
SCALABLE COMPUTING: PRACTICE AND EXPERIENCE

Volume 8, Number 2, pp. 209–226. http://www.scpe.org

ISSN 1895-1767

© 2007 SWPS

A PERFORMANCE AND PROGRAMMING ANALYSIS OF JAVA COMMUNICATION MECHANISMS IN A

DISTRIBUTED ENVIRONMENT

SHAHRAM RAHIMI, MICHAEL WAINER AND DELANO LEWIS∗

Abstract. Distributed computing offers increased performance over single machine systems by spreading computations among several networked

machines. Converting a problem to run on a distributed system is not trivial and often involves many trade-offs. Many higher level communication

packages exist but for a variety of reasons(portability, performance, ease of development etc.), developers may choose to implement a distributed

algorithm using one of the four Java API communication mechanisms (RMI with Serializable or Externalizable Interface, socket and datagram socket).

This paper provides a performance programming complexity analysis of these communication mechanisms based upon experimental results using well

known algorithms to provide data points. Numerical results and insights offer guidance towards understanding the communication and computational

trade-offs as well as the programming complexities encountered when adapting an algorithm to a distributed system.

1. Introduction. The purpose of this paper is to provide a detailed performance and programming complexity anal-

ysis of four Java network communication mechanisms. These four mechanisms are: RMI using the Serializable interface

and the Externalizable interface, the socket, and datagram socket. Higher level distributed communication packages have

been created by others, but they in turn must also use one the four basic communications mechanisms in their implemen-

tations. Our emphasis here is on practical experimental data which can provide insights on the appropriateness of each of

these mechanisms. As this is the case, rather than create or utilize a formal model, we select well known algorithms to

implement and collect experimental data on. The algorithms themselves are not being compared but instead are used as a

way of comparing different Java communication mechanisms and their impact upon distributed algorithms.

To help illuminate the trade-offs involved in finding the most efficient communication mechanism, the well known

problem of matrix multiplication is selected. Multiplication of large matrices requires a significant amount of computation

time as its complexity is Θ(n3), where n denotes the dimension of the matrix. Because the majority of current scientific
applications demand higher computational throughputs, researchers have tried to improve the performance of matrix op-

erations (such as multiplication). Strassen’s algorithm, devised by Volker Strassen in 1969, reduces the complexity of

matrix multiplication to Θ(n2.807). Even with improvements provided by algorithms such as Strassen’s, performance im-
provement has been limited. Consequently, parallel and distributed matrix multiplication algorithms have been developed

of which two, a simple parallel algorithm (SPA), and a modified Cannon’s algorithm (MCA) [14] are implemented in this

paper (more on the appropriateness of this selection is given later in the paper).

The rest of this paper is as follows. Section 2 provides background introducing distributed computing on the Java

platform, and the specific distributed matrix multiplication algorithms implemented in this paper. In section 3, the exper-

imental setup and implementation are discussed. Section 4 provides an extensive performance analysis of the experiment

results. Finally, the overall summary and conclusion are given in section 5. An appendix contains additional code listings.

2. Background. This work is first put into perspective in comparison to other related works. Next we review the

basic elements of Java distributed programming discussing the four basic communication mechanisms two of which are

variants of Remote Method Invocation (RMI) and two which are variants of sockets. Lastly we provide details of the

matrix multiplication algorithms used in our experiments.

2.1. Comparison to Previous Work. Others have sought to improve Javas distributed computing performance by

focusing on more efficient RMI implementations or better serialization techniques. For example, Maassen et.al. designed

Manta, a new compiler-based Java system, to support efficient RMI on parallel computer systems [1]. Manta utilizes

information gathered at compile time to make the run time protocol as efficient as possible [1]. Although Manta sup-

ports efficient RMI, it does not feature an efficient RMI package. Manta is based on a transparent extension of Java

for distributed environments. Unfortunately, the RMI is part of that environment and cannot be used as a separate RMI

package.

Furthermore, Fabian Breg and Constantine D. Polychronopoulos determined object serialization as a significant bot-

tleneck in RMI [2]. They introduced “a native code implementation of the object serialization protocol” that resulted in

performance improvements. Far more efficient implementations can be obtained when performing object serialization at

the JVM level [2].

Research devoted to the improvement of Java’s distributed performance, whether it involves new mechanisms or

implementations, tends to focus on the problems caused by the generic marshalling and demarshalling of the serialization

∗Department of Computer Science, Southern Illinois University, Carbondale, Illinois 62901.

209

210 Shahram Rahimi, Michael Wainer and Delano Lewis

algorithm. We discuss the Externalizable interface which eliminates the generic marshalling and demarshalling of the

serialization algorithm but do not introduce any new techniques or implementations to the Java distributed environment.

Our work examines the performance of existing communication mechanisms inherent to the Java platform rather than

proposing new packages, implementations, etc., This is important to programmers who wish to obtain the best possible

performance without sacrificing the user-friendliness, portability, ease of deployment, and other advantages offered by the

Java programming language.

2.2. Java Remote Method Invocation (RMI). RMI is the distributed object model used for remote procedure calls.

A remote procedure call mechanism allows amethod or function to be executed on a remote machine as if it were local.

The syntax of remote method invocations is very similar to local method invocations. RMI also implements distributed

garbage collection thereby removing the burden of memory management. All of these features make RMI development

simple and natural, an excellent decision for developing 100 percent Pure Java client/server, peer-to-peer, or agent-based

applications [7]. Unfortunately, RMI implementations tend to have a major Achilles’ heel, communication overhead.

RMI is designed for Web based client/server applications, where network latencies on the order of several milliseconds

are typical [8].

Implementations using RMI must have a mechanism to convert objects to and from byte streams so that they may

be communicated over a network. Two variants are possible, the more automatic Serializable Interface method or the

Externalizable Interface technique which allows for more control.

2.2.1. Serializable Interface. The first communication mechanism examined for this project is RMI using the Seri-

alizable interface. Serialization is a “generic marshalling and demarshalling algorithm, with many hooks for customiza-

tion” [9]. It is the process used to convert object instances into a stream of bytes for network transfer. There is also a

deserialization mechanism which reverses the process. Some of the issues handled by serialization are: byte-ordering

between different architectures, data type alignment, and handling of object references.

Serialization is a significant source of overhead in existing RMI implementations [1]. Its three main performance

problems are: “it depends on reflection, it has an incredibly verbose data format, and it is easy to send more data than

is required” [9]. Since it is a generic method, with hooks for customization, it has a tendency to be both inefficient and

bandwidth-intensive. Declaring a class Externalizable helps solve some of the performance problems associated with

making a class Serializable.

2.2.2. Externalizable Interface. RMI using the Externalizable interface is the second communication mechanism

considered in this project. Implementing the externalization mechanism is more difficult and less flexible than the seri-

alization mechanism. The Java Externalizable interface requires two methods to be created, readExternal() and writeEx-

ternal() (playing similar roles to the readObject() andwriteObject() in the Serializable interface). This code, containing

the specific marshalling and demarshalling instructions, must be rewritten whenever changes to a class’s definitions are

made. Because the programmer has complete control over the marshalling and demarshalling process, all of the reflective

calls associated with the generic serialization mechanism may be eliminated dramatically improving performance [9].

2.2.3. Serializable Interface vs. Externalizable Interface. The Serializable interface can be used by stating that a

class implements Serializable and creating a zero-argument constructor. In addition, the serialization mechanism adapts

automatically to changes in the application. Generally, all that is required is a recompilation of the program. To support

this ease of use, it is necessary for the serialization mechanism to always write out class descriptions of all the Serializable

superclasses [9]. Furthermore, the serialization mechanism always writes out the data associated with the instance when

viewed as an instance of each individual superclass [9].

Externalization can be made to avoid much of this overhead by shifting the burden of specifying the marshalling and

demarshalling details to the programmer. This can be seen by comparing code for the methods readObject(), writeOb-

ject(), versus readExternal(),and writeExternal(). The two write methods are responsible for writing a remote object to a

stream, while the read methods are responsible for reading a remote object from a stream. Code listings illustrating these

approaches are given in the appendix.

Fig. 5.1 (in appendix) illustrates the use of Serializable Interface. Notice the readObject() and writeObject()methods

are not implemented. This is because all the locally defined variables are either primitive data types or serializable objects.

Therefore the serialization mechanism will work without any further effort by the programmer. This makes distributed

programming much easier but less efficient.

The Externalizable interface implementation is shown in Fig. 5.2 (in appendix). Methods readExternal(), and write-

External() are required by the interface. The method, writeExternal() systematically writes each object to a stream while

the corresponding readExternal()method reads in each object in the exact order as it was written. In this implementation,

A Performance and Programming Analysis of Java Communication Mechanisms in a Distributed Environment 211

it is the programmer’s responsibility to forward the size of the matrices. Thus distributed programming using the Exter-

nalizable interface requires more effort on the part of the developer but ideally will compensate by increasing performance

significantly.

2.3. Java Socket Communications. The third and fourth communication mechanisms examined for this project

are based upon sockets. Sockets first appeared on Unix Systems as an abstraction for network communication in the

mid-1970s. Since that time, the socket interface has become a foundation in the field of distributed programming.

There are two communication mechanisms that can be used for socket programming: stream communication and

datagram communication. The stream communication protocol is known as TCP (transfer control protocol). TCP is a

connection-oriented protocol in which a connection must first be established between a pair of sockets. It is important to

note that sockets are used by both the RMI mechanisms.

2.3.1. Java Sockets (stream communication). The java.net package defines the classes and interfaces used to sup-

port stream communications with sockets. Socket and ServerSocket are the two Java classes used when reliable commu-

nication between two remote processes is required. The Socket class provides a single connection between two remote

processes. The ServerSocket class is responsible for the initial connections between a client and server. The server socket

listens for a connection request while the client asks for a connection. Once two sockets have been successfully connected

they can be used to transmit and receive data in one or both directions.

2.3.2. Java Datagram Socket. The fourth communication mechanism examined for this project is the datagram

socket. The datagram socket uses a connectionless protocol, known as UDP (User Datagram Protocol). Data are trans-

mitted in discrete blocks called packets. Packets may either be fixed or variable in length. The network determines the

maximum size of the packet therefore large data transmissions maybe divided into multiple packets.

In the datagram method, routes from the source machine to the destination machine are not created in advance.

Each packet transmitted is routed independently of previous packets thereby allowing the datagram method to adapt to

changing network conditions. Since packets may take different routes, each packet must include the source and destination

addresses. It is important to note that it is possible for packets to be lost or arrive at the destination machine out of order

due to their ability to take different routes.

The Java datagram socket implemented within this project required the use of a packet synchronization scheme

to prevent the loss of packets. As the size of the matrices surpassed 500 × 500, the frequency of lost packets increased.
Because lost packets caused the matrix multiplication application to lock up, an acknowledgmentmechanism was utilized.

After a packet is sent out, no other packets are transmitted until an acknowledgment packet is received. To prevent

deadlocks or indefinite waiting due to lost packets, a timer counts down until it reaches zero. If an acknowledgement

packet does not arrive before it reaches zero, a duplicate packet is retransmitted in hopes that it will reach its destination.

Obviously, synchronization overhead may seriously affect the overall performance of this method.

2.4. Matrix Multiplication. Matrix multiplication is one of the most central operations performed in scientific

computing [12]. Multiplication of large matrices requires a significant amount of computation time as its complexity is

Θ(n3), where n denotes the dimension of the matrix. More efficient sequential matrix multiplication algorithms have
been implemented. Strassen’s algorithm, devised by Volker Strassen in 1969, reduces complexity to Θ(n2.807). Even
with improvements such as Strassen’s algorithm, performance is limited.

A parallel implementation of matrix multiplication offers another alternative to increase performance. Matrix multi-

plication is composed of more basic computations which makes it an appropriate vehicle for evaluating the performance

of the four Java communication mechanisms analyzed in this paper. Two well known parallel matrix multiplication algo-

rithms were selected for implementation: a simple parallel algorithm (SPA), and a modified Cannon’s algorithm (MCA).

These algorithms help to illustrate the trade-offs required when implementing distributed algorithms.

2.4.1. Parallel and Distributed Implementations. When implementing an algorithm across multiple processors it

is important to define the terms, manager process and worker process as these are used in the discussion of the matrix

multiplication algorithms. Generally speaking, the manager process issues commands to be performed by the worker

process. In this context, the manager process contains the graphical user interface (GUI) and is responsible for the issuing

of matrix multiplication requests, partitioning of the input matrices, transmission of the submatrices, reception of the

results, and time keeping duties. The worker process accepts matrix multiplication commands from the manager process,

performs all of the actual matrix calculations, and returns the results, in the form of submatrices, to the manager process.

2.4.2. Simple Parallel Algorithm (SPA). Consider two input matrices, A and B, and the product matrix C. The

value in position C[r, c] of the product matrix is the dot product of row r of matrix A and column c of the second matrix B,

212 Shahram Rahimi, Michael Wainer and Delano Lewis

given by the summation equation:

C[r, c] =

N
∑

k=1

A[r,k]× B[k,c](2.1)

The simple parallel algorithm used in this paper merely partitions this idea among multiple processes. Consider the

following scenario, two square matrices A and B with dimensions n × n, to be multiplied in parallel using k worker

processes. First, matrix A is divided into k submatrices by the manager process. Second, each worker process then

receives a submatrix of A, and the entire matrix B from the manager process. Next, sequential multiplication is performed

to compute an output submatrix. Finally, each worker process returns its output submatrix to the manager process forming

the resulting product matrix.

This algorithm has p iterations where p = n
k
. During an iteration, a process multiplies a (n

p
) × (n

p
) block of matrix

A by a (n
p
) × n block of matrix B resulting in Θ(n3

p2). Therefore the total computation time is Θ(n3

p
).

Upon examination of this algorithm, it is clear that a significant amount of data is transmitted during each communi-

cation call. Initially,(n × n) + n×n
k
data is transferred to each worker process. After each worker process calculates its

output submatrix, n×n
k
data is returned to the manager process. Thus the total amount of data transferred is:

k[(n × n) +
n × n

k
+

n × n

k
] = k(n × n) + 2(n × n) = (n × n)(k + 2)(2.2)

In addition, this algorithm performs one communication call to each of the k worker processes, and each worker

process performs one communication call to the manager process for a total of 2k calls. Thus the average amount of data

transferred per communication call is:

(n × n)(k + 2)

2k
(2.3)

This assumes that there is no broadcast mode that would enable matrix A to be broadcast to all the worker processes

simultaneously. Unfortunately, Java RMI does not support broadcasting [13].

2.4.3. Modified Cannon’s Algorithm (MCA). The previous multiplication algorithm not only transfers large

amounts of data per communication call, but also requires a significant amount of memory. Cannon’s algorithm was de-

veloped to be a memory-efficient matrix multiplication algorithm [14]. The idea behind this algorithm is as follows: two

matrices A and B are partitioned into square blocks and transferred to k worker processes. If a schedule can been forced,

so that after each submatrix multiplication these partitioned blocks can be rotated among the worker processes, then each

process contains only one block of each matrix at any given time [14].

The modified Cannon’s algorithm used in this paper differs in two distinct ways from the traditional Cannon’s algo-

rithm. The first difference concerns the initial pre-skewing of matrices A and B which is now done entirely within the

manager process. This change was made to help decrease the average amount of data transferred per communication call.

The second difference is that only one dimensional submatrix blocks are transferred between the worker processes (rather

than square submatrices). This change was made to increase the total number of communication calls between the worker

processes.

Both of these changes appear to negatively affect distributed computing performance. Why were they implemented?

The purpose of this paper is to provide a performance analysis of four Java network communication mechanisms using

two parallel matrix multiplication algorithms. As discussed earlier, the first parallel algorithm transmits a large amount

of data per communication call, but requires only a small number of communication calls. To get a better understanding

of the performance characteristics of each communication mechanism, it seems logical to contrast the first algorithm with

one that transmits a small amount of data per call, but requires many calls. This is the reason why the above changes were

made to Cannon’s algorithm.

Consider the following scenario, two square matrices A and Bwith dimensions n×n, to be computed in parallel using

one manager process and k worker processes. First, matrices A and B are pre-skewed within the manager process. Second,

matrices A and B are partitioned into square blocks and one block from each matrix is transferred to each worker process.

Third, each worker process performsmatrix multiplication (by element) on the square blocks to obtain an output submatrix

C. Next, communication between the worker processes begins as each process sends the first column of submatrix A to

its left neighbor and sends the first row of submatrix B to its top neighbor. At the same time each process receives a new

column and row from its right and bottom neighbors respectively.

A Performance and Programming Analysis of Java Communication Mechanisms in a Distributed Environment 213

TABLE 2.1

Simple Parallel Algorithm vs. Modified Cannon’s Algorithm (k=4, n=500)

Parallel Algorithm Total Number of Calls Average Amount of Data per Call Total Number of Calls Average Amount of Data per Call

Simple Parallel Algorithm 2k
(n×n)(k+2)

2k
8 187,500 elements

Modified Cannon’s Algorithm 2k + 2k(n − 1)
3(n×n)+2kt(n−1)

2k+2k(n−1)
4000 437 elements

At this point, each worker process shifts its A and B submatrices to include the newly received row and column and

discards the row and column that were transferred. Again, each worker process performs matrix multiplication to obtain

an updated product submatrix C, followed by another round of data exchange and matrix multiplication. This cycle is

performed a total of n − 1 times. Finally, each worker process returns its product submatrix to the manager process to
form the resulting product matrix.

This algorithm has
√

p iterations where p = n×n
k
. During an iteration, a process multiplies a (n√

p
) × (n√

p
) block of

matrix A by a (n√
p
) × (n√

p
) block of matrix B resulting in Θ(n3

p
3
2
). Therefore the total computation time is Θ(n3

p
).

Let’s examine the communication characteristics of the modified Cannon’s algorithm. Initially,
(n×n)

k
+ (n×n)

k
data

is transferred to each worker process. Let t =
√

(n×n)
k
denotes the row and column sizes of the A, B, and C submatrices.

After each worker process calculates its first submatrix, a total of t(n − 1) + t(n − 1) data are transferred during the
worker process communication phase. Finally each worker process returns n×n

k
to the manager process. Thus the total

amount of data transferred is:

k[
2(n × n)

k
+ 2t(n − 1) +

(n × n)

k
] = 3(n × n) + 2kt(n − 1), where t =

√

(n × n)

k
(2.4)

In addition, this algorithm performs one communication call to each of the k worker processes. Each worker process

performs 2(n − 1) communication calls during the worker communication phase and one call to the manager process
to return its result. This results in a total of 2k + 2k(n − 1) calls. Thus the average amount of data transferred per
communication call is:

3(n × n) + 2kt(n − 1)

2k + 2k(n − 1)
(2.5)

2.4.4. SPA vs. MCA. Recall, the simple parallel and modified Cannon’s algorithms presented in this section were

chosen because of their distinct characteristics with respect to the total number of communication calls required and the

average amount of data transferred per communication call. The simple parallel algorithm transmits a large amount of data

per communication call, but requires only a small number of communication calls. Conversely, the modified Cannon’s

algorithm transfers a small amount of data per communication call, but requires a large number of communication calls.

To better demonstrate the differences between these two algorithms, Table 2.1 is provided for k = 4 and n = 500.

3. Experiment Implementation. As was mentioned before, the purpose of this paper is to provide a performance

and programming complexity analysis of Java communication mechanisms using matrix multiplication as the experimen-

tal framework. Experiments were performed using five identical computers connected to a 100 MHz LAN (the speci-

fications are given in the following subsection.) One computer acted as the manager process, while the remaining four

computers performed as worker processes (k = 4). The manager process was responsible for partitioning the matrices,

transmission of the submatrices, reception of the results, and time keeping duties. The worker processes performed all

of the actual calculations. The data matrices used in this experiment contained randomly generated integers with values

ranging from 0 to 20. The size of the matrices multiplied ranged from 100 × 100 to 1000 × 1000 in increments of 100.
The data reported in this paper represent an average from five trial runs.

3.1. Settings. For the socket implementation, buffered input and output streams were used. For the datagram socket

implementation, a proper packet size had to be determined. Packet size has an important impact on system efficiency.

Smaller packet sizes allow for improved pipelining, but have a higher header overhead due to a fixed header size. Larger

packet sizes have a lower header overhead, but have worse pipelining as the number of hops increases. Because the

maximum number of hops was limited to one due to the LAN topology, a larger packet size was selected. The Internet

Protocol restricts datagram packets to 64KB [9].

214 Shahram Rahimi, Michael Wainer and Delano Lewis

FIG. 3.1. Serialization Implementation

Since the maximum allowable packet size is 64 KB, a data packet size of 63 KB (allowing for overhead) was chosen

for this experiment. This does not imply that every packet transmitted was 63 KB. It only specifies an upper bound on

a packets size. Consider the scenario where two 100 × 100 matrices are to be multiplied using the modified Cannon’s
algorithm.

After the initial pre-skewing, each of the four worker processes receives two 25 × 25 matrices or 5 KB of data.
Obviously it would be a tremendous waste of time and bandwidth to send a 63 KB packet with 5KB of useful data.

Therefore the datagram packet generation code (Fig. 3.5) determines the appropriate size of a data packet. If the size of

the data to be transmitted is 5 KB, then the packet size will be 5 KB. If the size of the data is 75 KB, then a 63 KB and

a 12 KB packet will be sent. This applies to all forms of communication, whether it is between a manager process and

worker process or between two worker processes.

In terms of the computer specifications, each computer had an Intel Pentium 4 clocked at 1.7 GHz, 512 MB of RAM,

Microsoft Windows XP Professional, and Java version 1.4.2. In addition, like many computers connected to a LAN, these

five computers had typical programs running in the background such as virus and client programs. These background

programs were not disabled during the experiment. The manager process computer used an initial heap size of 64 MB

and max heap size of 96 MB. The four worker process computers had their initial and max heap size set to 64 MB.

3.2. Comparison of Implementation Difficulty. To aid in the programming complexity analysis, a series of coded

examples are included. All of these examples involve a data transmission from the manager process to a worker process

during the execution of the simple parallel algorithm. Remember with the simple parallel algorithm, each worker process

receives one full matrix and a submatrix.

The least difficult communication mechanism used in the design and development of this distributed application

was RMI using the Serializable interface. Since the syntax of remote method invocations is very similar to that of local

method invocations, RMI shields Java programmers from low level communication concerns. In addition, since RMI uses

the Serializable interface to automatically handle the marshalling and demarshalling of remote objects, implementing

the simple parallel and modified Cannon’s algorithms in a distributed environment becomes a straight forward process.

Fig. 3.1 shows the actual code to invoke a remote method using serialization.

Basically two lines of code are all that is required to send the necessary data to a worker process. The portion,

theManager.dataNodeArray[index].getWorkerInterface(), specifies the particular worker process to communicate with.

The portion, requestMUL(theMULNode), identifies the specific remote method to be invoked. In this case, the remote

method is a multiplication request with one argument of type classMultiplyDataNode(see Fig. 5.1 in appendix).

RMI using the Externalizable interface was only slightly more difficult to implement when compared to the Seri-

alizable interface. The added complexity came as a result of the burden placed on the programmer to implement the

readExternal(), and writeExternal() methods. In this scenario, converting object instances into a stream of bytes and

vice versa was no longer the responsibility of Java, but the programmer’s. Fig. 3.2 displays the code to invoke a remote

method using externalization. The only difference lies in the programmer’s responsibility to code the readExternal(), and

writeExternal() methods (see Fig. 5.2 in appendix). .

The third most difficult communication mechanism to work with was the socket implementation. The socket per-

sonifies low level communication. Similar to RMI using the Externalizable interface, object instances must be converted

to and from a stream of bytes by the programmer. Dissimilar to RMI using the Externalizable interface, remote method

invocations are not supported. Therefore extra work is needed to properly encode and decode remote methods. Fig. 3.3

illustrates the socket implementation.

A Performance and Programming Analysis of Java Communication Mechanisms in a Distributed Environment 215

FIG. 3.2. Externalization Implementation

FIG. 3.3. Socket Implementation

The first line of the code creates a stream socket and connects it to the specified port number at the specified IP

address. The next four lines of code create buffered input and output streams. After the I/O streams have been initialized,

the process number and job command are written to the socket. The process number is used for record keeping pur-

poses. The job command however is very important. Because remote method invocations do not exist, a worker process

does not know what method it should perform. The job command provides the necessary information. The last line of

code writes the class, of type MultiplyDataNode, to the socket. This method is nearly identical to the writeExternal()

method discussed in the previous section. The only distinctions are a different argument and the inclusion of a flush

command.

The datagram socket was the most difficult communication mechanism to implement since it uses a connectionless

protocol, which by definition is unreliable. Thus to ensure reliability, some form of packet synchronization is required.

Introducing packet synchronization involves the design and coordination of multithreaded processes to read packets as

they become available and deal with timeout issues. Fig. 3.4 highlights the difficulty involved with the datagram socket

implementation.

The first method, setupDataTransmission(), creates an output stream in which data may be written into a byte array.

The byte array automatically grows as data is written to it. The next line of code writes the class, of type Multiply-

216 Shahram Rahimi, Michael Wainer and Delano Lewis

FIG. 3.4. Datagram Socket Implementation

DataNode, to the newly created byte array. As before, this method is very similar to previous methods. The challenge of

implementing the datagram socket lies in the sendData()method as shown in Fig. 3.5.

The first step is to calculate the total number of packets needed to transfer the required data. Once inside the while

loop, a single packet is created and sent during each iteration. Once a worker process receives a data packet,it will

send an acknowledgment. An important note, at this point another thread is running with the sole purpose of reading

acknowledgments from the receiving worker process. After an individual packet is transmitted, a new thread of type class

PacketTimer is created. This thread acts as a timer and counts down to zero. If the timer reaches zero, a duplicate packet

is sent, the timer is reset, and the count down starts again. Each time it reaches zero, a duplicate packet is transmitted.

The variable controlPacketReceived is a semaphore with an initial value of zero. The line, controlPacketReceived.p(),

is a wait operation. Therefore this process halts and waits until the listening thread receives an acknowledgment. Once

an acknowledgment is received, a signal operation is performed on the semaphore, and the halted process continues

execution. At this point the timer thread is destroyed and if there are more packets to send, execution of the next iteration

begins.

Looking at Fig. 3.5 again, the method getTotalPacketNum(int) looks at the data to be transmitted and calculates the

total number of packets needed. The method getBufferSize(int) determines the correct packet size by looking at the total

number of packets needed. If only one packet is needed, then a packet size is created that matches the size of the data to

be sent. If more than one packet is needed, then a 63KB packet size is chosen during the current iteration.

4. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS. First, the performance of the four Java

communicationmechanisms, when using the simple parallel algorithm, is considered. Recall the simple parallel algorithm

transmits a large amount of data per communication call, but requires only a small number of communication calls. The

results are shown in Fig. 4.1.

Fig. 4.1 shows the socket implementation provides the best performance for the simple parallel algorithm. The

externalization implementation offers performance that is nearly as good. The serialization implementation comes in

third with the datagram socket implementation providing the worst performance of the group. In general, the socket,

externalization, and the serialization implementations perform similarly with respect to each other. The datagram socket

however, clearly provides the worst performance.

Next, the performance of the four Java communication mechanisms are evaluated, when using the modified Cannon’s

algorithm. Unlike the simple parallel algorithm, the modified Cannon’s algorithm transfers a small amount of data per

communication call, but requires a large number of communication calls. Does the socket implementation achieve the

best performance in this scenario? The results when executing the modified Cannon’s algorithm are displayed in Fig. 4.2.

As before, Fig. 4.2 illustrates the best performance is achieved using the socket implementation. Again the external-

ization implementation offers similar performance to that of the socket implementation, but still comes in second. The

serialization implementation comes in third with the datagram socket implementation providing the worst performance of

the group. Table 4.1 provides a numerical representation of Fig. 4.1 and 4.2.

4.1. Communication Time vs. Overall Computation Time. All of the results discussed to this point, have repre-

sented the overall computation time; the total time it takes, once a command is entered in the manager process, until a final

result is achieved by the manager process. Communication time, however, only encompasses the total amount of time

spent communicating during the execution of a particular algorithm. Fig. 4.3 and Fig. 4.4 display these communication

times.

A Performance and Programming Analysis of Java Communication Mechanisms in a Distributed Environment 217

FIG. 3.5. The SendData() Method

For the simple parallel algorithm, Fig. 4.3 shows the socket implementation has the lowest communication times fol-

lowed closely by the externalization and serialization implementations. As expected, the datagram socket implementation

has the highest communication times.

For the modified Cannon’s algorithm, Fig. 4.4 shows that the socket implementation has the lowest communication

times followed closely by the externalization and serialization implementations. Again, the datagram socket implemen-

tation has the highest communication times of the group. Table 4.2 provides a numerical representation of Fig. 4.3 and

Fig. 4.4.

218 Shahram Rahimi, Michael Wainer and Delano Lewis

FIG. 4.1. Simple Parallel Algorithm Time

TABLE 4.1

Performance Results of Java Communication Mechanisms

Size R × C Serial

SPA

Serial

MCA

Extern

SPA

Extern

MCA

Socket

SPA

Socket

MCA

Data

Socket

SPA

Data

Socket

MCA

100 × 100 0.103 0.803 0.055 0.736 0.053 0.710 0.101 0.617

200 × 200 0.165 1.072 0.142 1.046 0.141 0.945 0.247 1.076

300 × 300 0.413 1.716 0.395 1.744 0.391 1.511 0.689 1.992

400 × 400 0.872 2.900 0.920 2.823 0.900 2.667 1.562 3.336

500 × 500 1.959 4.378 1.950 3.580 1.944 3.372 2.605 3.726

600 × 600 4.494 6.547 3.749 5.919 3.699 5.668 5.895 6.236

700 × 700 10.569 9.087 9.710 8.946 9.751 8.428 19.598 9.569

800 × 800 17.321 11.778 17.305 10.492 16.899 10.001 26.367 13.516

900 × 900 33.660 14.007 29.986 12.853 30.021 12.251 37.285 17.946

1000× 1000 52.221 19.886 50.459 17.446 49.694 16.894 63.046 23.995

It is important to note, the overall computation time consists of four main components. The first component is

the communication time as discussed earlier. The second component is the time it takes for the manager process to

partition the original matrices and ready them for transmission. For example, in the case of the modified Cannon’s

algorithm, the initial pre-skewing is done by the manager process before any data is transmitted. The third component is

the time it takes for the worker processes to perform the required calculations. And the last component is the time it takes

for the manager process to recombine all the partial solutions received from the worker processes and arrive at a final

answer. Therefore, subtracting Table 4.2 from 4.1 will not give an accurate measurement of the time spent on calculations

alone.

4.2. Serializable Interface vs. Externalizable Interface. Java RMI using the Externalizable interface provided

slightly better performance than Java RMI using the Serializable interface. This increase in performance does come at

a cost since the externalization mechanism is more difficult to implement. Methods readExternal() and writeExternal()

must be implemented and the marshalling and demarshalling code contained within these methodsmust be rewritten when

A Performance and Programming Analysis of Java Communication Mechanisms in a Distributed Environment 219

FIG. 4.2. Modified Cannon’s Algorithm Time

TABLE 4.2

The Amount of Time Used For Communication

Size R × C Serial

SPA

Serial

MCA

Extern

SPA

Extern

MCA

Socket

SPA

Socket

MCA

Data

Socket

SPA

Data

Socket

MCA

100 × 100 0.034 0.637 0.020 0.542 0.030 0.515 0.049 0.438

200 × 200 0.109 0.840 0.100 0.816 0.109 0.716 0.194 0.961

300 × 300 0.213 1.269 0.208 1.189 0.188 0.957 0.473 1.509

400 × 400 0.365 1.703 0.346 1.590 0.337 1.433 0.951 1.823

500 × 500 0.572 2.197 0.488 1.847 0.486 1.642 1.480 2.388

600 × 600 0.831 2.809 0.817 2.638 0.781 2.384 2.787 3.625

700 × 700 1.194 3.491 1.175 3.364 1.038 2.845 5.141 4.772

800 × 800 1.503 4.066 1.225 3.735 1.225 3.245 7.171 6.123

900 × 900 1.828 4.416 1.797 4.265 1.777 3.661 9.067 8.474

1000× 1000 2.452 4.937 2.341 4.833 2.109 4.281 13.261 10.467

changes to a class’s definitions are made. But if a programmer wants to use a high level communication mechanism and

requires the utmost performance, Java RMI using the Externalizable is the best choice.

4.3. Socket vs. Datagram Socket. The socket and datagram socket implementations represent the low level com-

munication mechanisms studied in this paper. More generically, the socket method uses circuit switching whereas the

datagram socket uses packet switching. Fig. 4.5 compares these basic communication methods during the transmission

of a message with length X , a K link path, with a link rate of B, propagation delay D, packet prep time T , circuit setup

time S, packet length P , and header lengthH .

Technically, packet switching will outperform circuit switching when the setup time is greater than the time required

to prepQ − 1 packets plus the time required to prep and transmit the last packet over aK link route. We are interested in

when the last packet will arrive at the destination. Because the socket method offered a much higher level of performance,

it is easy to conclude that the setup time associated with the socket approach was considerably less. This makes perfect

sense because the datagram method implemented in this paper used the stop-and-wait method.

220 Shahram Rahimi, Michael Wainer and Delano Lewis

FIG. 4.3. Simple Parallel Algorithm Communication Time

Remember the Java datagram socket implementation used the idea of packet synchronization because it suffered

from an increasing number of lost packets as the size of the matrices surpassed 500 × 500. The disadvantage of the
stop-and-wait method is inefficiency. In the stop-and-wait method, each packet must travel all the way to the receiver and

an acknowledgment must be received before the next packet may be transmitted. This ensures that all packets will arrive

in proper order, but also results in a tremendous waste of bandwidth because each packet is alone on the transmission line.

Therefore the time to transmit a packet becomes rather significant, especially if some packets are lost necessitating the

retransmission of the lost packets.

It is interesting to note the datagram socket implementation performed slightly better than the socket implementation

before packet synchronization was introduced. One possible method to increase the performance of the datagram socket

implementation, using packet synchronization, is to implement a sliding window protocol. The sliding window method

helps alleviate the inefficiency of the stop-and-wait method by allowingmultiple packets to be transmitted before requiring

an acknowledgment. This allows the transmission line to carry multiple packets at once resulting in higher bandwidth

utilization and an increase in performance.

4.4. Simple Parallel Algorithm vs. Modified Cannon’s Algorithm. Implementing the simple parallel algorithm

within the Java environment was a rather simplistic task. Unfortunately, this algorithm required a significant amount of

memory. Cannon’s algorithm was developed to be a memory-efficient matrix multiplication algorithm [14]. The notion

behind this algorithm is as follows: two matrices A and B, are partitioned into square blocks and transferred to q processes.

If a schedule can be enforced, so that after each submatrix multiplication these partitioned blocks can be rotated among

the processes, then each process contains only one block of each matrix at any given time [14]. Although a modified

Cannon’s algorithm was implemented in this paper, the characteristic of being memory efficient still applies.

Looking back at Table 4.1, an interesting trend can be witnessed between the SPA and MCA implementations. At ma-

trices sizes of 600×600 and smaller, all the SPA implementations outperform their correspondingMCA implementations.
But at 700× 700 and larger, the roles are reversed. At these larger matrix sizes, all the MCA implementations offer better
performance than their corresponding SPA implementations. In fact as the matrix size increases, so to does the degree

in which the MCA outperforms the SPA, even though the MCA implementations generally require more communication

time as indicated by Table 4.2. As the size of matrices approach and pass 700 × 700, the SPA implementations start to
suffer from a memory related issue.

A Performance and Programming Analysis of Java Communication Mechanisms in a Distributed Environment 221

FIG. 4.4. Modified Cannon’s Algorithm CommunicationTime

FIG. 4.5. Circuit Switching vs. Packet Switching

222 Shahram Rahimi, Michael Wainer and Delano Lewis

FIG. 4.6. Sequential Algorithm Time vs. Parallel AlgorithmTime

TABLE 4.3

Sequential Algorithm Time vs. Parallel AlgorithmTime

Size R × C Single CPU Socket SPA Socket MCA

100 × 100 0.022 0.053 0.710

200 × 200 0.141 0.141 0.945

300 × 300 0.694 0.391 1.511

400 × 400 1.756 0.900 2.667

500 × 500 4.031 1.944 3.372

600 × 600 10.316 3.699 5.668

700 × 700 35.396 9.751 8.428

800 × 800 62.219 16.899 10.001

900 × 900 111.678 30.021 12.251

1000× 1000 187.745 49.694 16.894

4.4.1. Speedup. As mentioned earlier, one advantage of distributed computing is computational speedup as defined

by the equation:

Computation speedup =
fastest sequential algorithm execution time

parallel algorithm execution time
(4.1)

Implementing a distributed algorithm for a problem that underperforms a sequential algorithm for the same problem

is a waste of time. Therefore sequential execution times were measured so that computation speedup could be calculated.

The sequential algorithm used was the basic matrix multiplication algorithm with complexityΘ(n3).
Fig. 4.6 shows the execution times of the sequential matrix multiplication algorithm and the two parallel matrix

multiplication algorithms using sockets. Only the socket execution times were compared since they achieved the best

performance. Table 4.3 provides a numerical representation of Fig. 4.6 and Fig. 4.7 illustrates the speedup results achieved

during this experiment.

As mentioned previously, to correctly compute computation speedup, the fastest sequential algorithm must be used.

In this paper, the generic sequential matrix multiplication algorithm Θ(n3) was used to calculate computation speedup

A Performance and Programming Analysis of Java Communication Mechanisms in a Distributed Environment 223

FIG. 4.7. Computation Speedup

even though faster sequential algorithms such as Strassens Θ(n2.807) exist. Going by the strict definition of computation
speedup, the use of the generic algorithm is incorrect and raises a valid concern. However because the ultimate goal of

this paper is to gauge the performance of four Java communicationmechanisms, the speedup data is provided to the reader

only as tool for understanding the potential advantages of a distributed algorithm.

For the simple parallel algorithm, the computation speedup approaches 4 as the size of the matrices increase. This

observation is expected due to the fact there were 4 worker processes performing the calculations. Unfortunately, ideal

speedup is rarely realized due to the following factors: data dependencies, input/output bottlenecks, synchronization

overhead, and inter-processor communication overhead [5], [6].

For the modified Cannon’s algorithm, the computation speedup actually exceeds the ideal case a phenomenon which

is referred to as super linear speedup [14]. Recall the modified Cannon’s algorithm had an interesting performance charac-

teristic due to its more memory efficient design. At matrices sizes of 600× 600 and smaller, all the SPA implementations
outperform their correspondingMCA implementations. But at 700× 700 and larger, the roles are reversed with the MCA
implementations offering better performance. As the size of matrices approach and pass 700 × 700, it appears the SPA
implementations start to suffer from memory related performance problems. Whether these potential memory problems

are a result of paging faults, garbage collection, or some other problem is not clear.

Calculating the multiplicative constants for the data in Table 4.3, reveal little variation for the modified Cannon’s al-

gorithm. For the most part, the multiplicative constants for the simple parallel algorithm remain relatively close. However

the multiplicative constants for the sequential algorithm increase dramatically for matrices larger than 600 × 600.

If indeed the sequential algorithm is suffering from decreased performance due to memory related problems such

as garbage collection, or paging faults, then the workload of the sequential algorithm becomes larger than the parallel

algorithm, leading to superlinear speedup. This result highlights another advantage of distributed computing: access to a

larger amount of memory.

5. Conclusion. Distributing computation among several processors has become an important technique in the high

performance community. Distributed computing represents a viable solution to the problem of finding more powerful ar-

chitectures, capable of harnessing the power of multiple machines. Among the first design issues a Java programmer must

face when creating a distributed application, is which connection mechanism to use. In this paper, a performance and pro-

gramming complexity analysis of all four Java API network connection mechanisms was presented. The four connection

mechanisms are: RMI using the Serializable interface, the Externalizable interface, the socket, and datagram socket.

The socket implementation provided the best overall performance followed closely by Java RMI using the External-

izable interface. Because Java RMI is a high level communication mechanism, it allows programmers to focus more on

224 Shahram Rahimi, Michael Wainer and Delano Lewis

FIG. 5.1. MultiplyDataNode.java Using Serialization

the distributed algorithm and less on the low level communication concerns. It is up to the programmer to decide which

is more important for a given application, coding complexity or program performance.

Due to their respective overheads the implementations using, Java RMI with the Serializable interface and the data-

gram socket performed comparably slower. With regard to serialization, the overhead exists in the generic marshalling and

demarshalling algorithm. However, an advantage of this generic algorithm is that it makes the design and development of

distributed applications much easier than the other communication mechanisms.

With the datagram socket implementation, the overhead occurs in the stop-and-wait packet synchronization method.

In the stop-and-wait method, each packet must travel all the way to the receiver and an acknowledgment must be received

before the next packet may be transmitted. This ensures that all packets will arrive in proper order, but also results in a

tremendous waste of bandwidth because each packet is alone on the transmission line. The poor performance and complex

programming required by the datagram socket effectively eliminate it from consideration when using the stop-and-wait

method.

REFERENCES

[1] MAASSEN, J., NIEUWPOORT, R. V., VELDEMA, R., BAL, H., PLAAT, A., An Efficient Implementation of Java’s Remote Method Invocation,

Proceedings of the Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Atlanta, GA, (1999), pp.

173-182.

[2] BREG, F. AND POLYCHRONOPOULOS, C. D., Java Virtual Machine Support for Object Serialization, Proceedings of the 2001 joint ACM-

ISCOPE Conference on Java Grande, Palo Alto, CA, (2001), pp. 173-180.

[3] SILBERSCHATZ, A., GALVIN, P. B., Operating System Concepts (Fifth Edition), Addison Wesley Longman,Inc., Berkeley, CA, (1998), pp.

14-20.

[4] HENNESSY, L. AND PATTERSON, D. A., Computer Architecture: A Quantitative Approach (Second Edition), Morgan KaufmannPublishers,

Inc., San Francisco, CA, (1996), pp. 635-644.

[5] ZARGHAM, M. R., Computer Architecture Single and Parallel Systems, Prentice Hall, Upper Saddle River, NJ, (1995), pp. 300-303.

[6] SHEIL, H., Distributed Scientific Computing in Java: Observations and Recommendations, Proceedings of the 2nd International Conference on

Principles and Practice of Programming in Java, Kilkenny City, Ireland, (2003), pp 219-222.

[7] SUTHERLAND, D., RMI and Java Distributed Computing, http://java.sun.com/features/1997/nov/rmi.html, retrieved November 13, (2003).

[8] MAASSEN, J., NIEUWPOORT, R. V., VELDEMA, R., BAL, H., KIELMANN, T, JACOBS, C., AND HOFMAN, R., Efficient Java RMI for Parallel

Programming, ACM Transactions on Programming Languages and Systems, New York, NY, (2001), pp. 747 775.

[9] GROSSO, W., Java RMI, O’Reilly and Associates, Sebastopol, CA, (2002), pp. 179-198.

[10] CURRY, A., Unix Systems Programming for SVR4, OReilly and Associates, Sebastopol, CA, (1996), pp. 391-396.

[11] FOROUZAN, B. A.., Data Communications and Networking (SecondEdition), McGraw-Hill, New York, NY, (2001), pp. 441-447.

[12] HALL, J. D., CARR, N. A., AND HART, J. C., GPU Algorithms for Radiosity and Subsurface Scattering, Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS Conference on Graphics Hardware, San Diego, CA, (2003), pp. 51-59.

[13] MAASSEN, J., NIEUWPOORT, R. V., VELDEMA, R., BAL, H., AND KIELMANN, T., Wide-Area Parallel Computing in Java, Proceedings of

the ACM 1999 Conference on Java Grande, San Francisco, CA,(1999), pp. 8-14.

[14] GRAMA, A., GUPTA, A., KARYPIS, G., AND KUMAR, V., Introduction to Parallel Computing (SecondEdition), Pearson EducationLimited,

Harlow, England, (2003), pp. 345-349.

[15] FLANAGAN, D., Java in a Nutshell (Third Edition),O’Reilly and Associates Inc., Sebastopol, CA, (1999), pp. 74-93.

Appendix. RMI Code Listings: Contrasting the Serializable and Externalizable interfaces Below is some actual

code to help emphasize the role the methods readObject(), writeObject(), readExternal(), and writeExternal() play in

the Serializable and Externalizable interfaces. The two write methods are responsible for writing a remote object to a

A Performance and Programming Analysis of Java Communication Mechanisms in a Distributed Environment 225

FIG. 5.2. MultiplyDataNode.java Using Externalization

226 Shahram Rahimi, Michael Wainer and Delano Lewis

stream, while the read methods are responsible for reading a remote object from a stream. Fig. 5.1 shows the complete

implementation of the MultiplyDataNode class, a class that implements the Serializable interface.

This class is composed of two integer matrices, four integers, and a zero argument constructor. The transient keyword

tells the serialization mechanism to ignore a particular variable. In Java, the size of a matrix is embedded within the matrix

object itself. Notice the readObject() and writeObject() methods are not implemented. This is because all the locally

defined variables are either primitive data types or serializable objects. Therefore the serialization mechanism will work

without any further effort by the programmer. This makes distributed programming much easier but less efficient.

Now observe the same class, this time implementing the Externalizable interface as shown in Fig. 5.2. As before,

this class (Fig. 5.2) is composed of two integer matrices, four integers, and a zero argument constructor. Notice the

readExternal(), and writeExternal() methods are implemented, a requirement when dealing with externalization. The

method, writeExternal(), systematically writes each object to a stream while the corresponding readExternal() method

reads in each object in the exact order as it was written. This time, the transient keyword is not present because in this

case of externalization, it is the programmer’s responsibility to forward the size of the matrices. This makes distributed

programming using the externalizable interface more difficult but hopefully the increased efficiency will be worth it.

Edited by: Marcin Paprzycki

Received: December 14, 2005

Accepted: October 24, 2006

