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• −ǫ, for small ǫ > 0 if bi,j < qΛ,j (volume threshold exeeded)
• equal to λi(1 − pjqΛ,j) otherwise.It is assumed that the prie funtions are always appropriately normalized so that this quantity is always stritlypositive for all players i and their lasses JΛ(i) at any on�guration Λ. A typial utility funtion is shown onFigure 2.1. We say that user i is satis�ed at on�guration Λ if Ui(Λ) 6= 0, and not satis�ed otherwise. We de�ne
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Fig. 2.1. Utility as a funtion of volume, volume threshold and priea funtion SatΛ(i) = 1 if UΛ(i) 6= 0, otherwise SatΛ(i) = 0. A sel�sh move by user i at a on�guration Λ1 is arealloation of i's volume λi from a departure lass j1 (i.e JΛ1
(i) = j1), to a a destination lass j2 resulting ina on�guration Λ2 (i.e, JΛ2

(i) = j2) that inreases utility of this user, i.e, Ui(Λ1) < Ui(Λ2). Moves to DC bya user whose volume threshold is exeeded are alled user dropouts. Note that user dropouts qualify as sel�shmoves aording to our de�nition.Eah sel�sh move is an ordered pair of feasible game on�gurations (for example (Λ1, Λ2) ∈ F × F ), andrepresents an oriented edge of the game on�guration graph Ω. A generalized potential funtion is a funtionde�ned on on�gurations that inreases after every player move. A game play for G is a sequene of validsel�sh moves in G, i.e (Λ1, Λ2), (Λ2, Λ3), . . . , (Λk−1, Λk), or a path in the game on�guration graph Ω. A NashEquilibrium or NE of a game G is a on�guration Λ suh that there is no sel�sh move possible for any user i.Nash equilibria are exatly sink verties of a game on�guration graph Ω that have no outgoing edges towardother verties. For our lasses of games, the ommunal welfare funtion for on�guration Λ is de�ned as
C(Λ) = ΣiSatΛ(i)λi. The feasible game on�guration that has highest value of ommunal welfare funtion isalled the System Optimum or SO. Let ΛN be a Nash Equilibrium that has the smallest value of ommunalwelfare funtion taken over all Nash Equilibriums, while ΛM be a Nash Equilibrium that has the largest value.As de�ned in say [27℄ a prie of anarhy of a game is equal to C(ΛN )/C(Λ∗), where Λ∗ is SO. A prie of stabilityis equal to C(ΛM )/C(Λ∗).Class of games that do not have priing, i. e. pj(x) = 0 for all lasses j and their volumes x is denotedby Q. In suh games players are motivated only by their desire to satisfy their volume thresholds. Sublass
QE ⊂ Q is a lass of games with no priing where all players have equal volume. Class of games that haveonly one priing funtion p(x) for all lasses j and this funtion is stritly dereasing (p(x) < p(y) ↔ x > y) isdenoted by PQ. Sublass PQE ⊂ PQ is a lass of games with single stritly dereasing prie funtion whereall players have equal volume. Here we will give a pitorial example, Figure 2.2, of some notions introdued inthis setion. A game on�guration graph Ω and on�gurations Λ of a partiular game G are shown. Columnsrepresent lasses, retangles represent users, the size of a retangle orresponds to volume of a user, volumethresholds of users are indiated on the right. In this example the game G in lass PQ has 2 lasses, 2 users Aand B that have equal volumes and the volume threshold of A is greater than that of B. Game on�gurationgraph Ω has 4 verties. This game G has no Nash equilibrium.Throughout this paper we assume wlog that every player i has the same volume threshold bi = bi,1 =
bi,2 = . . . bi,m in every lass j = 1 . . .m. We also assume that players are sorted in the inreasing order of theirthresholds, i.e b1 ≤ b2 ≤ . . . ≤ bn. (The former assumption ould be easily generalized for all results in thispaper, the latter assumption is realisti and ommonly made [23℄).In proofs when desribing a game on�guration Λ, we will speify values of game parameters n and m,provide a list of users in the form User(Volume, Volume Threshold) (for example A(5,12) means that User Ahas volume 5 and volume threshold 12), as well as speify where these users are, i.e {JΛ(i)}.
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Fig. 2.2. Game on�guration graph and individual on�gurations3. Previously known properties of Q. We list relevant properties of the lass Q of games establishedin [15℄ onerning existene, optimality and omplexity of omputing Nash equilibria.Theorem 3.1. Every game in Q has a generalized potential funtion and therefore every suh game has aNash Equilbrium.Theorem 3.2. For any ǫ > 0 there is a game in Q that has prie of anarhy and prie of stability equalto ǫ.Theorem 3.3. A Nash Equilibrium that is also a System Optimum of a game in QE an be found in timelinear in the game parameters.Theorem 3.4. Any Nash Equilibrium of any game G ∈ QE has ommunal welfare of at least a half of thatof G's System Optimum.Theorem 3.5. For any initial on�guration of every game in QE there is a sequene of sel�sh movesby players that will terminate at Nash Equilibrium after O(n2) steps. This sequene an be determined byonsidering players in dereasing order of their volume thresholds and letting them make their sel�sh hoies.4. New results. In this setion we onsider stability of games in lass PQ and various properties of theirNash equilibria. Results will be ompared to those of Q in Table 5.We begin by establishing the following simple result about the pries of anarhy and stability of generalgames in the lass PQ, showing that they are not partiularly well behaved.Theorem 4.1. For any ǫ > 0 there is a game in PQ that has a unique Nash equilibrium, whose ommunalwelfare is ǫ, while the system optimum of this game has ommunal welfare equal to 1. This implies that priesof anarhy and stability of suh a game are equal to ǫ.Proof. Consider a game with one non-DC lass, and two players, A(ǫ, 1+ǫ) and B(1, 1). The only equilibriumthis game has is when player A is in lass 1 and player B is in DC, as opposed to the system optimum whentheir positions are reversed.4.1. Approximate Nash equilibria. As we have noted in the Introdution and Figure 2.2, Nash equilib-ria do not neessarily exist in games PQ that involve priing. One approah to examining suh games involves
α−approximate Nash equilibria, de�ned in for example [4℄. A on�guration is said to be α−approximate Nashequilibrium if no player an move and derease her ost by more than an α multipliative fator.Note that sine priing funtions of PQ are arbitrary dereasing linear funtions, we will instead use a moreappropriate notion of δ−approximate Nash equilibrium instead, where δ is an additive fator.Let PQE be the subset of PQ where all players have volume ǫ = δ. In suh a game a on�guration whereall players are satis�ed and all lasses have equal total volume would be a ǫ−approximate Nash equilibrium,sine no player would have an inentive to move.When ǫ goes to zero and number of players goes to in�nity, the lass PQE will be denoted as PQ∞. Thislass of games has similar behavior to the lass of games where players are allowed to split their volume betweenseveral lasses.Theorem 4.2. A Nash equilibrium (δ−approximate Nash equilibrium) that is also system optimum an beonstruted for any game in PQ∞ (PQE) in time of O(n).Proof. A greedy algorithm solves this problem. Here is the algorithm for PQE . Let b1 ≤ . . . ≤ bn; plaeplayer n in lass 1, plae player n− 1 in lass 1 if bn−1 ≥ 2ǫ, otherwise plae player n− 1 in lass 2; plae player
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n − 2 in lass 1 if bn−2 ≥ 3ǫ et. The resulting on�guration is a system optimum and a δ−approximate Nashequilibrium.Note that while the preeeding theorem guarantees existene of an approximate Nash equilibrium for games
PQE , it does not promise that every sequene of sel�sh moves will arrive at an approximate Nash equilibrium.Consider the following observation, whih also disproves existene of general potential funtions for all gamesin PQE . This is also true for games in PQ∞.Theorem 4.3. There is a game in PQE where there is a yle of sel�sh moves.Proof. Let δ = 1. Consider a game with 2 non-DC lasses and 12 players:

A1(1, 9), A2(1, 9), A3(1, 9), B1(1, 6), B2(1, 6), B3(1, 6), C1(1, 3), . . . , C6(1, 3).Initial on�guration Λ: players C4, C5 and C6 are in lass 2, all other players are in lass 1. First players B1, B2and B3 move to lass 2, after that players C1, C2, C3 move to DC, then players A1, A2 and A3 move to lass 2and �nally players C1, C2, C3 move from DC to lass 1. The resulting on�guration is essentially isomorphi to
Λ, hene a yle has ourred.Now we will examine properties of orresponding Nash equilibria.Theorem 4.4. Prie of anarhy of games in PQ∞ is equal to 1/2. Prie of stability of suh games isequal 1.If prie of anarhy and prie of stability were rede�ned over ǫ-approximate Nash equilibria instead of regularNash equilibria, then it would hold that prie of anarhy of games in PQE is equal to 1/2 and prie of stabilityof suh games is equal 1.Proof. Prie of stability follows from the fat that Nash equilibria onstruted in Theorem 4.2 are systemoptima.Prie of anarhy an be demonstrated by following argument for games in PQE , and the proof for PQ∞ issimilar. Let Λ be a Nash equilibrium when all players have the same volume ǫ. Consider the unsatis�ed player
i that has the largest volume threshold bi. (If there are no unsatis�ed players then suh a Nash equilibriumis a system optimum). Total tra� volume qj in every lass j is stritly greater than bi − ǫ, hene ommunalwelfare of Λ is greater than or equal to m(bi − ǫ) but ommunal welfare of system optimum annot be morethan 2(m(bi − ǫ)).4.2. Finding a Nash equilibrium. It was shown in [16℄ that the problem of �nding system optimumof a game in lass Q is NP-Complete. It was also shown that the problem of �nding a Nash equilibrium in
Q an be solved in O(n2) time. Similarly the problem of �nding a system optimum of a game in lass PQ isNP-Complete. Now we will examine the problem of �nding a Nash equilibrium (or determining that it does notexists) for games in PQ.Theorem 4.5. Problem of �nding Nash equilibrium for games in PQ is NP-Complete.Proof. Consider the following version of MAXIMUM SUBSET SUM problem�given set S = {s1, . . . , sn}and targets t1, t2, �nd A ⊆ S suh that t1 ≤

∑
i∈A si ≤ t2. This problem an be redued to problem of �ndinga Nash equilibrium as follows. There are n + 1 players and two non-DC lasses. Players 1, . . . , n all have samethreshold b1 = b2 = . . . bn = t2, individual volumes λi = si. Player n + 1 has volume λn+1 = t2 and threshold

bn+1 = t1 + t2. Then this game will have a Nash equilibrium if and only if the original MAXIMUM SUBSETSUM problem had a feasible solution.4.3. Prie thresholds. In [16℄ it was shown that games in lass Q will terminate in O(n2) steps, givenertain assumptions on order of player moves. Here we will desribe a omputer experiment that examinedspeed of onvergene of games where there was no suh ordering of player moves.This experiment involved a following natural assumption about players behavior. In pratie, there ouldbe a limit on how muh a user is willing to pay, and this onept an be easily added to our games, resulting inthe new lasses of games. This onept has a desirable e�et on the dynamis of the game, as explained below.Formally, for players i we de�ne prie thresholds (in addition to the old volume thresholds) ti that have thefollowing property. If the prie in a lass exeeds player i's prie threshold, then player i is not satis�ed. Weassume that bi ≤ bj if and only if ti ≥ tj , i.e users who demand better quality of servie (smaller tra� volumein their lass) are willing to pay more.We onjeture that in addition to being realisti, suh prie thresholds also tend to improve the speed ofonvergene to Nash equilibria. This is beause of players spending less time looping in non-terminal yles.



84 A. Lomonosov and M. SitharamTo test this onjeture we ran a omputer program simulating a game in lass PQ. Later we added priingthresholds to the game whih has onsiderably improved time lapsed before onvergene to Nash equilibria.Game parameters were hosen suh that Nash equilibrium would always exist. Parameters of the game were
M = number of lasses, M/T = number of types of users that have the same volume and volume threshold, K =number of users of the same type that an �t in one lass without exeeding their volume threshold. Volumeswere in inrements of one, i.e there are T ∗ K users that have volume 1 and volume threshold K, T ∗ K usersthat have volume 2 and threshold 2K, . . . , T ∗ K users that have volume M/T and threshold M ∗ K/T . Thusthere are a total of M ∗K users. For example let K = 10, M = 20, T = 5. This means that there are 20 lasses,4 types of users and at most 10 users of any one type an �t into one lass. Users are

A1(1, 10), . . . , A50(1, 10), B1(2, 20), . . . , B50(2, 20), C1(3, 30), . . . , C50(3, 30),

D1(4, 40), . . . , D50(4, 40).Initially all users are in the dummy lass (DC). A game proeeds by piking one of the M ∗ K users atrandom and this user moves either to the largest lass where his threshold would not be exeeded or to theDC. Even if this move exeeds the volume threshold of some other users in the destination lass of the movinguser, these unsatis�ed users annot move until it is their turn to move and turns are determined at random.Eventually a Nash equilibrium was always reahed, where all users of the �rst type were in T lasses, all usersof the seond type were in the seond set of T lasses et. Results are shown in table 4.1. �Moves1� denotes thetotal number of user moves until Nash equilibrium was reahed.Later a simulation of priing thresholds was added to the experiment. E�etively it would prohibit a user
i that has volume threshold bi to move into any lass j suh that qj + λi < bi − ∆ where ∆ is some onstant.The reason for this is that lass j is too expensive for the ith user.Table 4.1K M T Moves1 ∆ Moves25 20 1 161,000 5 7,00010 20 1 17,077,000 10 9,00020 20 2 1,354,000 20 25,00050 20 1 56,000 50 35,000100 20 1 49,000 100 46,000100 20 10 3,000 100 5,0001000 20 10 35,000 1000 490005 40 1 2,360,000 5 190,0005 50 1 8,391,000 5 940000When ∆ = ∞ this is equivalent to the old experiment without priing thresholds. In general introdution ofsmall ∆ signi�antly improved number of moves that was needed to reah the Nash equilibrium. See �Moves2�in the table 4.1.5. Conlusions, Diretions. Here we summarize known results about Nash Equilibria for various sub-lasses of Q and PQ.NE/GenPotential always exists Prie of anarhy Prie of stability Complexity of �nding NE

Q Yes/Yes ǫ ǫ O(n2)
QE Yes/Yes 1/2 1 O(n)
PQ No/No ǫ ǫ NP-Complete
PQE Yes/No 1/2 1 O(n)
PQ∞ Yes/No 1/2 1 O(n)Existene of Nash Equilbria for Q (and QE , sine QE ⊂ Q) is shown in Theorem 3.1. Example of nonex-istene of Nash Equilbria in PQ is demonstrated in Figure 2.2. For PQE entry �Yes" refers to δ−approximateNash Equilibria, not regular Nash Equilibria. This (and PQ∞ ase) is shown in Theorem 4.2. The nonexistene



Stability, Optimality and Complexity of Network Games 85of generalized potential funtions for these lasses is shown in Theorem 4.3. Pries of anarhy and stability of
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