
Scalable Computing: Practice and Experience

Volume 8, Number 3, pp. 291–300. http://www.scpe.org
ISSN 1895-1767

c© 2007 SWPS

DHR-TREES: A DISTRIBUTED MULTIDIMENSIONAL INDEXING STRUCTURE FOR

P2P SYSTEMS

XINFA WEI AND KAORU SEZAKI∗

Abstract. Supporting range query over Peer-to-Peer systems has attracted many research efforts in recent years. In this
paper, we propose a new multidimensional indexing structure for P2P systems called Distributed Hilbert R-trees (DHR-trees).
DHR-trees enables multidimensional range query to be executed similarly as in overlapping regions tree in P2P systems. Its
distributed structure makes it fault-tolerant and scalable to dynamic network environment with a large number of peers as well.
Our experiments shows that it performs well on multidimensional range query while the maintenance cost is reasonably low.

Key words. peer-to-peer systems, multidimensional queries, Hilbert rtrees

1. Introduction. Enabling efficient access to distributed and dynamic data is hot research topic in P2P
systems. Complex queries, such as range queries and k-nearest neighbors queries over multidimensional data,
are becoming more important as large amount of data are shared between thousands of user applications. For
example, a P2P auction network [17] where peers store information on local real estate (geographical location,
price, etc) needs to frequently deal with queries such as “find all real-estate advertisement for properties in a given
region in a city”. Another query example is that P2P-based sensor data provision networks for environmental
surveillance needs to be able to answer request such as “find the average temperature and dioxide concentration
within 100 meters from point A”.

Multidimensional indexing and range queries problem has been extensively studied in world of the databases.
However, in P2P context, this problem brings more challenges because it requires both efficient network-based
query processing, fault-tolerant network topology and low cost of network maintenance. Without any central
index server, all shared data must be reachable and searchable with the network constantly changing. Each peer
node, after receiving query request, should be able to initiate query and decompose query into some sub-queries
which are forwarded to other peer nodes when necessary. Therefore one peer node should keep some links and
data distribution information to some other peer nodes in the network. There are two extreme solutions for
this problem. One is to let peer node keep nothing about information of other nodes and always flood query
across the network. This preliminary method is used in earlier P2P systems and is obviously not practical as the
network grows very large. Another extreme is to let every peer node keep and refresh all other nodes information
all the time to enable query to be executed efficiently and accurately. But maintaining such information requires
huge sum of exchange messages which is not affordable in the environment where changes occur frequently in
large network.

In this paper, we propose a decentralized multidimensional indexing structure, called DHR-trees (Dis-
tributed Hilbert R-trees), that is capable of supporting range queries efficiently and doing network maintenance
at a low cost. In DHR-trees, each peer is assumed to control a data set within a minimum bounding rectangle
in the space and each peer can be regarded as a leaf node in a Hilbert R-tree. DHR-trees preserves the feature
of overlapping regions techniques as in traditional centralized Hilbert R-trees (or R-trees [8] and its variants)
which make it can easily accommodate existing R-trees based algorithms with minor modification. DHR-tree
of order d provides O(logd N) search cost for equality queries, where N is the number of peer in the system. In
addition, we introduce the region maintenance of DHR-trees that addresses dynamism problem of P2P systems
where peers may be inserted/deleted frequently. We have done some evaluation test of DHR-trees system under
various settings. Experiments are performed with different network size, different types of data distribution etc.
By testing various settings, the results proved the correctness of P2P systems and effectiveness of range query
algorithms. Comparison results also demonstrates that its query execution requires much less node visits than
in Squid [14] P2P system.

The rest of this paper is organized as follows: in Section 2, related works are introduced. We then describe in
Section 3 DHR-trees structures and the implementation issues. In Section 4, simulation results and comparison
result are shown. Finally, conclusion is presented in Section 5.

∗The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505 Japan, email: wei@mcl.iis.u-tokyo.ac.jp,

sezaki@iis.u-tokyo.ac.jp

291



292 DHR-Trees: A Distributed Multidimensional Indexing Structure for P2P Systems

2. Related Work. Many P2P systems have emerged in recent years. Earlier ones are mainly for file
sharing applications such as Gnutella [1] and Kazza [2]. They search requested files by flooding messages across
network. Unbounded cost causes heavy traffic overhead. Later structured P2P systems, such as Chord [16],
Pastry [13], CAN [12] and Tapestry can efficiently support key-based routing and equality searching with
logarithmic routing cost. However, the hash function used by these systems destroys the order in the key value
space, making them impractical for processing range queries. Recent systems, such as P-Tree [5], P-Grid [3],
Skip Graphs [4] and BATON [9], can support one dimensional range queries.

Application with multidimensional data are very important in practical world. Aforementioned systems can
not deal with multidimensional data. In contrast, there are some multidimensional index structure solutions
available in the centralized database world. However, they are not directly usable in P2P context. Without
any central index server, the highly dynamic P2P system must ensure that query can be always answered
without missing data. Letting each node maintain links to all other nodes will lead to scalability problem.
Ganesan et al. [7] concluded that adapting these solutions to the P2P systems presents four challenges: dis-
tribution, dynamism, data evolution and decentralization. Some research efforts has been made and there are
progresses in supporting multidimensional range queries. We pick up some most related works and list them as
follows:

Mondal et al. [11] proposed P2PR-trees, a variant of R-trees that targets P2P networks. They showed
in their simulation study that P2PR-trees show better scalability than two-level Master Client R-trees, since
they do not suffer from the central server bottleneck. However, the most important issue in P2P systems,
maintenance of a dynamic R-tree is left unaddressed.

The ZNet [15] partitions the data in the native data space in a way as in the generalized quad-tree. ZNet
makes use of the Skip Graphs [4] as overlay network routeing in one dimensional space, therefore multidimen-
sional data space is mapped to an one-dimensional index space, such that it can be mapped to nodes in the
network. ZNet supports range queries, however, they only provide probabilistic guarantees even when the in-
dex is fully consistent due to the underlying Skip Graphs. Moveover, the search performance of the ZNet is
O(d · logd N) while search performance of DHR-trees is O(logd N).

Squid’s proposed structure is the closest one to DHR-Trees. In [14], Schmidt C. et al. presents the design
of Squid P2P System and its evaluation. The space is first mapped down into an one dimensional space
using a Hilbert space filling curve. The one dimensional data is then range partitioned in one dimension and
mapped onto the Chord [16] overlay network. For load balancing purpose, however, the original Chord protocol
requires that data identifiers are uniformly distributed into one-dimensional space. This restriction makes it
inappropriate to directly use location as a data identifier, because data can not always be guaranteed of being
distributed uniformly in the space. Furthermore, since routing relies on Chord, which is originally designed for
equality search only, the query type is also limited. For example, realizing nearest neighbor query is not easy
with Squid since there is no spatial information being preserved.

DHR-Trees also makes use of Hilbert curve to map multiple attributes from m-dimension down into one-
dimensional space. But the spatial overlapping region information is kept by individual peers and dynamically
maintained. This facilitates multidimensional spatial queries in being executed more efficiently. Unlike other
similar approaches, such as Squid and SCRAP [7], DHR-Trees distinguishes itself in supporting R-Tree-like
complex queries in dynamic P2P networks.

3. DHR-Trees P2P structure. In multidimensional database, R-Tree [8] and its variants use tree struc-
ture for storing information. Each node of an R-tree has a variable number of entries (up to some pre-defined
maximum). Each entry within a non-leaf node stores two pieces of data: the child node identifier, and the
bounding rectangle of all entries within this child node. Thus, a R-Tree can be regarded as an overlapping
region (i. e. rectangle) tree. Search algorithms are usually run from root of the tree; using bounding rectangles
to decide whether or not to search inside a child node. Therefore, most nodes in the R-Tree are never “visited”
during a search. This leads to high efficiency on query execution.

The Hilbert R-Trees, one of the best-performing multidimensional index structures [6] in the R-Trees family,
combines the overlapping regions technique of R-Tree with Hilbert space filling curves. It first stores the Hilbert
values of the data rectangle centroid in a B+-tree, then enhances each interior B+-tree node with the minimum
bounding rectangle of the sub-tree below. This facilitates the insertion and deletion of new objects considerably.
Figure 3.1 demonstrates two dimensional space with some data objects and Figure 3.2 shows its corresponding
Hilbert R-Tree.



Xinfa Wei and Kaoru Sezaki 293

Fig. 3.1. Data rectangles in a Hilbert R-Tree

Fig. 3.2. A Hilbert R-Tree

P-Trees [5], a recently proposed Peer-to-Peer system, enables one-dimensional range queries to be executed
collaboratively by peers. Instead of using Distributed Hash Tables method, it organize all nodes into a closed
virtual ring by node identifiers (without hashing). As a result, one-dimensional range queries becomes possible,
since the proximity between peers’ identifiers is preserved. Each peer independently maintains a routing table,
where entries are exactly those on the left-most root-to-leaf path of the B+-Tree. Each peer has its own view of
B+-Tree, in which the peer’s identifier is located at the left-most leaf node. To keep freshness and correctness
of the routing table, peers in the P-Trees system periodically call a stabilization method (called stabilizeLevel).

DHR-Trees combines the advantages of P-Trees and Hilbert R-Trees together. It takes the same topology
as in P-Trees. It also enhances peer’s routing table with bounding rectangle information. It can be loosely
regarded as a distributed version of Hilbert R-Trees, but each node has independent view of the a Hilbert
R-Tree. It can also be regarded as a multidimensional extension of P-Trees, enabling indexing and flexibly
searching multidimensional information in P2P systems.

3.1. Overview of DHR-Trees. The idea is partially inspired by and based on the work of P-Trees [5],
which is designed for supporting one-dimensional range queries in P2P network. The main enhancement is
that each peer keeps relevant region tree information in its routing table. Hence it supports the same class of
queries as in centralized R-Trees. This is significant since many complex multidimensional query algorithms



294 DHR-Trees: A Distributed Multidimensional Indexing Structure for P2P Systems

Fig. 3.3. Virtual ring of peers with routing tables

can be adapted into the P2P network environment. It discards the notion of maintaining and sharing a globally
consistent R-Tree by all peers, and instead maintains semi-independent DHR-Trees at each peer. This allows
for fully distributed index maintenance without any need for inherently centralized and unscalable techniques
such as primary copy replication.

In a DHR-Trees P2P system, each peer is assumed to control some data set comprised by a Minimum
Bounding Rectangle (MBR) in the multidimensional space. Peer p is associated with data rectangle p.MBR
and with p.HCode, where p.HCode is the Hilbert value of centroid of p.MBR from the space. The p.HCode is
used as the index value (key) of p in the one-dimensional space. At the underlying network layer, each peer
identifies itself by p.NetAddress, which is usually the IP network address. Peers organize themselves into a
virtual ring as in P-Tree by their p.HCode. The Hilbert curve therefore becomes a closed ring and peers are
indexed by their p.HCode in the ring.

Figure 3.3 demonstrates the structure of DHR-Trees for the two-dimensional space case as shown in Figure
3.1. For simplicity, each is assumed to store one point data at its location. By mapping from two-dimensional
to one-dimensional space, each peer has a unique Hilbert value. These values are used as peer identifiers in
the DHR-Trees P2P system. Peers organize themselves into a virtual ring by their identifiers. Each peer has
a pair composed of the predecessor peer and the successor peer as in Chord [16] system. Each peer also has
its own composite routing table. The composite routing table is the most important component of DHR-Trees.
With Hilbert value and coverage information in the routing table, DHR-Trees P2P system supports routing and
equality search similarly as in P-Trees. By having spatial region information in the composite routing table,
DHR-Trees P2P system supports multidimensional query directly and efficiently as in centralized R-Trees.

3.2. Composite Routing Table. In DHR-Trees systems, each peer stores nodes information of the
left-most root-to-leaf path of independent Hilbert R-Trees from its view in its composite routing table. The
significant enhancement to P-Tree is that the region information MBR (we inherit the word MBR from the
database world for convenience) is stored as part of the multidimensional overlapping regions tree. The MBR
is a minimum bounding rectangle of the sub-tree below (see example in Figure 3.4). As an important part of
DHR-Trees, the MBR entry facilitates multidimensional queries, e.g. range queries could be executed efficiently
as in centralized R-Trees. Details of the routing table are presented below.



Xinfa Wei and Kaoru Sezaki 295

Fig. 3.4. An example of DHR-Trees with routing tables at p1 and related peers

Similar to the P-Tree structure, a peer p maintains a routing table p.node, a double indexed array,
containing nodes information. Formally, the routing table p.node consists of numLevels rows. There are
p.node[i].numEntries of node entries at level i, where 0<i ≤ numLevels. The numLevels is at most [logdN ],
where N is the number of peers being indexed and d is the order of the R-Tree. The p.node[i].numEntries is
between d and 2d at the non-root level of the tree. At root level, p.node[i].numEntries is between 2 and 2d.
Each entry in the row is a triple as following:

〈HCode, MBR, NetAddress〉

which points to the peer peer that owns the MBR and is identified by the index value HCode. In the routing table
p.node, every peer’s MBR at level i is a minimum bounding rectangle that comprises all peer.node[i−1][j].MBR,
where 1 ≤ j ≤ peer.node[i − 1].numEntries.

Figure 3.4 shows the composite routing table of peer p1 and related peer for intuitive purpose. The number
of levels of p1, the p1.numLevels, is 2. There are three entries at each level where the first one is about p1

itself. At level 1, there are 3 entries corresponding to the triples (2,R2,p1), (24,R24,p2) and (49,R49,p3) (Due
to space limitation, the NetAddress such as p1 and p2 etc. is not shown). R2 is p1’s data MBR. R24 and
R49 are acquired from p2 and p3 respectively during p1 stabilization process on level 1. Notice that p1,p2 and
p3 in the triples represent the network address of these peers respectively. At level 2, there are three entries
corresponding to the triples (2,R2

2,p1), (97,R2
97,p4) and (185,R2

185,p7). The MBR at level above 1 is tagged with
level i as superscript, such as R2

2
, R2

97
and R2

185
. R2

2
is calculated and updated by calling Algorithm 2. The value

of R2

97
and R2

185
are updated at their corresponding peers, p4 and p7, and in turn these values are obtained by

p1 during p1’s later stabilization process on level 2. We notice level 1 consists of the closest succeeding peers.
At level 2, entries are succeeding peers with widened intervals. The interval is equivalent to the coverage range
in P-Tree. We can see that these rectangles can be regarded as the left-most route-to-leaf part of the “sliding”
Hilbert R-Trees, which has p1 as its left-most leaf node.

Algorithm 2: p.UpdateMBR (int i)

Input: i level of route table, i >1
begin

reset p.node[i][1].MBR to empty
j = 1
while j <p.node[i-1].numEntries do

p.node[i][1].MBR = CombineRect(p.node[i][1].MBR, p.node[i − 1][j].MBR)
j + +

end

3.3. Range Queries. From introduction in previous subsection, it is clear that the rectangle-based over-
lapping regions tree is maintained in a distributed fashion among peers. This characteristic makes DHR-trees
capable of doing R-tree-like range query in P2P systems. Due to the similarity of point query and range query,
we focus on how range query is executed.

Theorem 3.1. Given the DHR-trees in consistency state, range query initiated at any peer can finally be
answered with all qualified data object that exist in the network with guarantee.



296 DHR-Trees: A Distributed Multidimensional Indexing Structure for P2P Systems

Algorithm 3: p.WindowQuery (Rectangle w, int l)

Input: w query window
Input: l level of search to start
begin

j = 1
localIntersect = false
if l >1 then

while j <p.node[l].numEntries do

if p.node[i][j].MBR intersects w and l >1 then
p′ = p.node[i][j].peer

p′.WindowQuery(w, l − 1)
if j = 1 then

localIntersect = true

j + +

if l = 1 then

while j <p.node[l].numEntries do

if p.node[i][j].MBR intersects w then
p′ = p.node[i][j].peer

p′.searchLocalData(w)
j + +

if localIntersect then
this.WindowQuery(w, l − 1)

end

In DHR-trees, each peer is ordered by a one dimensional value - Hilbert code and all peers are orderly indexed
in the ring of underlying P-Tree. When the P-Tree reached consistent state, any two neighboring entries at
same level in route table are guaranteed by P-Tree with coverage property, that is, no peer “missed” by the
index structure. Therefore, the coverage property ensures that all peer entries at lower level are contained by
entries at higher level. Since each MBR is a combination of all lower peer.MBR and the UpdateMBR following
level stabilization that works bottom-up from the lowest level to highest level, we can prove all MBR at higher
level also comprise all lower MBR by induction bottom-up. Therefore any peer.MBR is contained by root
level entries. As a result, DHR-tree can guarantee all qualified data object for a query being returned. The
pseudo-code of range query process is listed in Algorithm 3. Notice that the result, usually being composed of
several pieces, is returned in a asynchronous fashion due to different path length and network latency. The peer
initiated query has to be responsible for collecting and synthesizing.

3.4. Wrapping-around problem. Since all peer nodes are indexed in a Hilbert curve ring, a problem
about MBR arises: when a peer is near the end of the curve, the MBR entries (i. e. p.node[i][0].MBRs) at the
upper level of the routing table will need to cover a group of peer.MBR located near the start of the Hilbert
curve, which is distant from p.MBR in the m-dimension space. Intuitively, redundant space will be possibly
comprised and it will result in increasing search cost. To solve this problem, we introduce an auxiliary MBR,
denoted as AuxMBR, for containing the wrapped-around rectangles, while MBR still contains non-wrapped
ones. Therefore a more general structure of a route entry should be

〈HCode, MBR, AuxMBR, NetAddress〉

A null value of AuxMBR is allowed when no wrapping-around MBR exists. Accordingly, the range query search
(Algorithm 3) should be also altered. Experiment results illustrated in Figure 4.6 shows that the routing cost
decreases when this solution is applied.

4. Evaluation. In this section, we present some experimental results we conducted experiments by a im-
plementation of DHR-trees. All our experiment software was implemented in Java and based on PlanetSim [10].



Xinfa Wei and Kaoru Sezaki 297

Fig. 4.1. Uniform Fig. 4.2. Clustered Fig. 4.3. Skewed

Fig. 4.4. Routing Cost Fig. 4.5. Point query cost

Fig. 4.6. Improvement with Auxiliary MBR Fig. 4.7. Range Queries

All experiments were performed on a machine (3.0GHz Intel Pentium ET) with 2GBytes of main memory, run-
ning Windows XP Professional. In our current simulation environment , the DHR-trees nodes were configured
to run in a single Java Virtual Machine.

4.1. Two-dimensional DHR-trees. In our simulations, we first use a two dimensional space. This space
is mapped by a Hilbert curve of order 16 down into a one dimensional space such that it is partitioned into
a 216 × 216 grid. For simplicity of evaluation, each peer is assumed controlling a rectangle of size 1 × 1. The
order d of R-tree is fixed as 4 and network size varies from 128 to 10000. Simulation program begins with
building DHR-trees with configuration as the initial phase. Node joins into DHR-trees every several steps in
a random order and stabilization process of P-Trees works periodically together with UpdateMBR process.



298 DHR-Trees: A Distributed Multidimensional Indexing Structure for P2P Systems

(a) Routing path length and Query cost (b) Range queries

Fig. 4.8. Multidimensional DHR-trees

Insertion/deletion, routing and query experiments are executed after the network becomes stabilized. Three
type of distribution of data sets are used: uniform, clustered and skewed distributions as shown in Figure 4.1,
Figure 4.2, Figure 4.3 (Each with 2000 points in Figures).

Point Query Cost. Poinst query cost is measured by number of visited nodes during query. The different
distribution incurs difference on number of visited nodes as shown in Figure 4.5: routing in case of skewed
distribution visited more number of nodes. This is because that skewed data set make more extensive overlapping
MBR in route table so that routing are more frequently forwarded to some unnecessary nodes.

Improvement by Auxiliary MBR. In Section 3.4, the auxiliary MBR is introduced to solve extensive
coverage problem of wrapping-around MBR. Experiment in Figure 4.6 (uniform distribution) show that this
approach reduces about 12% ∼ 13% routing messages in case of uniform distribution.

Range Queries. In range query experiments, we use data set in uniform distribution, where size N varies
from 128 ∼ 10000. We use rectangles as query window with side length to be adjusted in accordance with
network size, such that sel number of result peers (MBRs) could be expected to fall into query window. In our
experiments, sel specified as 5 and 10 separately. The location of query window is randomly selected and peers
that initiate query are also randomly picked from the network. Query cost are measured by number of visited
nodes. For each combination of N and sel, 1000 times queries are executed and results are averaged. The result
shown in Figure 4.7 indicates that range query can be efficiently executed in DHR-trees.

4.2. High Dimensional DHR-trees. Some experiments with high dimensional data has also been con-
ducted. Space dimensionality m is changed from 2 to 6. Network size is set as 5m, changing from 25 (m = 2)
to 15625 (m = 6). In all dimensionality configuration, side length of space fixed at 1024 and Hilbert curve of
order 10 is used. Multidimensional data is distributed uniformly in the space. Auxiliary MBR is enabled in all
experiments.

Routing Path and Number of Visited Nodes. In Figure 4.8(a), length of routing path increases slowly
as d and N increases. This indicates that basic routing does not require much hops even in multidimensional
spaces. The number of visited nodes, i. e. point query cost, increases with network size and is always bigger
than routing path like in 2-dimensional case.

Range Queries. Three group of range query experiments has been executed. In three groups, query win-
dow size is set to be 0.05, 0.1 and 0.2 respectively. As for combination of query window size and dimensionality
m, the center of query window is randomly chosen in space and query is executed 1000 times to average results.
Figure 4.8(b) shows: With small windows size, query cost increases slowly. With big window size, however, the
query cost increases rapidly with dimensionality and network size. This can be explained as that bigger query
window overlaps much more MBRs in DHR-trees in multidimensional space and more nodes will have to be
involved in query.



Xinfa Wei and Kaoru Sezaki 299

Fig. 4.9. Query performance comparison with Squid

4.3. Performance Comparison with Squid. As introduced in Section 2, Squid P2P system is the most
related to DHR-Trees as they have the same method of mapping higher dimension space to one-dimensional space
and use the same virtual ring as the overlay network structure. The most different part is that it uses a different
routing table (called finger table) and a different query execution mechanism. Squid does cluster refinement
to decompose query ranges into smaller query clusters recursively until it reaches finest level of the Hilbert
curve, since top-down queries are not supported as each peer has no region information in its routing tables;
In contrast, DHR-Trees supports R-Trees-like queries directly by having MBR region information maintained
in peer’s routing table. Hence, DHR-Trees visits less peers and generates less traffic messages when performing
range queries, proving it is superior to Squid in efficiency of query execution. Figure 4.3 shows the comparison
results of range queries. Moreover, nearest neighbor query is even not supported by Squid system because
spatial proximity in multidimensional space is not preserved after mapping into one-dimensional space.

5. Summary. In this paper, we proposed a new multidimensional indexing structure called Distributed
Hilbert R-trees. DHR-trees enables multidimensional range query to be executed efficiently as in R-trees. Its
distributed structures make it fault-tolerant and scalable to a large number of peers. DHR-trees uses Hilbert
curve in mapping from m-dimension down into one dimensional key space and uses P-Trees in building overlay
network. Similarly as in Hilbert R-trees, this mapping is used just for ordering of each peer in the P-Tree, while
inherited overlapping regions technique can efficiently support flexible queries in P2P systems. To the best of
our knowledge, DHR-trees is the first P2P systems that utilizes semi-independent R-tree structure and addresses
dynamic feature of network as well. Our current experiments shows that it performs well on multidimensional
range query and the maintenance cost is reasonably low comparing with previous approaches. As future work,
we plan to compare it with other approaches and test it in a real-world application.

REFERENCES

[1] The gnutella web site. http://gnutella.wego.com

[2] The kazaa web site. http://www.kazaa.com

[3] K. Aberer, P-Grid: A Self-Organizing Access Structure for P2P Information Systems, vol. 2172, Jan. 2001.
[4] J. Aspnes and G. Shah, Skip graphs, in SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete

algorithms, Philadelphia, PA, USA, 2003, Society for Industrial and Applied Mathematics, pp. 384–393.
[5] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram, Querying peer-to-peer networks using p-trees, in

WebDB ’04: Proceedings of the 7th International Workshop on the Web and Databases, New York, NY, USA, 2004,
ACM Press, pp. 25–30.

[6] V. Gaede and O. Gunther, Multidimensional access methods, ACM Comput. Surv., 30 (1998), pp. 170–231.
[7] P. Ganesan, B. Yang, and H. Garcia-Molina, One torus to rule them all: multi-dimensional queries in p2p systems, in

WebDB ’04: Proceedings of the 7th International Workshop on the Web and Databases, New York, NY, USA, 2004,
ACM Press, pp. 19–24.

[8] A. Guttman, R-trees: a dynamic index structure for spatial searching, in SIGMOD ’84: Proceedings of the 1984 ACM
SIGMOD international conference on Management of data, New York, NY, USA, 1984, ACM Press, pp. 47–57.



300 DHR-Trees: A Distributed Multidimensional Indexing Structure for P2P Systems

[9] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, Baton: a balanced tree structure for peer-to-peer networks, in VLDB ’05:
Proceedings of the 31st international conference on Very large data bases, VLDB Endowment, 2005, pp. 661–672.

[10] H. T. N. Jordi Pujol Ahullo, Ruben Mondejar Andreu, Planetsim. http://planet.urv.es/planetsim/

[11] A. Mondal, Y. Lifu, and M. Kitsuregawa, P2PR-Tree: An R-Tree-Based Spatial Index for Peer-to-Peer Environments,
vol. 3268, Jan. 2004.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, A scalable content-addressable network, in SIG-
COMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer
communications, New York, NY, USA, 2001, ACM Press, pp. 161–172.

[13] A. Rowstron and P. Druschel, Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer

Systems, vol. 2218, Jan. 2001.
[14] C. Schmidt and M. Parashar, Enabling flexible queries with guarantees in p2p systems, Internet Computing, IEEE, 8

(2004), pp. 19–26.
[15] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou, Supporting multi-dimensional range queries in peer-to-peer systems, in Peer-

to-Peer Computing, 2005. P2P 2005. Fifth IEEE International Conference on, 2005, pp. 173–180.
[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, Chord: A scalable peer-to-peer lookup service

for internet applications, in SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architec-
tures, and protocols for computer communications, New York, NY, USA, 2001, ACM Press, pp. 149–160.

[17] E. Tanin, A. Harwood, and H. Samet, A distributed quadtree index for peer-to-peer settings, in Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on, 2005, pp. 254–255.

Edited by: Dana Petcu
Received: May 29, 2007
Accepted: June 19, 2007


