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Abstract. Nowadays, a large number of planning systems exist. The majority of them are either applicable only to specific domains (domain

dependent) or support only plan generation, but not plan execution and supervision. This paper presents Agent Planning Package (APP), a new domain

independent planner which facilitates the creation of intelligent agents. Through the use of APP, agents can generate plans within their operating

environment, as well as execute them and supervise the execution. Furthermore, APP supports online changes to the planning problem and domain, as

well as creation of multiple plans and plans which contain alternative paths of execution.

1. Introduction. Modern mainstream application development tools offer many features which simplify and quicken

the development process. Developers can easily create and incorporate databases into their projects, design user inter-

faces, enable network communication of programs, use extensive libraries which implement standard data structures and

algorithms, etc. Development tools also support the break-down of larger problems into smaller ones, and merging of

small problems into larger, but these operations have to be performed manually by the programmer. None of the standard

development tools offers automatic combining of small functional parts, in the sense of the tool itself generating their

order of execution to solve a larger problem. Furthermore, the tools provide little control of pre- and post-conditions

for the execution of a part of a program, except for debugging purposes, which again requires the problem solution to

be specified by hand. The craft of manual problem solving is one of the most demanding and error-prone parts of the

application development cycle.

On the other hand, planning systems solve complex problems by combining atomic actions which can be performed.

They use a declarative description of actions and the goal, based on which they create a plan, i.e. a sequence of actions

which need to be executed in order to take the system from the initial state to the state with the desired properties.

When specifying actions one needs to specify their parameters, the preconditions which must hold before the action

can be executed, and the effects of the actions. A large number of planning systems also support specifying of the cost of

action execution, and the probabilities that actions will be performed successfully.

Although the integration of concepts from planning systems into mainstream application development tools seems far

away, the coupling of automatic planning with agent development systems is a reality. This paper presents Agent Planning

Package (APP), a new domain independent planner which facilitates the creation of intelligent agents. Through use of

APP, agents can generate plans within their operating environment, as well as execute them and supervise the execution.

Furthermore, APP supports online changes to the planning problem and domain, as well as creation of multiple plans and

plans which contain alternative paths of execution. The main purpose of APP is not to present a new deliberative agent

architecture (although it may be possible to treat it as such), but rather to enable the extension of existing architectures

with planning capability.

The rest of the paper is organized as follows. Related work and major existing planning systems are reviewed in

Section 2. APP is introduced in Section 3, through a discussion of its basic anatomy and the plan creation process. Sec-

tion 4 introduces a simple logistic domain as a working example that will be used to illustrate APP’s features throughout

the paper. Section 5 describes the APP planning cycle in more detail, focusing on the agents’ needs and point of view.

Several possibilities for implementation of a logistic agent which utilizes APP are given in Section 6. Section 7 summa-

rizes experimental results which show that APP is among the medium-powered planners in terms of speed, and among

the most efficient in terms of generating the shortest existing plan if one exists. Finally, Section 8 concludes and outlines

the directions for future work.

2. Related Work. Research on planning systems (more precisely, automated problem solving) started in the late

1950s. One of the first programs in this field was GPS (General Problem Solver) by Newell, Shaw and Simon [18].

In 1971, Fikes and Nillson developed the STRIPS (STanford Research Institute Problem Solver) formalism [8], which

was the basis for most research in the field until Pednault presented ADL (Action Description Language), mixing the

STRIPS approach with the situation calculus [19]. The ADL formalism provided inspiration to many researchers, and

soon other formalisms like UCPOP and UMCP emerged. In 1998, PDDL (Planning Domain Definition Language) was

introduced [15], attempting to unify the most important aspects of all prior formalisms. PDDL 2.1 added the possibility

to specify durations of actions, and integrated the systems for planning and scheduling [9]. In 2002, this version was
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FIG. 3.1. Structure of a multi-agent environment in which agents utilize APP

further extended to PDDL 2.2 by introducing derived predicates and timed initial literals [7]. Year 2005 witnessed the

introduction of PDDL 3.0, which enabled the definition of strong and soft constraints on plan trajectories, as well as strong

and soft problem goals [10].

In parallel with the development of planning formalisms, planning systems based on them were being written. Some

of the well known systems include SHOP [17, 16], GraphPlan [4], STAN [14], FF [12], HSP [5], SAPA [6] and AltAlt [20].

3. The Agent Planning Package. APP is a planning system written in Java in form of a Java package. Java was

chosen as the implementation language for a number of reasons, including its portability and the existence of numerous

Java-based agent systems, e.g. JADE [3], Cougaar [11], AJA [2], etc.

The basic purpose of APP is to facilitate the creation of intelligent agents through integration with existing agent

development tools. Thus, APP is designed to be simple to use and to offer vast functionality to an agent, such as the

creation of planning instances, their modification, creation of different types of plans and their execution in the agent’s

environment.

3.1. The Basic Anatomy of APP. The structure of a multi-agent system in which agents utilize APP is shown in

Fig. 3.1(a). Each agent in the environment may use an arbitrary number of instances of the planner, according to its needs.

As illustrated in Fig. 3.1(b), one instance of the planner may be used to describe and initiate several planning instances

which use the same planning domain, but may differ in the concrete planning problem.

The planning problem describes the objects existing in the environment, declares initial values of functions, defines

the relations that exist in the environment and describes the goal. This approach insures that there is no duplication of

data characteristic of the planning domain, e.g. definitions of types, predicates, functions, constants and actions.

The core of APP resides in class Planner, which forms the base class for creating instances of the planner. At the

instance creation phase, a reference to an agent is passed to the planner; this reference is used at the plan execution stage.

The class Planner contains the field domain, which represents the planning domain, and a list of planning instances.

Creation of planning instances is done via a call to the addInstance() method, which returns the planning instance’s

ordinal number. The instance itself is accessible through method getInstance(num). Besides creating planning instances,

it is possible to delete them, get the number of instances and the ordinal number of the last instance, and delete the

planning domain if there are no planning instances left.

3.2. Plan Creation in APP. Plan creation is done on the basis of the current state of the planning instance prior to

the invocation of one of the plan creation methods. The used algorithm is a mixture of several standard algorithms which

utilize a planning graph. The base algorithm is the one used in the GraphPlan system, and is described in [4], while some

of the employed modifications stem from [9, 12, 13].

During the creation of the planning graph, every level of the graph is represented by two sublevels, one representing

facts (instances of predicates), and fluents (instances of functions), and the other representing instances of actions. The

zeroth level of the graph is initialized with facts and fluents from the internal data structure which represents the planning

problem1. After the creation of every level of a planning graph that may contain a plan, a backward-chaining strategy

1The zeroth level of the graph does not contain any action instances.
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is used to find the plan. If this search fails, the next level of the graph is created. The algorithm used in the current

implementation is outlined in Fig. 3.2.

Function createPlan

0: Create zeroth level of graph

1: While possible to find a plan and not created all goal facts do

Create new level of graph

2: While possible to find a plan and there exist goal facts in mutex do

Create new level of graph

3: While possible to find a plan and plan not found do

Call Backward-chaining strategy

If plan not found then

Create new level of graph

4: If plan found then return plan

else return null

FIG. 3.2. Plan creation algorithm used in the current implementation of APP

Steps 0 and 1 of APP’s plan search algorithm involve successively creating levels of the graph until a level is reached

which contains all the facts specified in the goal. In step 2, the creation of new levels is resumed, until a level is generated

which contains no mutually exclusive facts. If any of the two terminating levels from steps 1 or 2 is determined not to be

reachable (i.e. it is not possible to find a plan), the algorithm halts.

The search for the plan itself is conducted in step 3, using a backward-chaining strategy. First, all possible ways of

fulfilling the goal are instantiated at the highest (goal) level. This generates all subgoals whose fulfillment on the previous

level can lead to the fulfillment of the goal, and also determines the sequences of actions which transfer the system

from the subgoal to the goal. The subgoals are then sorted according to a heuristic2, and their fulfillment is respectively

attempted at the previous level. If the root level of the graph is reached, a plan is generated according to the actions

chosen during the search. If the root level is unreachable, the subgoal is inserted into a goal tree data structure for its level.

During subsequent descents into lower levels of the graph, new subgoals are tested for presence in the goal tree, and if the

outcome is positive the search is aborted for that particular subgoal.

The goal tree is a data structure in APP which is filled with goals that were not satisfied at a particular level of the

graph. Since every goal is represented by a (sorted) list of numbers denoting facts, the goal tree is implemented as a

multiway trie, more precisely an existence trie, described in [21] (Chapter 15). Each node of the tree contains a single

fact, and every path from root to a leaf represents a goal. At goal insertion, the first fact of the goal is compared with the

roots of all subtrees of the (empty) root node of the tree, and if a match is found the element of the goal is skipped and

the rest of the goal recursively inserted into the appropriate subtree. If no match is found, a new subtree is created and the

remaining facts inserted in a straight path down to the leaf.

Compared with the approach of storing all unsatisfied goals in an array and accessing them using a hashing function

or some other type of tree, the goal tree conserves space to a certain extent. The worst-case time complexity of goal

retrieval in the current implementation is O(lf), where l is goal length, and f is the number of distinct facts instantiated

by the system. Although f ≫ l for typical planning problems, the chosen data structure functions efficiently in the plan

creation setting since it was empirically observed that the tree usually remains sparse, with the number of children of a

node never really nearing f . Attempts to optimize retrieval by performing binary search on children, thus turning the

complexity estimate into O(l log f), resulted in no practical speedup. On average, only several percent of time taken for

plan generation is expended on interaction with the goal tree.

On the other hand, the space requirements of the goal tree may become prohibitively high for large planning problems.

This calls for further investigation of into methods for (sub)goal compression, as well as search space pruning.

In contrast to many existing planners, APP does not perform grounding (creating instances of facts and actions) prior

to the execution of the planning algorithm—instances of facts and actions are created when they become needed. The

reason behind this approach is that a planning instance represents an agent’s model of its environment and may therefore

contain a large number of objects. A consequence of possibly having a large number of objects is the expenditure of great

amounts of memory, as well as a lot of processing time needed to perform grounding. Creating instances during plan

search lessens the memory and time requirements for this phase, but increases the time needed for the creation of deeper

levels of the graph.

2The currently used heuristic is the number of no-op actions, i.e. the number of matching facts in the prefixes of the goal and subgoal.
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4. AWorking Example. This section introduces a working example that will be used to illustrate APP’s properties.

The planning domain and planning problem of a simple logistic setting will be described using PDDL2.1 notation.

Let there be four towns (Town1, Town2, Town3 and Town4) which are connected by roads as in Fig. 4.1. Let there

be two trucks (Truck1 and Truck2) and two packages (Package1 and Package2) in Town1. The goal for this planning

problem is to deliver Package1 and Package2 to Town4 using the given trucks.

In order to describe the planning domain for this example, predicates and actions will be defined as follows.

Four predicates will be used:

• (at ?pkg - package ?town - town): is package ?pkg in town ?town

• (in-town ?truck - truck ?town - town): is truck ?truck in town ?town

• (in ?pkg - package ?truck - truck): is package ?pkg in truck ?truck

• (road ?town1 - town ?town2 - town): are towns ?town1 and ?town2 connected by a road

For this planning domain, three actions are needed. Action load is used to load package ?pkg into truck ?truck.

The necessary precondition for this action is that both ?pkg and ?truck are in the same town. After the execution of this

action, the package will be loaded into the truck.

(:action load

:parameters (?pkg - package ?truck - truck ?town - town)

:precondition (and (in-town ?truck ?town) (at ?pkg ?town))

:effect (and (not (at ?pkg ?town)) (in ?pkg ?truck)))

Action unload is used to unload package ?pkg from truck ?truck. The necessary precondition for this action is that

?pkg is in ?truck, and that ?truck is in town ?town.

(:action unload

:parameters (?pkg - package ?truck - truck ?town - town)

:precondition (and (in-town ?truck ?town) (in ?pkg ?truck))

:effect (and (not (in ?pkg ?truck)) (at ?pkg ?town)))

Transportation of packages can be modeled using action drive whose preconditions are that ?truck is in town

?from and that towns ?from and ?to are connected by a road. The effect of action drive is that ?truck is moved to

town ?to (along with all the packages inside the truck).

(:action drive

:parameters (?truck - truck ?from - town ?to - town)

:precondition (and (in-town ?truck ?from) (road ?from ?to ))

:effect (and (not (in-town ?truck ?from))

(in-town ?truck ?to))))

The initial situation of a system (that corresponds to an agent’s current state) and goals are defined in the planning

problem. The initial situation in this example is that packages Package1 and Package2 and trucks Truck1 and Truck2

are in town Town1. Also, roads between towns must be defined according to Fig. 4.1. This situation can be expressed

using following PDDL code:

(:init (at Package1 Town1) (at Package2 Town2)

(in-town Truck1 Town1) (in-town Truck2 Town1)

(road Town1 Town2) (road Town2 Town1) (road Town1 Town3)

(road Town3 Town1) (road Town2 Town3) (road Town3 Town2)
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(road Town2 Town4) (road Town4 Town2) (road Town3 Town4)

(road Town4 Town3))

The goal in this example is to reach the state where both packages are in Town4. This goal can be defined by:

(:goal (and (at Package1 Town4) (at Package2 Town4)))

5. The Planning Cycle. APP enables an agent to impose full control over the planning domain and problem. There-

fore, APP is divided into four modules as shown in Fig. 3.1(b). Those modules encapsulate data manipulation, plan

search, plan execution and manipulation of already created plans.

5.1. Data Manipulation. Data input into a planning instance may be done in two ways: by loading the planning

domain and problem from PDDL files, or “manually” from Java code by creating instances of appropriate classes and

inserting them into the planning instance. The internal structure of the planning domain and problem in APP are modeled

according to the PDDL 2.1 standard [9].

Input of the domain and problem from files is done via methods loadDomain(filepath, filename) and loadProb-
lem(filepath, filename). This way it is possible to load the entire domain and/or problem, and later modify them from

Java if necessary. Since the domain is independent of the problem(s), domain input is possible not only on the planning

instance level, but also for the whole instance of the planner.

During its life cycle, an agent may obtain information about changes in its environment. As it is of crucial importance

for the planning instance to be up to date with the state of the agent’s surroundings, the agent is given the capability to

insert, change or remove data from a planning instance. This is achieved by making available over 100 classes, the

structure of which closely mimics the BNF structure of the domain and planning problem described in [9]. Some of these

classes represent basic planning concepts (action, predicate, function, constant, object, etc.), while the majority of classes

representing some form of expression used for defining preconditions and effects of actions, as well as defining the goal.

In the working example, during its life cycle an agent can obtain information that the road between Town2 and Town4

has subsequently been closed. After the agent deletes relation (road Town2 Town4) from the planning problem, the

planning process needs to be triggered again because the previously generated plans that use this relation are no longer

valid. Also, the insertion of this relation back into the planning problem is possible after the road is reopened.

5.2. The Plan Creation Module. There are four basic types of plans that can be used in APP. Together with those

types of plans, a set of plans called multiPlan can be used. All plan types and multiPlan can be created by some of the

four methods for plan generation.

5.2.1. Basic Types of APP Plans. APP can generate various basic types of plans:

• SingleAction is a plan containing only one instance of an action;

• SerialPlan contains a series of subplans, where the execution sequence of the plans is strictly defined;

• ParallelPlan consists of several subplans, where the execution sequence of the plans is not defined, and subplans

may be executed in parallel;

• AlternativePlan is a plan represented as a set of plans. If any subplan is valid, the whole plan is;

• MultiPlan represents a set of plans, where each plan is valid in terms of successfully reaching the goal. MultiPlan
was introduced to enable an agent to choose from a set of plans based on its own additional criteria.

Basic plans in APP may be combined in order to create a plan that satisfies the goal defined by the planning problem.

Usually, the generated plan is a SerialPlan that contains ParallelPlans as its subplans. Every parallel plan contains more

than one action and every action is represented using the SingleAction type. If a plan contains alternative plans, the

structure of the plan can become more complex.

5.2.2. Methods for Plan Creation. Planning instances are provided with methods that initiate the creation of an

appropriate type of plan, optionally limited by a specified amount of time allowed for the plan generation process.

There are four methods that can be invoked to create a plan in APP:

• createPlan() returns the first plan that is found,

• createMultiPlan() returns a MultiPlan, where all plans are of the same length,

• createAllPlan() returns a MultiPlan with plans of different lengths,

• createAlterPlan() returns a plan that contains alternative plans.

Methods createPlan() and createAlterPlan() are used to create one plan, and the generated plan can be easily exe-

cuted by calling method execute() of that plan. In contrast to them, methods createMultiPlan() and createAllPlans() are

used to create multiple plans, and an agent needs to chose one of the plans that will be executed.
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In the logistic example, if an agent calls method createPlan(), the first generated plan will be returned. This plan is

given in Fig. 5.1, where steps 1 and 4 represent subplans whose actions can be executed in parallel. Steps 2 and 3 can be

represented using singleAction plans, because they contain only one action.

1: (load Package1 Truck1 Town1) (load Package2 Truck1 Town1)

2: (drive Truck1 Town1 Town2)

3: (drive truck1 Town2 Town4)

4: (unload Package1 Truck1 Town4) (unload Package2 Truck1 Town4)

FIG. 5.1. The plan generated using method createPlan()

Within the logistic example, method createMultiPlan() returns a MultiPlan, which consists of serial plans of the

same length (four steps). One of the serial plans is depicted in Fig. 5.1. When an agent creates multiple plans, it can later

choose which plan is going to be executed. The criteria for than can be how many trucks are used, which trucks are used,

the number of action instances, etc.

By using createMultiPlan() it is possible to obtain plan analogous to the plan in Fig. 5.1, where Truck2 is used

instead of Truck1. Method createMultiPlan() can also create plans where both trucks are used and the plan given in

Fig. 5.2 is one of them.

1: (load Package1 Truck1 Town1) (load Package2 Truck2 Town1)

2: (drive Truck1 Town1 Town2) (drive Truck2 Town1 Town3)

3: (drive Truck1 Town2 Town4) (drive Truck2 Town3 Town4)

4: (unload Package1 Truck1 Town4) (unload Package2 Truck2 Town4)

FIG. 5.2. A plan that uses both trucks

Method createAllPlans() is similar to method createMultiPlan(), with the only difference that the number of steps

in generated plans can vary from one plan to another. By using this method, it is possible to obtain a plan that uses towns

Town2 and Town3, which can be very useful in situations where, in reality, roads between towns Town1 and Town3, and

towns Town2 and Town4 are closed often. One of the plans that uses the road between Town2 and Town3 is given in

Fig. 5.3, and in contrast to previous plans it has five steps.

1: (load Package1 Truck1 Town1) (load Package2 Truck1 Town1)

2: (drive Truck1 Town1 Town2)

3: (drive Truck1 Town2 Town3)

4: (drive Truck1 Town3 Town4)

5: (unload Package1 Truck1 Town4) (unload Package2 Truck1 Town4)

FIG. 5.3. A plan that uses the road between Town2 and Town3

Method createAlterPlan() creates a plan that contains alternative plans. By using this method it is possible to obtain

a plan that represents an integrated version of plans in Fig. 5.1 and Fig. 5.3. The first two steps of this integrated plan are

the same as in the original plans, while the remaining steps form an AlternativePlan that contains two alternatives. These

alternatives represent the remaining parts of the original plans, where one of them leads directly to Town4, while the other

first leads to Town3 and then to Town4. This integrated plan is given in Fig. 5.4.

5.3. Plan Execution. From the point of view of practical application, one of the main weaknesses of standard

planning systems is that after generating the plan they consider the job done. These plans are for the most part not ever

executed in a real, possibly changing environment. This was one of the main motivations behind the design of APP.

Every APP plan possesses the method execute() which initiates plan execution. The method returns a boolean value

indicating the success or failure of reaching the goal according to the plan. In a static setting the method always returns

true for a properly generated plan. But in dynamic environments, changes during the process of plan creation, execution,

or in between, may render the plan no longer valid.

SerialPlans are executed starting with the first plan in the sequence, continuing with the next plan after the execution

of its predecessor successfully terminates. If the any subplan fails, execution of the whole plan is aborted. With Paral-
lelPlans all subplans are executed simultaneously in their own threads, and the plan is successful if all subplans terminate

with success.
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1: (load Package1 Truck1 Town1) (load Package2 Truck1 Town1)

2: (drive Truck1 Town1 Town2)

{ 3: (drive Truck1 Town2 Town4)

4: (unload Package1 Truck1 Town4) (unload Package2 Truck1 Town4)

| 3: (drive Truck1 Town2 Town3)

4: (drive Truck1 Town3 Town4)

5: (unload Package1 Truck1 Town4) (unload Package2 Truck1 Town4)}

FIG. 5.4. The plan created using createAlterPlans()

During execution of AlternativePlans, if a subplan is not executed successfully, the next alternative is tried. An

AlternativePlan is successfully executed if at least one of its subplans is successful. This type of plan may be used within

an integrated version of a MultiPlan.

When the plan given in Fig. 5.1 is executed, both actions for loading packages in step 1 will be executed in parallel.

After that, the actions from steps 2 and 3 will be executed sequentially. Finally, the actions from step 4 will be executed

in parallel.

During the execution of an alternative plan, if it is not possible to execute the first alternative, APP will try to execute

the following one. In the plan given in Fig. 5.4, during the execution of action (drive Truck1 Town1 Town2), the road

between Town2 and Town4 can unexpectedly be closed. Since the first alternative uses relation (road Town2 Town4),

its execution will fail and the second alternative will be tried.

5.3.1. Execution of a SingleAction Plan. Every APP plan is, at its core, composed of atomic actions represented

by a SingleAction plan. To enable the execution of an action in the actual environment of an agent, every action from

a planning domain is assigned an instance of class ActionCode, which includes the method run(action, agent). This

method is invoked at the execution of the SingleAction plan.

ActionCode is an abstract class whose method run(action, agent) should be overridden by a method containing code

to be executed in an agent’s environment. After inheriting the class and creating an instance, it is necessary to assign this

instance to an appropriate action within the domain. This is done via method insertActionCode(name, actionCodeIn-
stance), where name denotes the name of the action. Within the run method an agent may execute arbitrary Java code and

do whatever is in line with performing the action in his practical environment. Parameter action may be used to access

various properties of an action, e.g. its name and arguments. Parameter agent allows access to the resources of an agent.

APP automatically insures that the planning instance is consistent with the state of the environment. After every

executed action, APP updates the planning problem according to the effects of the action, enabling the addition of new, as

well as change and deletion of existing data.

In the logistic example, three classes that inherit class ActionCode should be created, one for each action in the

domain. Method run() in the class that corresponds to action load will contain statements for turning on the crane and

statements for loading packages using that crane. With the class that corresponds to action unload the situation is similar.

Inside the body of method run() of the class that corresponds to action drive an agent can, for example, check the level

of fuel in a truck or display truck movement to the user.

5.4. Properties of APP Plans. Besides plan execution, APP offers some other plan-related functionality. On a

standard level, it is possible to check the number of actions in a plan, copy plans, check if two plans are equal and convert

a plan into text for easy output. In addition, it is possible to convert plans from one form into another. For example,

method mergePlans(multiPlan) transforms the set of independent subplans within the multiPlan into plans which may

contain AlternativePlans.

APP allows access to every part of a plan, that way enabling enquiry into certain properties of plans which can not

be specified as constraints in the planning domain. The creation of MultiPlans facilitates this functionality by enabling an

agent to generate a large number of plans and then filter them according to additional criteria. Such criteria may include

the least use of some action which is too costly for the system, avoiding the use of a particular error prone resource,

discouragement of executing plans similar to other plans which had failed in the past, etc.

Let us assume that the road between Town1 and Town3 in the working example can very often become impassable. By

using method createAllPlans(), an agent can obtain a set of plans and exclude all plans which use that road. Subsequently,

the agent can choose one of the plans that are not excluded and execute it. If the execution of the plan fails, the agent

can exclude all invalid plans and choose one of the remaining valid ones. This strategy can be less time consuming than

restarting the search process. A simplified version of this strategy is to call method mergePlans() which will integrate
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. . .
Planner logistic = new Planner(thisAgent);
logistic.loadDomain(“”, “domain.pddl”);
int instanceNum = logistic.addInstance();
logistic.getInstance(instanceNum).loadProblem(“”, “problem.pddl”);
logistic.getDomain().insertActionCode(“load”, new load());
logistic.getDomain().insertActionCode(“unLoad”, new unLoad());
logistic.getDomain().insertActionCode(“drive”, new drive());
Plan p = logistic.getInstance(instanceNum).createPlan();
ok = p.execute();

FIG. 6.1. Code of a logistic agent that uses APP

all plans from the generated set and create one plan that contains alternatives, thus automating the process of subplan

exclusion during execution.

6. Implementation of a Logistic Agent. One of the main design ideas behind APP was to create a planning system

that will be easy to use and provide a large number of services to agents.

The code shown in Fig. 6.1 presents one of the simplest ways to use APP inside an agent’s body. An agent should first

create one instance of the planner, and load a planning domain. After that, the agent should create a planning instance,

load a planning problem, and connect actions load, unload and drive with code to be executed during the execution of

those actions. Finally, the agent should initiate plan search and execute the generated plan. If an action is not explicitly

connected with code, it will be connected with empty code, and the only effect of action execution will be the update of

the planning problem which represents the agent’s knowledge about its environment.

This implementation of a logistic agent is overly simple and can cause problems during plan execution in dynamic

environments. If one of the used roads is closed during the execution of some previous actions, execution of this plan will

fail and variable ok will be set to false. There are three ways in APP to prevent this kind of failure.

The first way is trivial and requires a new plan to be generated and executed. This strategy can be pretty bad because

the planning process can be very time costly. The implementation of this strategy requires replacing the last two rows of

the previous implementation with following code:

ok = false;
while (!ok) {

Plan p = logistic.getInstance(instanceNum).createPlan();
ok = p.execute();

}

The second and third ways utilize generation of multiple and alternative plans. If an agent generates multiple plans,

it can decide which plan is going to be executed. If the execution of a plan fails, the agent can choose some other plan

from the generated set of plans. The problem with this strategy is that many of those plans will cease to be executable,

because several of their actions were already executed as parts of plans that previously failed, and such actions can not

be executed again. In this case it is possible to truncate those actions, and to execute the rest of the plan. This strategy

requires replacing the last two rows from the code in Fig. 6.1 with following code:

MultiPlan mp = logistic.getInstance(instanceNum).createMultiPlan();
ok = false;
while (!ok && mp.numberOfPlans()!=0) {

Plan p = mp.getNthSubPlan(1);
mp.removeNthSubPlan(1);
Plan tmp = Adjust(p);
ok = tmp.execute();

}

Plans with alternatives are one of APP’s notable features. During their execution there is no need check whether

the first several actions were already executed, because this will be done automatically by the module for plan execution

and monitoring. If an agent wants to use alternative plans it should invoke method createAlterPlan() in its original

implementation instead of method createPlan(). The last two rows in this version of the agent are as follows:
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Plan p = logistic.getInstance(instanceNum).createAlterPlan();
ok = p.execute();

6.1. Agent Implementation using Two Instances of a Planner. One of the advantages of APP is the possibility of

using more than one planning domain at the same time. These domains are completely independent and every domain is

defined inside a new instance of APP’s planner, as shown in Fig. 3.1 (Agent C).

If a logistic agent can use a crane to (un)load packages, it can use a planning system to plan actions for (un)loading,

as mentioned in Section 5.3. If an agent can not use more than one domain, the only way to utilize a classical planning

system for two domains is to create an integrated version of domains. This way the number of actions, predicates, objects

and relations grows and can rapidly increase the amount of used memory and time in the plan generation phase. Because

of this, there is a large possibility that the system will fail to find a plan, especially if the amount of allotted time is

small.

By using APP, it is possible to split the planning domain of the logistic example into two domains by moving all

actions and data used for (un)loading packages to a new domain inside a new instance of the planner. Since the amount

of data in every domain is roughly one half of the integrated domain, the time and memory used to generate a plan can

rapidly decrease because the dependence between time and the amount of data is stronger than linear.

As was explained in Section 5.3, plan generation for package loading can be done during the execution of action

load. Inside the body of method run() for action load, an agent can call method createPlan() for the crane domain, and

execute the generated plan. It is possible to create a new instance of a planner, or to use the one that is defined inside the

agent.

Figure 6.2 shows class load that implements the loading of a package into a truck. Variable crane refers to the instance

of the planner for the crane domain which is created inside the agent’s body. Subsequently, method createPlan() is called

to create a plan for package loading, and method execute() is called to execute the plan.

class load extends actionCode {
public boolean run(actionInstance action, Object agent) {

Planner crane = ((Agent) agent).crane;
Plan p = crane.getInstance(instanceNum).createPlan();
return p.execute();

}
}

FIG. 6.2. Class load that loads a package into a truck using a crane

7. Experimental Results. Although the initial objectives behind APP did not include competing with the state-of-

the-art planners, APP has proven to be more efficient than anticipated. In order to evaluate its efficiency, APP was tested

on examples from the planning competition of the Artificial Intelligence Planning Systems Conference (AIPS) in 2000.

This particular benchmark was chosen because APP supports a subset of PDDL 2.1, which was the official language of

the AIPS 2000 competition.

Figure 7.1 shows the results of testing in the blocks domain. Figure 7.1(a) depicts the number of solved problems for

various planners, while Fig. 7.1(b) shows the time in milliseconds taken by each planner to solve a particular problem.

The results for other planners were obtained from the official Web site of the conference [1], while APP was tested on a

closely reproduced computer configuration, with the same time limit of 30 minutes for each problem.

Figure 7.1(a) shows that APP is a medium-power planner judging by the number of solved problems. From the

first 26 problems APP could not solve only “blocks-11-1” which was problematic for all planners except the three most

efficient. IPP solved two problems more than APP, but the time expended on the two was an order of magnitude longer

than the time IPP typically took to solve the other 25 problems.

Figure 7.1(b) focuses on the time spent by the medium-power planners on the first 26 problems. The fastest planner

was STAN which is well known for its efficient implementation, although APP did show a better result on “blocks-11-0”

and “blocks-11-2” problems. On simpler problems, APP exhibited about the same efficiency as Mips, while on more

difficult ones APP proved somewhat superior. TokenPlan and BlackBox achieved better results on simpler problems, but

as problems grew more difficult APP was more up to the task.

Such behavior of APP can be explained by the fact that for smaller problems more time is spent on the creation of the

planning graph, while larger problems take up more time on graph searching. As APP creates instances of actions during

graph creation, this could be expected. Planning systems which first create all instances of actions, and than search for a
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FIG. 7.1. Experimental results showing (a) the number of successfully solved problems for every planner, and (b) the time that medium-power

planners spent on each of the first 26 problems

plan, achieve better results in these situations. However, real world systems, for which APP is designed, usually contain

a large number of objects and actions, punishing this approach to action instantiation. The reason behind APP’s better

results for larger problems in the benchmark lies a great deal in the use of the goal tree data structure. The goal tree speeds

up the check for prior attempts to satisfy a goal, which is important for larger graphs.

It is important to note that unlike most other planners, APP does not use heuristics to prune unpromising paths during

the search of the graph. A good consequence of this is that APP is guaranteed to find the shortest possible plan for any

given problem, which puts APP among the most efficient systems judging by this criterion. The bad consequence is that

search time is greatly increased.

8. Conclusions and Future Work. This paper presented the APP Java package which enables agents to expand

their capabilities with automatic planning. We have shown how APP can be integrated into a multi-agent system, and how

its communication with an agent may be achieved.

The basic services APP offers to an agent include creating multiple planning instances within one instance of a

planner, and accessing the data within a planning instance in order for existing data to be read, changed or deleted, and

new data to be inserted. In contrast to APP, most of the other planners allow only one planning instance, and are not able

to modify it after the plan had been created. Furthermore, because of its ease of data manipulation, APP may be utilized

to implement agents’ representations of the current state of the world.

Besides plan creation, explicit plan execution is also supported, facilitating the use of APP in dynamic environments.

APP also provides services for checking various properties of plans, which is a feature not supported by the majority of

planners.

APP uses a modified algorithm for plan creation which employs a planning graph and a goal tree structure, sup-

porting the generation of many different types of plans. For example, a combination of SerialPlans and ParallelPlans

may be used to obtain partial order plans (POP), which are supported by the majority of planners, while Alternative-
Plans allow execution of multiple subplans until one terminates with success. AlternativePlans may be combined with

SerialPlans and ParallelPlans to derive plans which have increased chances for behaving robustly in dynamic environ-

ments.

Currently, APP supports a subset of PDDL 2.1 which includes :strips, :typing and :fluents requirements. Upgrading

to the full :adl set is underway, as well as extension to the third and fourth level of PDDL which incorporate actions with

duration. In order to provide faster plan generation, research into heuristics will be done to enable reliable and efficient

pruning of unpromising paths during graph search.

Since the main purpose of APP is to serve as a library for creation of intelligent agents, we intend to add a number

of new methods for investigating various properties of plans. One example is a method which simulates plan execution

without actually firing any actions in the agent environment, in order to check the validity of a plan before actually

executing it.
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