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USING OVERLAY NETWORKS TO BUILD OPERATING SYSTEM SERVICES FOR

LARGE SCALE GRIDS

EMMANUEL JEANVOINE∗, LOUIS RILLING† , CHRISTINE MORIN‡ , AND DANIEL LEPRINCE§

Abstract. Using grid resources to execute scientific applications requiring a large amount of computing power is attractive
but not easy from the user point of view. Vigne is a grid operating system designed to provide users with a simplified view of a
grid. Vigne deals with the huge number of nodes in a large-scale grid and with the nodes’ dynamic behavior by using peer-to-peer
overlays as a keystone. In this paper, we show why it is highly desirable to use structured and unstructured peer-to-peer overlays
for building the high-level services of Vigne grid operating system. To show the interest of our approach, we detail the features of
two Vigne services built on top of peer-to-peer overlays. We also present experimental results obtained on the Grid’5000 testbed
showing the scalability of the Vigne infrastructure based on overlays and its practical interest for the implementation of Vigne
distributed services.
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1. Introduction. Numerical simulation has an important place in several scientific fields where real ex-
perimentation is expensive or impossible. Many scientific applications require a large amount of resources that
a single workstation cannot provide. Since the last decade, clusters and grids have become attractive for the
execution of such applications. A challenge for the institutions needing a large computing power is to harness
a huge amount of volatile resources distributed over many sites in a grid. As a first issue, the large number of
resources and their physical distribution make it difficult to locate good resources. We propose to offer a Single

System Image (SSI) view of the resources to overcome this issue. As a second issue, node additions, removals,
and failures can occur frequently, which is hard for users and administrators to manage. Thus, we propose
to design a self-organizing and a self-healing system to relieve users and administrators from large scale and
dynamic behavior issues.

To simplify the use of a grid, we propose a grid operating system, called Vigne, designed with SSI, self-
organizing and self-healing properties. To obtain these properties, we have based several services of Vigne on
an infrastructure composed of decentralized self-healing overlays.

In this paper, we present the design principles of Vigne Grid operating system and demonstrate why it is
highly desirable to use jointly structured and unstructured overlays in the Vigne infrastructure. The contribution
of this paper is the following. We show how two kinds of overlays can be used to build two scalable, self-healing
grid operating system services. The experimental results obtained executing Vigne on the Grid’5000 French
national testbed show the scalability of the Vigne infrastructure and its practical interest. In particular, this
infrastructure allows us to build a service to execute applications reliably on behalf of users, which originality
is to be decentralized and self-healing.

The rest of this paper is as follows. In Section 2, we give an overview of the Vigne operating system and
present its design principles. We explain the requirements of the Vigne services in terms of distributed object
naming and location mechanisms in Section 3. In Section 4 we present the overlays used in the Vigne system
and we detail two services based on these overlays. In Section 5, we present an experimental evaluation of the
scalability of Vigne overlay infrastructure and provide preliminary performance results for the Vigne resource
discovery service. We present related works in Section 6 and we finally conclude in Section 7.

2. Overview of Vigne. We are building the Vigne Grid Operating System (GOS) in order to relieve users
and programmers from the burden of dealing with highly distributed resources over a set of volatile nodes. In
this section we present the design principles we adopted to achieve this goal, and we give an overview of Vigne’s
services.

Design Principles. To design the services of Vigne, we followed three main principles. First, to provide
users and programmers with simple abstractions of the distributed physical resources, the services of Vigne
provide Single System Image (SSI). Users and programmers have the illusion to work on a single computer

∗EDF R&D, IRISA PARIS project-team (emmanuel.jeanvoine@irisa.fr)
†Kerlabs (louis.rilling@kerlabs.com). This work was performed when Louis Rilling was affiliated to University of Rennes 1,

IRISA PARIS project-team
‡INRIA Rennes-Bretagne Atlantique research centre, IRISA PARIS project-team (christine.morin@irisa.fr)
§EDF R&D (daniel.leprince@edf.fr)

229



230 Using Overlay Networks to Build Operating System Services for Large Scale Grids

that gathers the resources of all the nodes of the grid. This property is important because the distribution of
the resources over a large number of nodes makes these resources very difficult to observe, select, and use for
humans. This difficulty is all the more increased that these resources are shared between numerous users who
run applications which characteristics vary greatly, and that the nodes hosting these resources are volatile.

Second, to ensure that the GOS is available and that applications run correctly despite the volatility of
nodes, the services must be self-healing. Self-healing services tolerate several near-coincident reconfigurations
and failures, and reconfigure themselves to tolerate reconfigurations and failures again. In particular, all services
must be decentralized. This property is important to relieve administrators from complex system management
when nodes are added or removed from the system or even fail, and to relieve users and programmers from
dealing with these events when running and programming applications.

Third, to make the system scale to large numbers of nodes, the GOS services should content with local

knowledge of the system state. This especially holds for the membership service, which is responsible for
connecting the Vigne nodes. Indeed, maintaining a centralized global table of a large number of connected nodes
despite the volatility of these nodes consumes too much bandwidth to run distributed applications efficiently.

The self-healing and local knowledge principles drive our choice of using peer-to-peer overlay networks as
basic building blocks to design Vigne’s services. In Section 3, we present how our three design principles induce
requirements for basic object location mechanisms. These needs drive our choice of using jointly a structured
and an unstructured overlay network.

Overview of Vigne’s Services. As any operating system, a GOS virtualizes the physical resources to provide
users and programmers with simple abstractions. To this end, Vigne is composed of high level distributed
services comprising application scheduling, persistent data management, volatile data management [14], and of
low level services comprising resources access control and membership. In this paper we present the application
scheduling service of Vigne which abstracts computing resources. The two main mechanisms of the application
scheduling service are application managers and a resource allocator. These mechanisms are built on a peer-to-
peer-like infrastructure.

To abstract computing resources, the scheduling service runs each application under the control of a ded-
icated reliable agent called application manager. An application manager acts on behalf of the user to run
efficiently the application and to ensure that it terminates correctly, despite nodes leaving the system or un-
dergoing failures. To run the application efficiently, the application manager automatically selects the nodes on
which the components of the application run, and moves components to nodes owning better resources when
such nodes are discovered. Node leaves are handled by moving components running on these nodes onto other
nodes. Node failures are handled by a configurable application fault-tolerance policy, which for example consists
in restarting the application from a checkpoint. The benefit of overlay networks for application managers is
presented in Section 4.3.

To select the nodes on which an application should run, the application manager uses a resource allocator
based on scalable and distributed resource discovery. Given a description of needed resources, for example a
number of CPUs of a given binary architecture and their minimum speed, the resource allocator discovers a set
of suitable resources, and selects the most appropriate resources found. The resource discovery service of Vigne
is presented in Section 4.2.

In Section 3 we draw requirements for these services in terms of basic object location mechanisms. We show
that these requirements are met by self-healing and decentralized overlay networks.

3. Requirements in Basic Object Location. Since the services of a GOS handle objects that are
distributed over the whole system, these services have to rely on distributed naming and location mechanisms
for the objects they handle. In this section, we draw the requirements for these naming and location schemes
from the design principles we have adopted to build Vigne. We show that these requirements are satisfied by
overlay networks designed in recent peer-to-peer research.

3.1. Naming and Exact Location. A first class of requirements concerns location-independent naming
of objects. We show that these requirements can be fulfilled using structured overlay networks.

Requirements. Building SSI services on top of a wide area distributed system needs location-independent
global naming schemes. For instance, users should be able to get the status of their running applications without
knowing which nodes run their applications. Similarly, users should be able to access files without needing to
know which nodes host these files. Location-independent names also simplify the design of system services:
location information about an object is isolated in a specific part of the service providing the object, and need
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not be updated elsewhere in the system services. Location-independent names are all the more desirable that
the nodes of the system are volatile.

Two reasons drive the need for location-independent names: objects may need to change their location, and
objects may need to be replicated over several nodes. For persistent objects, like files, it is not reasonable to
notify all nodes of the system of location changes because broadcast protocols do not scale well to high numbers
of nodes.

Location changes are necessary for the high availability of objects. For instance, since nodes may leave the
system at any time and should be able to do this without needing the approval of other nodes, long-running
computations located on a leaving node should migrate to nodes remaining in the system in order to have a
chance to complete.

Some objects need to be replicated on several nodes in order to remain available despite failures. For
instance, users should be able to monitor and control their applications at any time. Therefore the system
objects implementing these features should be highly available. Since network and node failures may occur at
any time, replicating objects is the only way to keep them available. Depending on the replication scheme and
on the object semantics, communications between an entity and a replicated object may involve all replicas of
the object, or only a primary replica, or only the replica which is nearest to the entity. As a result, assigning a
location figuring in the name of a replicated object may be a non-sense and may add complexity to fault-tolerance
mechanisms when the location must change.

Finally, to enforce our design principles the naming schemes used by the GOS services should be self-healing
and content with local knowledge of the system state.

Relevance of Structured Overlay Networks. The naming and exact location requirements can be fulfilled
using structured overlay networks. Indeed, these overlays are self-healing and decentralized, and implement key-
based routing (KBR). Using its structure, the overlay dynamically maps keys to nodes and routes a message to
a key without that the sender needs to know the actual node to which the key is mapped. For this reason, the
keys of a structured overlay network are good candidates to implement location-independent names.

To implement KBR, structured overlays connect the nodes of the system according to their names and the
structure adopted. In Pastry [15], nodes have numerical names and are connected in clockwise order to build a
logical ring. A key has a numerical name and is mapped to the node having the numerically closest name.

KBR is made efficient using shortcuts links, which typically allows an overlay to route a message in log(n)
hops while keeping only O(log(n)) links per node, where n is the number of nodes connected in the system.

Structured overlay networks can also help to build self-healing (highly available) objects using self-repli-
cation. Structured overlay networks are typically used to build fault-tolerant distributed hash tables (DHT).
These DHTs store values on the nodes their keys are mapped to, and replicate the values on the neighborhood
of these nodes in the overlay. For instance, DHTs based on Pastry self-replicate a value on the nodes preceding
and following the node responsible for the key in the logical ring. This scheme can be generalized to make
objects accessed using KBR self-replicating, and hence self-healing.

3.2. Attribute-Based Distributed Search. A second class of requirements concerns attribute-based
search features. We show that these requirements can be fulfilled using unstructured overlay networks.

Requirements. Since we wish to provide SSI features for resource management, the GOS needs mechanisms
to discover resources. Indeed, to run an application, the resource discovery service must find a suitable set of
nodes in the grid. In contrast with the location and naming requirements shown in Section 3.1, the resource
discovery mechanism must handle complex searches. Indeed, the system must find entities in the system without
knowing their location or their name, but only using a description based on several criteria. Figure 3.1 shows
an example of description used to search resources in a grid. It is important to note that a criterion is specified
by a scalar value (like the CPU architecture or the operating system) or by a range of values (like the memory).
As far as resource requirements for an application may be describe with such complex criteria, resource search
cannot be performed with an exact location mechanism. With an exact location mechanism, the content of the
queries must be hashed to produce a unique name. As far as attributes of a query may not have scalar values,
it is very difficult to provide an hash function that conserve good load-balancing properties.

To deal with large scale, a centralized design must be avoided. Indeed, it could induce bottlenecks or single
points of failure that would compromise the entire system. For the resource allocation service, a centralized
database that contains all informations about existing resources in the grid would simplify the design of the
system but we have to radically exclude it.
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<resource_requirements>

<cpu_architecture>X8_64</cpu_architecture>

<nb_nodes>4</nb_nodes>

<os>LINUX</os>

<os_version>2.6.21</os_version>

<cluster_scheduler>SH</cluster_scheduler>

<network>MYRINET</network>

<memory>2048-4096</memory>

</resource_requirements>

Fig. 3.1. Example of description for resource search in a pseudo-XML synthax

Fig. 3.2. Flooding in an unstructured network, depth 1 Fig. 3.3. Flooding in an unstructured network, depth 2

As a result, the GOS needs a distributed and fault tolerant search mechanism to locate resources in large
scale environment just by knowing a set of constraints that must be fulfilled.

Relevance of Unstructured Overlay Networks. A distributed attribute-based search mechanism can be built
using unstructured overlay networks like Gnutella [5]. As soon as a node joins the system, it establishes several
connections with other nodes, called neighbors. In this type of overlay, the nodes do not take care of their
neighbor names. However, nodes connections may take into account load balancing criteria or other policies.

To search an entity in the system, a node sends a query to its neighbors. If a neighbor hosts the searched
entity, it replies to the requester. Otherwise it forwards the query to its own neighbors, and so on until a given
depth. This depth is similar to the time to live (TTL) of packets in IP networks. This type of search is called
flooding search. Figures 3.2 and 3.3 show respectively the first and the second step of a query propagated in an
unstructured network with a flooding protocol.

As far as the cost of flooding the network might be prohibitive if the depth is high. Some optimizations like
the random walks [17] have been studied by the peer-to-peer community. The random walks protocol works as
follow. Instead of forwarding the query to all the neighbors like the flooding protocol, the query is forwarded to
only one neighbor, randomly chosen. A random walk is also limited by a given TTL. So, when a random walk
is finished (i. e. when the TTL is reached), if not enough results have been received, other random walks are
initiated until a given timeout. If we consider an example where a node wants to find three resources of a king.
Figure 3.4 shows the first step of a random walk protocol. At the issue of the first random walk, only one result
has been received. So another random walk is performed, like it is shown on Figure 3.5. Two other results are
obtained this time, so no more random walk is required.

Table 3.1

Pros and Cons of Structured and Unstructured P2P Networks

Type of overlay network 1© 2© 3©

Structured - + -
Unstructured + - +

3.3. Discussion. Table 3.1 summarizes advantages and drawbacks of both structured an unstructured
peer-to-peer networks. 1© stands for the cost of neighborhood updates in term of bandwidth, 2© stands for the
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Fig. 3.4. Random walks in an unstructured network, step 1 Fig. 3.5. Random walks in an unstructured network, step 2

capability to find a precise element in the network and 3© stands for the capability to make multi-criteria queries
or range-queries.

Even if it exists substantial optimizations like [1], structured or unstructured network do not provide
individually good properties for both exact location and complex search based on description. As a consequence,
they are fully complementary.

4. Using Overlay Networks in Vigne. We present two services implemented in Vigne and based on
the use of a decentralized peer-to-peer overlays: resource discovery and application management. We assume
in the remainder that each node of the structured or unstructured overlay represents a node in the grid.

4.1. Vigne’s Overlay Networks. In Section 3, we showed that Vigne’s services require mechanisms for
naming, exact location and attribute-based search. These requirements can be fulfilled using overlay networks.
As a single kind of overlay cannot address all requirements, we choose to use two overlays as a basis for designing
Vigne’s services.

We showed that naming and exact location can be achieved using a structured overlay. For this reason, we
implemented a structured overlay based on the Pastry routing algorithms [15], using the maintenance algorithms
of Bamboo [13], with 256 bits naming spaces. Such naming spaces are large enough to identify nodes in the
Grid or other objects like application managers and shared data objects. Furthermore, Pastry perfectly fits the
requirements of reliable location of an entity in the system from any node and with a small number of hops.

We also showed that attribute-based search through a large scale system can be achieved using unstructured
overlays. We have implemented an unstructured overlay whose membership protocol is based on Scamp [3].

On such an overlay, multi-attributes and range queries can be performed because all attributes are forwarded
and can be analyzed on the flooded nodes.

Both structured and unstructured overlays have good properties regarding the local knowledge constraint.
In Vigne’s structured overlay, each node has 24 neighbors in the ring (12 preceding, and 12 following), and
O(log(n)) shortcut links (where n is the number of nodes in the system). The shortcut links allow the overlay
to route messages to any node in log(n) hops on average. Furthermore, the number of neighbors known in
the ring is large enough to prevent the system from partioning in most cases of simultaneous failures. In the
unstructured overlay, each node has a neighborhood of log(n) nodes. Thus searches can be performed with a
good cover rate and without using a large TTL (typically from 5 to 7).

Scalability is intrinsic to decentralized peer-to-peer overlays. Regarding unstructured overlays, basic flooding
might be a performance issue but a Random Walk mechanism [17] would sidestep it. By design, both overlays
have good self-healing properties.

In Vigne, we reduce the cost of using jointly structured and unstructured overlays by using a lightweight
unstructured overlay that uses several properties of the structured overlay. Assuming that, the management of
the unstructured overlay in case of churn is really simple and its cost is negligible. Thus, Vigne benefits of both
type of peer-to-peer overlays at a low network bandwidth cost.

In Vigne, the structured and unstructured peer-to-peer overlays are complementary in their use and are
keystones to build high level services.

4.2. Resource Discovery Service. One of the aims of Vigne is to execute applications without users
needing to worry about the real execution location. To this end, the GOS must be able to find free resources
in the grid to run applications.
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Fig. 4.2. Grid example with two application managers

Resource discovery consists in finding a set of resources corresponding to a specification provided by the
user in order to run her application in good conditions. The specification includes several requirements of
the application such as processor architecture, number of processors, local operating system, cluster scheduler,
libraries, memory capacity, free disk space, etc.

These requirements like memory or free disk space are not scalar criteria. Furthermore an application may
use a library whose version number is included in a specific range. Searches can be performed with a great
expressiveness with an unstructured overlay. As a consequence, we decided to use an unstructured peer-to-peer
overlay to perform resource discovery in Vigne.

We have implemented several protocols for resource discovery. The first one is a basic flooding protocol.
The second one is a random walk protocol, less expensive than flooding in terms of bandwidth consumption.
The third one improves the random walk protocol using a learning method to optimize the quality of results
and bandwidth consumption.

4.3. Application Managers. In the Vigne operating system, the application management service is a
crucial point in relation to applications life. The application management service manages the lifecycle of
applications, and ensures that applications complete correctly despite node departures or failures. For instance,
when the service detects the failure of a node where an application was launched, it can re-execute the application
on another node. Since users should be able to interact with this service at any time and despite node departures
and failures, this service must be highly available, and in particular self-healing.

The major contribution of our application management service is to decentralize application management
and make it self-healing. To achieve this, we extensively use the structured overlay network. To build this
service, overlay networks help to decentralize application management while still allowing users to access the
service with the only knowledge of the identifiers of their applications, and help to make the service self-healing.

To distribute application management, the application management service introduces application man-
agers, which are agents dedicated each to the management of one application. Application managers are
distributed over the whole system using the key-based routing (KBR) scheme of the structured overlay network.
Each application manager is assigned a key which is the SHA-1 hash of the (application binary MD5 sum,
timestamp, name of host) triplet computed when launching the application. This triplet corresponds to the
application identifier (AID). An application manager runs on the nodes its key is mapped to.

Figure 4.1 shows an example of key-based routing. In this case, the node 0F wants to send a message to
the node responsible of the key 81. As a consequence, the message is routed to the node A0 since it is the node
with the closer in the network identifier to 81.

Thanks to the KBR properties, an application manager can be reached by any entity of the system with
the only knowledge of the corresponding AID. This property contributes to provide users and applications with
single system image. For instance, if a user wants to know the progression status of the application execution,
she routes a request to the SHA-1 hash of the AID.

A resource informs the application manager that the execution has completed using the same mechanism.
Figure 4.2 shows a grid where two applications, respectively identified by the AIDs 81 and E4. One can see the
two application managers and the tasks they monitor.
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Application managers are made self-healing using self-replication on the overlay network. More precisely,
an application manager is made highly-available using active replication, and the locations of the replicas are
automatically chosen in the overlay network using the same scheme as traditionally used in DHTs (see Section
3.1). Thus a constant degree of replication is automatically maintained in the logical neighborhood of the KBR
target node for the application manager’s key, which makes the application manager highly-available despite
continuous node additions, departures, and failures.

5. Experimental Results. In order to validate the efficiency of Vigne, we conducted two kinds of exper-
iments, both on the Grid’5000 French testbed [6]. Grid’5000 is the French national testbed for grid software
where nodes are currently spread over eight sites.

5.1. Scalability of the Overlay Infrastructure. First we show that using decentralized self-healing
overlay networks is reasonable and scalable. To do this, we measure the network bandwidth consumed for the
maintenance of the overlays in systems composed of highly volatile nodes. This volatility represents an extreme
case compared to the expected relative stability of the nodes composing an industrial grid. As a result, the
bandwidth consumption observed in the experiment should represent a worst case.

We have used 100 computers belonging to Rennes’ Grid’5000 site. Computers are bi-processor either AMD
Opteron at 2.2 GHz or Intel Xeon at 2.4 GHz.

We emulated successively 500, 1000, and 2000 logical nodes. The logical nodes were mapped to the physical
computers in a round robin fashion.

To measure the network bandwidth consumption, we measured the input traffic of each logical node.

Nodes arrivals and departures in the system have been simulated with two exponential laws. For each node,
the mean time between two arrivals was 35 min (Poisson process), and the mean life time was 30 min.

Figure 4.4 and 4.3 respectively show the total bandwidth consumption and the number of nodes connected
during the experiments. The bandwidth consumption observed confirms that emulating several nodes per
computers does not hide congestion effects. If we take into account the total bandwidth divided by the number
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of nodes, this ratio is constant whatever the number of nodes (Figure 4.5). Furthermore, the bandwidth
consumption per node is reasonable with an average value of 3.3 KB/s.

Even if the dynamic behavior is hostile because peer-to-peer overlays have to re-configure them often, the
system can scale regardless.

5.2. High Level Service Evaluation. We now evaluate the resource discovery service which is one of
the high level services of Vigne. We show that this service, built on top of peer-to-peer overlays, is efficient.

We have used 472 computers belonging to four Grid’5000 sites (Bordeaux, Orsay, Rennes, and Sophia).
Computers are bi-processor AMD Opteron at 2.0 GHz, AMD Opteron at 2.2 GHz and Intel Xeon at 2.4 GHz.

To produce an heavy load on a processor, we have used an iterative calculus code. Its execution time
depends on the execution site.

Table 5.1

Computers dispersion over Grid’5000 sites and characteristics

Grid’5000 site # of CPU Execution time

Bordeaux 82 1740 s
Orsay 344 1959 s

Rennes (Paraci cluster) 98 1594 s
Rennes (Parasol cluster) 62 2689 s
Rennes (Paravent cluster) 198 2062 s

Sophia 160 1905 s

Total 944 1962 s

Table 5.1 shows the dispersion of processors across Grid’5000 sites. It shows also the execution time in
seconds of the calculus code when the code is executed on a free processor, without concurrency.

The purpose was to evaluate the efficiency of the resource discovery service. To do that, we have measured
the average execution time of the calculus process. If each of the 944 processes were simultaneously launched on
944 different processors, the average execution time of a process would have been 1962 seconds (see table 5.1).
That corresponds to the execution time on a processor whose power would be the weighted mean of the powers
of all the processors of our experiment.

Table 5.2

Average execution time according to the submission intervals

Submission interval Average execution time Overhead

1 s 2248 s 14.6%

2 s 2143 s 9.2%

5 s 2057 s 4.8%

10 s 2042 s 4%

20 s 2039 s 3.9%

To measure the efficiency of the resource discovery service of Vigne, we have performed five experiments
where the task submissions have been spaced of 1, 2, 5, 10 or 20 seconds. We have not evaluated the global
time of the execution of the 944 processes but the average time of a process execution. Thus, we have measured
the ability for the resource discovery service to find the less loaded resources in order to execute the tasks.

Table 5.2 shows the average execution time for each experiment and the overhead of using our prototype
compared to the average execution time of 1962 seconds. In these results, the larger the submission interval is,
the smaller the execution time is. Indeed, if the submission interval is too small, the Vigne resource allocator
is not able to evaluate accurately the load of the used resources. Thus, several processes may be executed on
a single processor. In this case, the execution time is longer. However, the execution overhead is quite small
regarding to the improvements in terms of automation or reliability. This overhead would be reduced with
preemptive load balancing, because unbalances would be corrected after initial allocation. Furthermore, the
time measured is larger than the real execution time. Indeed, detecting the end of an execution can last up to
60 seconds.
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6. Related Work. We analyze related work in infrastructure choices, resource discovery and application
management grid services.

6.1. Infrastructure. The architectural choices vary from centralized coordinators to fully decentralized
and dynamic architectures.

BOINC-based projects and XtremWeb [2] target global computing using a centralized coordinator. This
coordinator registers the resources ready to run some computations, and dispatches computations submitted by
users. The coordinator is assumed to be stable and handles all the volatility of the resources. To achieve this
stability, XtremWeb replicates the coordinator over a static set of nodes. These systems have proved to scale
well in the context of the Internet but still impose a leader that hosts the coordinator, or a group of leaders
hosting the coordinator’s replicas. Moreover, the scalability of these approaches cannot be claimed for future
use cases. In contrast, in our fully decentralized architecture one need not to assign any leadership to any
node. Any node in the system can leave at will or even fail. Moreover, our local knowledge design principle is
a stronger basis for scalability.

Most systems building scalable services use hierarchical approaches. For instance, Globus [4] extensively
uses static hierarchies to build virtual organizations. Legion [11] uses a similar approach to name and locate
objects. However, such architectures are very difficult to make self-healing, because the failure of one node in the
hierarchy leads to the unavailability of all its sub-hierarchy. In particular, it is up to the administrators to define
and repair these hierarchies. Moreover, without complex load balancing mechanisms, hierarchies suffer from
contention in the high levels. In contrast, the overlay networks we adopted do not implicitly define hierarchies
and tend to evenly distribute the load among the nodes.

GridOS [10] proposes to base naming, resource discovery, and resource allocation services on router-
allocators, which are nodes that are organized in a similar way to routers in the Internet. The router-allocators
of an organization maintain a global view of the organization’s resources, and border allocators exchange sum-
maries of their views between organizations. Like unstructured overlays, this mechanism is not well suited to
access resources by location-independent names. Router-allocators could be made self-healing using the service
mobility mechanism proposed by GridOS, but no automatic mechanism is provided to choose new nodes to run
router-allocators.

Other works, including JXTA [18] and NaradaBrokering [12], aim at providing infrastructures to build high
level peer-to-peer services. JXTA is built on an hybrid structured peer-to-peer network and provides a loosely
consistent DHT, which model differs from our use of key-based routing. JXTA’s DHT only stores advertisements
for resources bound to peers. In particular, this DHT does not manage the location and the replication of the
objects for which it stores advertisements.

NaradaBrokering provides a communication infrastructure including scalable event-delivery and publish-
subscribe to build high level services. NaradaBrokering’s features are complementary to the naming and re-
source discovery facilities we built. However, the brokering infrastructure’s design assumes that a set of nodes
remains relatively stable, and the volatility of the nodes is mostly considered for the clients of the brokering
services.

6.2. Resource Discovery. XtremWeb [2] provides a resource discovery mechanism based on a centralized
coordinator. To run a job, a client sends a query that describes requirements based on attributes to a coordinator.
When a resource is idle, it asks to the coordinator for a job whose requirements are fulfilled by resource. A such
resource discovery mechanism insures good efficiency but is not transposable to a decentralized system.

To provide a resource discovery mechanism, Globus uses the Monitoring and Discovery System (MDS) [4].
Resources informations are stored in the MDS by resources and are periodically refreshed. In a WSRF-compliant
way, entities called information sources provide a Web service interface for communications with MDS. With
up-to-date attribute-based queries to get location of suitable resources. Globus addresses the scalability issue by
providing a hierarchical approach to MDS that uses Agregators. However, MDS neither provides self organizing
nor a self-healing features. Indeed, resource administrators must say toward which MDS aggregator their
resource is linked to.

Punch [9] uses Active Yellow Pages (ActYP) [16] to perform the resource discovery step resource alloca-
tion. ActYP is designed to optimize the response time of queries when queries are similar. ActYP is composed
of one or more resource databases, a resource monitoring service that update regularly resource databases and
a resource management pipeline. The resource management pipeline aggregates dynamically similar resources
in order to optimize the response time of queries. Attribute-based queries are performed like classical queries in
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a database. As far as databases are distributed, ActYP has good scalability properties. However, the databases
of ActYP rely on stable resource, what is not considered in the design of Vigne.

In [7], authors study the convergence between peer-to-peer and grid communities. They propose a framework
along four axes to design resource discovery architecture. Since they propose to perform resource discovery in
a grid over an unstructured overlay network, this work is the closer to our for the resource discovery service.
They evaluate random walk based protocols through a simulator they have implemented. We have chosen
a such distributed scheme to design the resource discovery service in order to profit of the self-healing and
self-organizing properties that are intrinsic to such overlay networks.

6.3. Application Management. Few projects include generic application management services to exe-
cute applications reliably. Chameleon [8] and XtremWeb [2] provide fault-tolerance mechanisms for a variety of
programming models. In both systems, application management relies on a centralized entity (the main fault-
tolerance manager in Chameleon, or the coordinator in XtremWeb), which is itself made reliable by replication
on a static set of nodes. As a major contribution, our application managers decentralize application manage-
ment, which is better to avoid contention and to resist to massive failures. Moreover application managers are
replicated on dynamic sets of nodes, which allows them to adapt to any reconfiguration in the system.

7. Conclusion. This paper describes a general approach to build a self-healing scalable fully-decentralized
SSI operating system for grids composed of a huge number of nodes. This paper brings two contributions. First
we show that peer-to-peer overlays are a sound basis for building the distributed services of a GOS with the
above properties. Moreover, we demonstrate that both structured and unstructured overlays are needed to
meet the requirements of a GOS in terms of location-independent naming and of attribute-based distributed
search. The cost of maintaining both kinds of overlay is reasonable as it is possible to take advantage of the
structured overlay to maintain the unstructured overlay. We have built Vigne, a prototype of the proposed
GOS. Experimentations carried out on the Grid’5000 grid platform demonstrate that the overlay infrastructure
scales regardless the number of reconfigurations, the bandwidth consumption due to the overlay maintenance
being very limited and constant whatever the number of nodes in the system. A resource discovery service and
application managers have been implemented on top of the overlay infrastructure. Preliminary experiments
show the efficiency of the resource discovery service. As a second contribution, our application managers make
reliable application management decentralized and self-healing.

In future work we will experiment the resource discovery service with complex distributed applications, and
we will experiment application managers in a fully dynamic system with various fault-tolerance policies to run
applications reliably.
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