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LOAD BALANCING FOR THE NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

GREGORY KARAGIORGOS∗ AND NIKOLAOS M. MISSIRLIS∗

Abstract. In this paper we simulate the performance of a load balancing scheme. In particular, we study the application of the Extrapolated

Diffusion (EDF) method for the efficient parallelization of a simple ‘atmospheric’ model. Our model involves the numerical solution of the steady state

Navier-Stokes (NS) equations in the horizontal plane and random load values, corresponding to the “physics” computations, in the vertical plane. For

the numerical solution of NS equations we use the Local Modified Successive Overrelaxation (LMSOR) method with local parameters thus avoiding

the additional cost caused by the global communication of the involved parameter ω in the classical SOR method. We have implemented an efficient

domain decomposition technique by using a larger number of processors in the areas of the domain with heavier work load. Our results show that in

certain cases we have a gain as much as approximately 45% in execution time when our load balancing scheme is applied.
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1. Introduction. The efficient use of the available computational resources for running parallel applications in a

distributed computing environment leads to the load balancing problem. Many parallel applications produce different

workload during execution time. Parallel weather prediction simulations constitute typical applications that require load

balancing techniques. However, the load has to be balanced in order to achieve an efficient use of the processor network.

In such applications a geometric space is disrcetized by a 3d-grid. Then a domain decomposition technique assigns a

subdomain to each processor of the network. Each processor performs the computations onmesh points in each subdomain

independently. The involved computations in these grids are of two kinds: “dynamics” and “physics”. The dynamics

calculations correspond to the fluid dynamics of the atmosphere and are applied to the horizontal field. These calculations

use explicit schemes to discretize the involved partial differential equations because they are inherently parallel. The

physics calculations represent the natural procedures such as clouds, moist convection, the planetary boundary layer and

surface processes and are applied to the vertical level. The computations of a vertical column are local, that is, they do

not need data from the neighboring columns and are implicit in nature. As the “physics” computations differ from one

subdomain to the other the processors have an unbalanced load. In such situations the load has to be balanced. Due

to the nature of our problem we will consider iterative algorithms to balance the load. Most of the existing iterative

load balancing schemes [12] involve two steps. The first step calculates a balancing flow. This flow is used in the

second step, in which load balancing elements are migrated accordingly. It is well known that in distributed systems the

communication complexity plays an important role. Therefore, a load balancing algorithm should have a minimum flow

and use local communication. Iterative load balancingmethods have these characteristics and this is the reason for making

them appropriate in our case study. Two main categories are the Diffusion [1, 4], and the Dimension Exchange [4, 24]

algorithms. The performance of a balancing algorithm can be measured in terms of number of iterations it requires to

reach a balanced state and in terms of the amount of load moved over the edges of the underlying processor graph. In

[6] it is shown that all local iterative diffusion schemes calculate a minimal flow with respect to a weighted l2-norm. In

the Diffusion (DF) method [4, 1] a processor simultaneously sends workload to its neighbors with lighter workload and

receives from its neighbors with heavier workload. It is assumed that the system is synchronous, homogeneous and the

network connections are of unbounded capacity. Under the synchronous assumption, the Diffusion (DF) method has been

proved to converge in polynomial time for any initial workload [1].

In this paper we study the application of the DF method for the efficient parallelization of a simple model. Our model

involves the numerical solution of the steady state Navier-Stokes (NS) equations in the horizontal plane and random load

values, corresponding to the ”physics” computations, in the vertical plane. Our intention is to study the performance of

a load balancing scheme under more realistic conditions than in previous cases [13, 14]. Up to now the problem of load

balancing has been studied solely, namely without any combination of horizontal and vertical computations. In this paper

(i) we use an optimal version of the DF method and (ii) the migration of load transfer is implemented using only local

communication as opposed to schedules which require global communication.

The paper is organized as follows. In Section 2 we present the Extrapolated Diffusion method, which possesses the

fastest rate of convergence among its other counterparts [17]. In Section 3 we describe our simple ‘atmospheric model’

and we present the use of the Local Modified Successive Overrelaxation (LMSOR) method for the numerical solution

of NS equations. In Section 4 we present a domain decomposition technique, which initially assigns a square domain to

each processor in a mesh network. However, load balancing imposes a modified domain decomposition. As this increases
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62 Load Balancing for the numerical solution of the Navier-Stokes equations

the communication complexity, we propose a load transfer to balance the load along the row and column processors only.

This domain decomposition technique assigns a larger number of processors in the areas of the domain with heavier load,

thus increasing the efficiency of load balancing. Finally, in Section 5 we present our simulation results.

2. The Extrapolated Diffusion method. Let us consider an arbitrary, undirected, connected graph G = (V, E).
This graph represents our processor network, where its nodes, namely the processors, are denoted by vi ∈ V and its

edges (links) are (vi, vj) ∈ E, when vi, vj are neighbors. Furthermore, we assign a weight ui ≥ 0 to each node, which

corresponds to the computational load of vi. The processor graph reflects the inter-connection of the subdomains of a

mesh that has been partitioned and distributed amongst processors (see Figure 4.1). In this graph each node represents a

subdomain and two nodes are linked by an edge if the corresponding subdomains share edges of the mesh.

The Extrapolated Diffusion (EDF) method for the load balancing has the form [1, 4]

u
(n+1)
i = u

(n)
i − τ

∑

j∈N(i)

cij

(

u
(n)
i − u

(n)
j

)

, (2.1)

where cij are diffusion parameters, N(i) is the set of the nearest neighbors of node i of the graph G = (V, E), u
(n)
i , i =

0, 1, 2, . . . , |V | is the load after the n-th iteration on node i and τ ∈ R\{0} is a parameter that plays an important role

in the convergence of the whole system to the equilibrium state. The overall workload distribution at step n, denoted by

u(n), is the transpose of the vector (u
(n)
1 , u

(n)
2 , . . . , u

(n)
|V |) and u(0) is the initial workload distribution. An alternative form

of (2.1) is

u
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cij)u
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i + τ
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ciju
(n)
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which in matrix form becomes

u(n+1) = Mu(n), (2.3)

where M is called the diffusion matrix. From (2.2) it follows that the elements of M , mij , are equal to τcij , if j ∈ N(i),
1 − τ

∑

j∈N(i) cij , if i = j and 0 otherwise. With this formulation, the features of diffusive load balancing are fully

captured by the iterative process (2.3) governed by the diffusion matrix M . Also, (2.3) can be written as u(n+1) =
(I−τL)u(n), where L = BWBT is the weighted Laplacianmatrix of the graph,W is a diagonal matrix of size |E|×|E|
consisting of the coefficients cij and B is the vertex-edge incident matrix. At this point, we note that if τ = 1, then we

obtain the DF method proposed by Cybenko [4] and Boillat [1], independently. If W = I , i. e. if cij=constant, then we

obtain the special case of the DF method with a single parameter τ (unweighted Laplacian). In the unweighted case and

for network topologies such as chain, 2D-mesh, nD-mesh, ring, 2D-torus, nD-torus and nD-hypercube, optimal values for

the parameter τ that maximize the convergence rate have been derived by Xu and Lau [23, 24]. Recently, we have solved

the same problem in its most general form, the weighted case [17]. Next, we present a short review of our results as we

use them to further accelerate the rate of convergence of DF.

The diffusion matrix of EDF can be written as

M = I − τL, L = D − A, (2.4)

where D = diag(L) and A is the weighted adjacency matrix. Because of (2.4), (2.3) becomes u(n+1) = (I − τD) u(n) +
τAu(n) which is the matrix form of (2.2).

The diffusion matrix M must have the following properties: nonnegative, symmetric and stochastic [4, 1]. The

eigenvalues of L are 0 = λ1 < λ2 ≤ . . . ≤ λ|V |. In case cij = constant, the optimum value of τ is attained at [22, 25]

τo =
2

λ2 + λ|V |

and the corresponding minimum value of the convergence factor

γ(M) = max{|1 − τλ|V ||, |1 − τλ2|}

is given by

γo(M) =
P (L) − 1

P (L) + 1
, where P (L) =

λ|V |
λ2

,
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TABLE 2.1

E=Even, O=Odd, Formulae for the optimum τo and γo(M)
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which is the P -condition number of L. Note that if P (L) ≫ 1, then the rate of convergence of the EDF method is given

by

R(M) = − log γo(M) ≃ 2

P (L)
,

which implies that the rate of convergence of the EDF method is a decreasing function of P (L). The problem of de-

termining the diffusion parameters cij such that EDF attains its maximum rate of convergence is an active research area

[5, 9, 17]. Introducing the set of parameters τi, i = 1, 2, . . . , |V |, instead of a fixed parameter τ in (2.2), the problem

moves to the determination of the parameters τi in terms of cij . By considering local Fourier analysis [16, 17] we were

able to determine good values (near the optimum) for τi. These values become optimum (see Table 2.1) in case the diffu-

sion parameters are constant in each dimension and satisfy the relation c
(2)
j = σ2c

(1)
i , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2,

where σ2 =
1−cos 2π

N1

1−cos 2π

N2

and c
(1)
i , c

(2)
j are the row and column diffusion parameters, respectively, of the torus [17]. Also, in

[17] it is proved that for stretched torus, that is a torus with either N1 ≫ N2 or N2 ≫ N1,

R(EDF ) ≃ 2R(DF ),

at the optimum stage, which means that EDF is twice as fast as DF.

In order to further improve, by an order of magnitude, the rate of convergence of EDF we can apply accelerated

techniques (Semi-Iterative, Second-Degree and Variable Extrapolation) following [22, 20, 15].

It is known [22, 25] that the convergence of (2.3) can be greatly accelerated if one uses the Semi-Iterative scheme

u(n+1) = ρn+1(I − τoL)u(n) + (1 − ρn+1)u
(n−1),

with

ρ1 = 1, ρ2 =

(

1 − σ2

2

)−1

, ρn+1 =

(

1 − σ2

4
ρn

)−1

, n = 2, 3, . . . ,

and

σ = γo(M). (2.5)

It is worth noting that σ is equal to γo(M), which is the minimum value of the convergence factor of EDF. In addition,

γo(M) and τo, for EDF, are given by the expressions of Table 2.1 for the corresponding values of N1 and N2. It can be

shown [22, 25] that

R(SI − EDF ) ≃
√

2R(SI − DF )

which indicates that the rate of convergence of SI-EDF will be approximately 40% better than that of SI-DF in case of

stretched torus.
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3. The Atmospheric model. As a case study we will consider the simulation of a simple atmospheric model. In

particular, we will consider the numerical solution of NS equations in the horizontal plane by using a parallel version of

the SOR iterative method. In the vertical plane we model the implicit “physics” computations by random load values.

3.1. Discretization of the Navier-Stokes equations. The model problem considered here is that of solving the 2-D

incopressible Navier-Stokes (NS) equations. The equations in terms of vorticity Ω and stream function Ψ are

∆Ψ = −Ω, u
∂Ω

∂x
+ v

∂Ω

∂y
=

1

Re
∆Ω, (3.1)

where Re is the Reynold number of the fluid flow and u, v are the velocity components in the y and x directions, re-

spectively. The velocity components are given in terms of the stream function Ψ by u = ∂Ψ
∂y and v = −∂Ψ

∂x . If the

computational domain is the unit square, then the boundary conditions for such flow are given by Ψ = 0, ∂Ψ
∂x = 0 at

x = 0 and x = 1, Ψ = 0, ∂Ψ
∂y = 0 at y = 0 and Ψ = 0, ∂Ψ

∂y = −1 at y = 1. The 5-point discretization of NS equations

on a uniform N × N mesh of size h = 1
N leads to

1

h2
[−4Ψij + Ψi−1,j + Ψi+1,j + Ψi,j+1 + Ψi,j−1] = Ωij (3.2)

and

Ωij = lijΩi−1,j + rijΩi+1,j + tijΩi,j+1 + bijΩi,j−1, (3.3)

with
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1

4
+

1

16
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1

4
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16
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1

4
− 1

16
Revij , bij =

1

4
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1

16
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where

uij = Ψi,j+1 − Ψi,j−1, vij = Ψi−1,j − Ψi+1,j .

The boundary conditions are also given by

Ωi,0 −
2

h2
Ψi,1 = 0, ΩN,j −

2

h2
ΨN−1,j = 0

and

Ω0,j −
2

h2
Ψ1,j = 0, Ωi,N − 2

h2
(h − Ψi,N−1) = 0.

3.2. The Local Modified SOR method. The local SOR method was introduced by Ehrlich [7, 8] and Botta and

Veldman [2] in an attempt to further increase the rate of convergence of SOR. The idea is based on letting the relaxation

factor ω vary from equation to equation. Kuo et. al [19] combined local SOR with red black ordering and showed that is

suitable for parallel implementation on mesh connected processor arrays. In the present study we generalize local SOR by

letting two different sets of parameters ωij , ω
′

ij to be used for the red (i+j even) and black (i+j odd) points, respectively.

An application of our method to (3.2) and (3.3) can be written as follows
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and
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where
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A similar iterative scheme holds also for Ψij . If µij are real, then the optimum values of the LMSOR parameters are
given by [3]
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1 − µijµij
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(1 − µ2

ij)(1 − µ2

ij
)
, ω2,i,j =

2

1 + µijµij
+

q

(1 − µ2

ij)(1 − µ2

ij
)
,

where µij and µ
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with h = k = 1√
N

. If µij are imaginary, then the optimum values of the LMSOR parameters are given by
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If µij are complex of the form µij = µRij + iµI ij , we use the following heuristic formulas [2]

ω1,i,j =
2

1 + µRµ
R
− µIµI

(1 − (µ
R
µR)2/3)−1 +

√
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and
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R
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I
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R
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4. Domain Decomposition and Load Transfer. Let us assume the domain for the solution of the NS equations

is rectangular. Initially, we apply a domain decomposition technique which divides the original domain into p square

subdomains, where p is the number of available processors (see Figure 4.1). This decomposition proved to be optimal, in

case the load is the same on all mesh points [3], in the sense of minimizing the ratio communication over computation.

Next, each subdomain is assigned to a processor in a mesh network. The parallel efficiency depends on two factors: an

equal distribution of computational load on the processors and a small communication overhead achieved by minimizing

the boundary length. If the latter is achieved by requiring the minimization of the number of cut edges i. e. the total

interface length, the mesh partitioning problem turns out to be NP-complete. Fortunately, a number of graph partitioning

heuristics have been developed (see e.g. [6, 10]). Most of them try to minimize the cut size which is sufficient for many

applications but this approach has also its limitations [11]. To avoid these limitations we apply a load balancing scheme

such as to maintain the structure of the original decomposition. This is achieved by adjusting, according to a simple

averaging load rule, the width of each row/column. Although this approach cannot achieve full balance as it moves
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a constant number of columns and rows, it proves to be efficient. Next, we consider a load balancing scheme, which

employs the above feature. Let us assume the situation as illustrated on the left of Figure 4.1. The shaded area denotes the

physics computations, i. e. the load distribution. In an attempt to balance the load among the processors we decompose the

load area into smaller domains as this is illustrated on the right of Figure 4.1. We will refer to this partitioning as “nesting”.

The advantage of nesting is that the structure of the domain decomposition graph remains unchanged, thus minimizing

the interprocessor communication at the cost of imbalance. The problem now is to determine the width of each row and

column. Let us consider the case presented in Figure 4.2, where we have four processors a, b, c, d, each one assigned

initially a square with the same area. Further, we assume that the result of the EDF algorithm is that processor a must

FIG. 4.1. Domain decomposition by “nesting”

FIG. 4.2. Column transfer according to the ‘weighted average’ method

receive two columns of mesh points from processor b and processor c must send one column to processor d (Figure 4.2(a)

dotted arrows). But if these transfers are carried out, they will destroy the mesh structure of the domain decomposition

graph as now processor d will have two north neighbors a and b instead of one. In order to avoid this phenomenon we

allow the ‘weighted average’ number of columns to be transferred among the processors a, b and c, d, where ‘weighted

average’= ⌈ 2+(−1)
2 ⌉ = 1. This means that processor a will receive one column (instead of two) and processor c will also

receive one column (instead of sending one). After the load transfer is carried out, the domain graph remains a mesh as

is depicted in Figure 4.2(b) with the solid lines, whereas the dotted lines indicate the initial boundaries of the processors.

This process requires communication between processors along two successive rows of the mesh network of processors. A

similar procedure for the processors along the columns will fix the width of each column. For a
√

p×√
p mesh processor

network this process requires a total of O(
√

p) communication.
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5. Simulation Results. To evaluate the effectiveness of our load balancing algorithm, we ran some tests for the

considered model using 44 processors of the HP Superdome parallel machine of the University of Athens. In these tests

we compare the behavior of our model against the use of the load balancing algorithm. The method used for the load

balancing was the SI-EDF [18]. For the physics computations we assumed a normal distribution of loads superimposed

on the given mesh network for solving the NS equations. In particular, we considered that the artificial load is produced

by the following function

f(x) = Me−(
2(x−x0)

d
)
2

,

where x denotes the position of a processor in a row of the mesh network, M is the height and d is the width of the

distribution (see figure 5.1). In our experiments we kept d constant. Clearly, by varying M we were able to examine the

behavior of our load balancing algorithm in different scenarios between the “physics” and “dynamics” calculations.

M

d

f(x)

0

x

x0

FIG. 5.1. Random load values

Our results are summarized in Table 5.1, where we considered different orders for the horizontal mesh as shown in

the second column. For each mesh we find the improvement achieved by using our load balancing scheme. The numbers

in the 3rd and 4th columns are in secs. By increasing the order of the mesh the rows and columns for each subdomain are

also increased. As a consequence, the computation and communication time of LMSOR is also increased. This is clearly

observed in both columns (With LB, Without LB) of Table 5.1. Increasing M has the effect of increasing the load in the

normal distribution. For small M (M = 1) the improvement, by using load balancing, is constant and approximately 21%
for meshes with order larger than 40. This was expected as for light load there will be a small number of row/column

movement which will be approximately the same for sufficiently large meshes. Also, the overall gain is moderate. For

small meshes the horizontal computation time is not large enough to justify the use of load balancing resulting in negative

improvement. For heavier load (M = 100) the gain in time, due to load balancing, will be greater as is shown in Table 5.1,

where we have an improvement of approximately 45% for larger meshes. However, if the load is increased considerably

there will also be an increase in load balancing time as more columns and rows need to be moved according to our load

balancing algorithm. This has the effect of reducing the improvement. Indeed, if M = 1000, then the improvement is

less than 45%. From the above it is clear that when the vertical load is small in comparison to the horizontal then load

balancing should be avoided. On the other hand, as the load increases, we may reach an improvement of nearly 45%when

using the load balancing algorithm. Even though we kept the structure of the application graph unchanged at the cost of

approximate balance, the gain is satisfactory.
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