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Abstract. The Grid community has made an important effort in developing middleware to provide different functionalities,
such as resource discovery, resource management, job submission or execution monitoring. As part of this effort this paper addresses
the design and implementation of an architecture (CPPC-G) based on services to manage the execution of fault tolerant applications
on Grids. The CPPC (Controller/Precompiler for Portable Checkpointing) framework is used to insert checkpoint instrumentation
into the code of sequential and MPI applications. Designed services will be in charge of submission and monitoring of the execution
of CPPC-instrumented applications, management of checkpoint files generated by the fault-tolerant applications, and detection
and automatic restart of failed executions.
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1. Introduction. Parallel computing evolution towards cluster and Grid infrastructures has created new
fault tolerance needs. As parallel platforms increase their number of resources, so does the failure rate of the
global system. This is not a problem while the mean time to complete an application execution remains well
under the mean time to failure (MTTF) of the underlying hardware, but that is not always true on long running
applications, where users and programmers need a way to ensure that not all of the computation done is lost
on machine failures.

Checkpointing has become a widely used technique to obtain fault tolerance on such environments. It
periodically saves the computation state to stable storage, so that the application execution can be resumed by
restoring such state. A number of solutions and techniques have been proposed [4], each having its own pros
and cons. The advent of the Grid requires the evolution of checkpointers towards portable tools focusing on
providing the following fundamental features:

(i) OS-independence: checkpointing strategies must be compatible with any given operating system. This
means having at least a basic modular structure to allow for substitution of certain critical sections of code (e.g.
filesystem access) depending on the underlying OS.

(ii) Support for parallel applications with communication protocol independence: the checkpointing frame-
work should not make any assumption about the communication interface or implementation being used. Com-
putational Grids include machines belonging to independent entities which cannot be forced to provide a certain
version of the MPI interface. Even recognizing the role of MPI as the message-passing de-facto standard, the
checkpointing technique cannot be theoretically tied to MPI in order to provide a truly portable, reusable
approach.

(iii) Reduced checkpoint file sizes: the tool should optimize the amount of data being saved, avoiding
dumping state which will not be necessary upon application restart. This improves performance, which depends
heavily on state file sizes. It also enhances performance in case of process migration in computational Grids.

(iv) Portable data recovery: the state of an application can be seen as a structure containing different
types of data. The checkpointing tool must be able to recover all these data in a portable way. This includes
recovery of opaque state, such as MPI communicators, as well as of OS-dependent state, such as the file table
or the execution stack.

CPPC (Controller/Precompiler for Portable Checkpointing) [3, 19, 20] provides all these features which
are key issues for fault tolerance support on heterogeneous systems. CPPC1 appears to the user as a runtime
library containing checkpoint-supporting routines, together with a compiler tool which automates the use of the
library. The CPPC Compiler automatically inserts checkpoint instrumentation, composed of CPPC Library
calls and flow control code. The analyses and transformations performed by the compiler completely automate
the instrumentation process.
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This paper introduces CPPC-G, a set of new Grid services2 implemented on top of Globus 4 [5], which
is able to manage the execution of CPPC-instrumented fault tolerant applications (CPPC applications from
now on). The designed set of services will be in charge of submitting and monitoring the execution, as well
as of managing and replicating the state files generated during the execution. It is widely accepted that the
performance of an MPI application on the Grid remains a problem, caused by the communication bottleneck
on wide area links. To overcome such performance problem, in this work it is assumed that all processes of an
MPI application are executed on the same computing resource (e.g. a cluster or an MPP machine with MPI
installed). Upon a failure, CPPC-G services will restart the application from the most recent consistent state,
in a completely transparent way. At the present stage of CPPC-G development, only failures in the computing
resource where the CPPC application is executed are being considered.

The structure of the paper is as follows. Section 2 gives an overview of the CPPC framework. Section 3
describes CPPC-G, its architecture, implementation details and deployment. The operation of the CPPC-G
tool is shown in Section 4. Section 5 describes related work in the field. Finally, Section 6 concludes the paper.

2. The CPPC framework. Grid computing presents new constraints for checkpointing techniques. Its
inherently heterogeneous nature makes it impossible to apply traditional state saving techniques, which use non
portable strategies for recovering structures such as application stack, heap, or communication state. Therefore,
modern checkpointing techniques need to provide strategies for portable state recovery, where the computation
can be resumed on a wide range of machines, from binary incompatible architectures to computers using
incompatible versions of software facilities, such as different implementations for communication interfaces.

CPPC (Controller/Precompiler for Portable Checkpointing) is a checkpointing tool focused on the insertion
of fault tolerance into long-running message-passing applications. It is designed to allow for execution restart
on different architectures and/or operating systems, also supporting checkpointing over heterogeneous systems,
such as the Grid. It uses portable code and protocols, and generates portable checkpoint files while avoiding
traditional solutions which add an unscalable overhead, such as process coordination or message-logging. This
section details various aspects of CPPC design associated with these major issues.

2.1. Portability. A state file is said to be portable if it can be used to restart the computation on an
architecture (or OS) different from that where the file was generated on. This means that state files should
not contain hard machine-dependent state, which should be recovered at restart time using special protocols.
The vast majority of checkpointing research has focused on systems implemented either inside the OS kernel
or immediately above the OS interface. This kind of solutions generally become locked into the platform for
which they were originally developed. For instance, when checkpointing parallel communication APIs, such as
MPI, the typical approach has been to modify the existing implementations of such APIs. The problem arises
when, for this approach to be practical, it becomes necessary to adopt the modified libraries in real systems,
that use already highly tuned and optimized communication libraries. Other solutions store in the checkpoint
file the outcome of the APIs functions, becoming dependent of its implementation.

The solution used in CPPC is to recover non-portable state by means of the re-execution of the code
responsible for creating such opaque state in the original execution. Moreover, in CPPC the effective data
writing will be performed by a user-selected writing plugin, each using its own format. This enables the restart
on different architectures, as long as a portable dumping format is used. Currently, a writing plugin based on
HDF5 [17] is provided.

2.2. Memory requirements. The solution of large real scientific problems may need the use of large
computational resources, both in terms of CPU effort and memory requirements. Thus, many scientific applica-
tions are developed to be run on a large number of processors. The full checkpointing of this kind of applications
will lead to a great amount of stored state, the cost being so high as to become impractical.

CPPC reduces the amount of data to be saved by including, in its compiler, a live variable analysis in order
to identify those variable values that are only needed upon restart. Besides, a compressed format based on the
ZLib library [6] is included. This does not only help saving disk space and network transfers (if needed), but
also can improve performance when working with large datasets with high compression rates. A multithreaded
dumping option is also provided to improve performance when working with large datasets. If a failure occurred

2With the term Grid service we denote a Web service that complies with the Web Services Resource Framework (WSRF)
specifications.
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in the checkpointing thread, inconsistent checkpoint files would be created. CPPC generates a CRC-32 for the
checkpoint file. This CRC-32 is checked upon restart to ensure file correctness.

2.3. Global consistency. When checkpointing parallel applications, special considerations regarding
message-passing have to be taken to ensure that the coordination implicitly established by the communica-
tion flow between processes is not lost when restarting the application. If a checkpoint is placed in the code
between two matching communication statements, an inconsistency will occur when restarting the application,
since the first one will not be executed. If it is a send statement, the message will not be resent and becomes
an in-transit message. If it is a receive statement, the message will not be received, becoming a ghost message.
Checkpoint consistency has been well-studied in the last decade [4]. Approaches to consistent recovery can be
categorized into different protocols: uncoordinated, coordinated and message-logging. In uncoordinated check-
point protocols the checkpoint of each process is executed independently of the other processes, leading to the
so called domino effect (processes may be forced to rollback up to the beginning of the execution). Thus, these
protocols are not used in practice. An important drawback, both of coordinated protocols and message-logging
solutions, is their scalability. Increasing the number of processors will multiply the number of flying messages,
thus enlarging the computation per process needed to be protocol-compliant.

CPPC avoids the overhead caused by coordination and message-logging by focusing on SPMD parallel
applications and using a spatially coordinated approach. Checkpoints are taken at the same relative code
locations by all processes, without performing interprocess communications or runtime synchronization. To
avoid problems caused by messages between processes, checkpoints must be inserted at points where it is
guaranteed that there are no in-transit, nor ghost messages. These points will be called safe points. Checkpoints
generated in safe points are transitless and consistent, both being conditions for a checkpoint to be called
strongly consistent [10]. Safe point identification and checkpoint insertion is automatically performed by the
CPPC compiler.

3. CPPC-G design. In this section the design and implementation of a set of Grid services for the remote
execution of CPPC applications is described. They have been implemented on top of Globus 4 using the Java
API. The new Grid services must provide different functionalities such as resource discovery, remote execution
and monitoring of applications, detection and restarting of failed executions, etc. This section discusses the
most relevant design and implementation issues to achieve all these features.

3.1. System architecture. Figure 3.1 shows the proposed CPPC-G architecture that comprises a set of
five new services that interact with Globus RFT [8] and WS-GRAM services [9]. A FaultTolerantJob service is
invoked to start the fault-tolerant execution of a CPPC application. CkptJob services provide remote execution
functionalities. Available computing resources hosting a CkptJob service are obtained from a SimpleScheduler

service. StateExport services are responsible for tracking local checkpoint files periodically stored by the CPPC
application. And finally, CkptWarehouse services maintain metadata and consistency information about stored
checkpoint files. In the following, the functionality of each service is described in depth.

CPPC applications running in a computing resource can store checkpoint files in locations not accessible to
services hosted in different computing resources (e.g. the local filesystem of a cluster node). The StateExport

service is responsible for tracking these local checkpoint files and move them to a remote site that could be
accessed by other services. There must be a StateExport service for every computing resource where a CPPC
application could be executed. To help finding checkpoint files, the CPPC library has been slightly modified.
Now processes of CPPC applications write, besides checkpoint files, metadata files in a previously agreed location
in the computing resource filesystem. StateExport resources periodically check (by using GridFTP) for the
existence of the next metadata file in the series. When a new one is found, the resource parses it, locates the
newest checkpoint file using the extracted information, and replicates it via RFT in a previously agreed backup
site. When the replication is finished a notification is sent to the CkptJob service.

The CkptJob service provides remote execution of CPPC applications. This service coordinates with
StateExport and CkptWarehouse to extend WS-GRAM adding needed checkpointing functionality. Job de-
scriptions used by the CkptJob service are those of WS-GRAM augmented with the End-Point Reference (EPR)
of a CkptWarehouse service and a StateExport resource description element, that will be used as a template
to create StateExport resources. The CkptJob service can be configured to register useful information with
an MDS index service in the form of a sequence of tags. These tags are specified by the administrator in
a configuration file and used to indicate particular properties (e.g. that MPI is installed in the computing
resource).
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Fig. 3.1. CPPC-G system architecture

The CkptWarehouse service maintains metadata about checkpoint files generated by running CPPC appli-
cations. Each time a checkpoint file is successfully exported the proper resource in the CkptWarehouse service
is notified, being responsible for composing sets of globally consistent checkpoint files. When a new globally
consistent state is composed, checkpoint files belonging to the previous state (if they exist) become obsolete
and can be discarded (they are deleted by using RFT).

The SimpleScheduler service keeps track of available computing resources hosting a CkptJob service. The
service subscribes to an MDS index service that aggregates the information published by registered CkptJob

services. In particular, the sequences of tags published by CkptJob services are used to select the proper
computing resource that satisfies some given scheduling needs. As of now, the only supported scheduling need
is the required presence of a given tag, but this mechanism could be used in future versions to support more
complicated selections.

The FaultTolerantJob service is the one which the user invokes to start the execution of a CPPC ap-
plication. One resource is created for each application, being responsible for starting and monitoring it. The
monitoring of the execution is done by periodically polling the state of the computing resource. In case of failure,
the execution is restarted automatically. In case the execution fails, FaultTolerantJob requests another node
from the scheduler and tries to restart the application there from the last saved state. Computing resources
needed for executing the application are obtained by querying a SimpleScheduler service, so it is not possible
to know beforehand where the application will be executed. As a consequence, credential delegation has to be
deferred until the precise CkptJob service to be invoked to execute the application is known.

3.2. Component deployment. Figure 3.2 shows the expected deployment of CPPC-G services in a Grid.
As it was already mentioned, it is assumed that all processes of a CPPC application will be executed in the
same computing resource for performance reasons. In a typical configuration of CPPC-G, a CkptJob service and
a StateExport service will be present in that resource (as will be Globus WS-GRAM and RFT services). The
CkptWarehouse, SimpleScheduler and FaultTolerantJob services will reside in other computing resources. It
is enough that one instance of each of these last three services exists in a Grid for the system to work. It must
be noted that the use of SimpleScheduler and FaultTolerantJob is optional. They must be present only if
automatic restart of failed executions is wanted. The rest of services can be used on their own if only remote
execution of CPPC applications is necessary. In this case it will be responsibility of the user to manually restart
a failed execution.

Other configurations besides the one shown in the figure are possible. Although it is usual for a CkptJob

service to invoke the StateExport service hosted in the same Globus container, it is not mandatory. The
StateExport and CkptJob services could reside in different computing resources provided that GridFTP servers
are present in both of them. In any case, the StateExport service must be configured to inspect the same
computing resource where the CkptJob service submits the CPPC application, otherwise no checkpoint files
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Fig. 3.2. CPPC-G deployment

will ever be found. It is usual for a CkptJob service to invoke WS-GRAM in the same Globus container, but
it is also possible to host them in different computing resources. In a similar way, it is not mandatory for the
CkptWarehouse service to reside in the same resource in which checkpoint files are stored. They can be remotely
accessed in any resource containing RFT or GridFTP (or both). All these alternatives provide more flexibility
to administrators when deploying the system.

3.3. Some implementation issues. In this section some general questions, that are common to the
implementation of all the services, are discussed. They are related to management of long operations, security
issues, chained invocations among services, resource creation requests and provided clients.

3.3.1. Managing long operations. Using a simple invocation of a Grid service to implement an operation
that takes a long time to complete lacks flexibility, since there is no way to cancel or interrupt it. Instead, an
approach based on the factory pattern is preferred. In this approach, widely used in the implementation of
Globus, an operation is started by invoking a factory service that creates an instance resource in an instance
service using a given factory resource as template. In this paper, the terms resource and service are used to
refer to resource and service instances. The newly created resource is responsible for tracking the progress of
the operation and it will be possible to query its state or subscribe in order to receive notifications when it
changes. Furthermore, resources created in this way can be explicitly destroyed at any time or be automatically
destroyed when a termination time specified by the user expires. It is responsibility of the user to extend the
resource lifetime if it was not long enough to complete the operation. Resource lifetimes are a means to ensure
that resources will be eventually released if communication with the user is lost.
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3.3.2. Security issues. The developed services depend on the underlying GSI security infrastructure of
Globus for authentication, authorization, and credential delegation. Credential delegation can be performed
directly by the user, or automatically by a service that itself has access to a delegated credential. The standard
Globus services follow the principle of always making the user delegate the credentials himself beforehand,
never resorting to automatic delegation. This is more cumbersome for the user, but allows a greater control
over where the credentials will end up. The developed CPPC-G services also try to follow that same principle
whenever possible. However an exception is made in situations in which the service to be invoked is not known
beforehand because it is dynamically selected. Automatic delegation has been used in these cases.

3.3.3. Chained service invocations. Most operations are implemented by invoking a service that itself
invokes other services. It is usual to end up with several levels of chained invocations. With more than two
levels, some difficulties arise with the delegation of credentials. In Globus, services that require user credentials
publish the delegation factory service EPR as a resource property of their corresponding factory service. The
user must use that EPR to delegate his credentials before being allowed to create resources in the service.
Services that invoke other services that also require the delegation of credentials must publish one delegation
factory service EPR for each invoked service. In the following, the term delegation set will be used to refer to
the set of delegation factory service EPRs where the user must delegate his credentials before using a service.
Once the user has delegated his credentials to the proper delegation services, delegated credential EPRs are
passed to invoked services as part of resource creation requests, that will be explained later in this section. In
the following, the term credential set will be used to refer to the set of delegated credential EPRs.

When there are a large number of services involved in a chained invocation, the use of delegation sets
becomes complicated for users and administrators. From the user’s point of view, the delegation set is a
confusing array of delegation EPRs to which he must delegate his credentials before invoking a service. To help
users, XML entities have been defined to be used in the service WSDL file to describe the delegation sets in
a hierarchical fashion. Once the WSDL is processed and stubs are generated, helper classes can be defined to
handle delegation automatically. From the administrator’s point of view, all the EPRs in the delegation set
of a service must be specified in its configuration files, which is an error-prone task. To avoid this problem, a
technique based on queries to build delegation sets dynamically has been implemented.

3.3.4. Resource creation requests. In order to create a resource, factory services take as parameters
the following creation request datatypes:

(i) The initial termination time of the resource.
(ii) The resource description. This is the main component. It may include additional resource descriptions

associated with chained invocations (e.g. WS-GRAM job descriptions include RFT transfer descriptions for file
staging).

(iii) A credential set. That is, the delegated credential EPR to be used by the resource, plus the delegated
credential EPRs to be used in invocations to other services. This is separated from the resource description
to potentially allow different requests to reuse the same credentials (e.g. repeated invocations to RFT with
different source/destination URL pairs but with the same user credentials).

(iv) A refresh specification. For each of the services the resource is expected to invoke, a lifetime refresh
period and a ping period are specified. The lifetime refresh period is the amount of seconds to extend the lifetime
of resources in invoked services. The ping period is the frequency with which the resources in invoked services
are checked to be up and reachable. If no service invocations are expected, no refresh specification is needed.

3.3.5. Provided clients. For each CPPC-G service two client programs are provided: a command-line
client and a resource inspector. Command-line clients are used for the creation of resources from their descrip-
tions. They prepare creation requests, contact the proper factory services and return the EPRs of the created
resources. Resource inspectors are used for interacting with the created resources. They have a graphical
interface to monitor resource notifications, query resource properties and invoke service operations.

4. CPPC-G operation. To initiate the execution of an application the following steps are taken in
sequence. It is assumed that, before the user submits an application, all available CkptJob services are already
registered with a SimpleScheduler service (CJregister in Figure 3.1):

1. In order to prepare the application submission, the user must create in advance an instance of the
CkptWarehouse service and a credential set. This information will be included as part of the resource
creation request used to submit the application.



A Fault Tolerance Solution for Sequential and MPI Applications on the Grid 107

Fig. 4.1. Sequence diagram for a fault-free execution

2. The user submits the application to a FaultTolerantJob service (USERlaunch in Figure 3.1).
3. The FaultTolerantJob service invokes a SimpleScheduler service (FTquery in Figure 3.1), asking for

an available computing resource.
4. The FaultTolerantJob service queries the CkptJob service on the selected computing resource to get

its delegation set. The CkptJob service builds the delegation set dynamically by querying the services
hosted in the computing resource (i. e. the StateExport service, WS-GRAM and RFT). With this
delegation set and one of the delegated credentials of the user, the FaultTolerantJob service creates
a credential set that will be included as part of the resource creation request used to start the CPPC
execution.

5. The FaultTolerantJob service invokes the CkptJob service on the selected computing resource to start
a CPPC execution (FTlaunch in Figure 3.1).

6. The CkptJob service queries the CkptWarehouse service to obtain the last consistent set of checkpoint
files (CJquery in Figure 3.1). Checkpoint files will be moved, as part of the staging of input files, by
WS-GRAM on the selected computing resource when the application was started.

7. The CkptJob service invokes WS-GRAM to initiate the application execution (CJlaunch in Figure 3.1).
8. The CkptJob service invokes also the StateExport service to initiate the exporting of checkpoints.

When a process of the CPPC application generates a checkpoint file (CPPCwrite in Figure 3.1) the following
steps are taken in sequence:

9. The corresponding StateExport resource detects the presence of the newly created checkpoint file
(SEquery in Figure 3.1) by using the technique based on monitoring metadata files already explained
in Section 3.2.

10. The StateExport service uses RFT to export the checkpoint file to a previously agreed backup site
(SEtransfer in Figure 3.1).

11. Once the transfer is finished, the StateExport service notifies the CkptJob service (SEnotify in Figure
3.1) about the existence of a new checkpoint file.

12. After receiving the notification, the CkptJob service notifies the CkptWarehouse service in its turn
(CJnotify in Figure 3.1). The notification includes information about the process that generated the
checkpoint file.

13. When, upon arrival of more recent checkpoint files, a new consistent state is composed, the CkptWare-

house service deletes obsolete files by using RFT (CWdelete in Figure 3.1).

A simplified sequence diagram showing a typical fault-free execution is shown in Figure 4.1.

Currently two general types of execution failures are being considered: failures in the CPPC application
execution, or failures in the CkptJob service. In both cases the FaultTolerantJob service is finally aware of the
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failed execution and a restart is initiated going back to step 3. The process ends when the execution terminates
successfully. All resources are released when the user acknowledges the finished execution.

5. Related work. Important effort has been made in developing middleware to provide Grids with func-
tionalities related to application execution. However, support for fault tolerant execution is either lacking or
limited. WS-GRAM [9], the execution manager of the Globus Toolkit, handles file transfer before and after an
application execution, but offers no handling of the checkpoint files generated while the execution is underway.
Other fault tolerance-related functionalities are absent too.

GridWay [11, 12] is a Grid-level scheduler provided with the Globus Toolkit (interfacing with other Grid
systems is also possible). It handles the search for nodes that are suitable to the needs of the user. It offers
checkpointing support for jobs, and allows job migration. The checkpointing system of Gridway does not
cover message-passing applications that perform distributed checkpointing, which requires global checkpoint
consistency determination and garbage collection of obsolete checkpoint files.

Regarding checkpoint file storage, the usual solution in computational Grids consists in storing several
replicas of files in dedicated servers managed by replica management systems [1, 18]. For opportunistic Grids, a
middleware that provides reliable distributed data storage using the free disk space from shared Grid machines
is presented in [2].

Several approaches for the implementation of fault tolerance in message-passing applications exist. MPICH-
GF [21] is a checkpointing system based on MPICH-G2 [14], a Grid-enabled version of MPICH. It handles
checkpointing, error detection, and process restart in a manner transparent to the user. But, since it is a partic-
ular implementation of MPICH, it can not be used with other message-passing frameworks. The checkpointing
is performed at a data segment level, that is, it stores the entire application state, thus generating non-portable
files. To achieve global consistency MPICH-GF uses process coordination, which is a non-scalable approach.

There have been a number of initiatives towards achieving fault tolerance on Grids. The Grid Checkpoint
and Recovery (GridCPR) Working Group [7] of the Global Grid Forum was concerned with defining a user-level
API and associated layer of services that will permit checkpointed jobs to be recovered and continued on the
same or on remote Grid resources. A key feature of Grid Checkpoint Recovery service was recoverability of jobs
among heterogeneous Grid resources.

The CoreGrid checkpointing work group of the CoreGrid Network of Excellence has proposed an alternative
Grid checkpointing architecture [13, 15]. The difference with the GridCPR proposal is that the latter assumes
that the checkpointing tool should be a part of the application, and would be tightly connected to various Grid
services such as communication, storage, etc. In the CoreGrid proposal, checkpointers are system-level and
external to the applications.

MIGOL [16] is a fault-tolerant and self-healing grid middleware for MPI applications built on top of the
Globus Toolkit. MIGOL supports the migration of MPI applications by checkpointing and restarting the ap-
plication on another site. However, as for now the current version of the middleware depends of locally stored
checkpoints, which have to be accessible after an execution failure to enable auto-recovery. No checkpoint repli-
cation is performed. This means that if the machine goes down or becomes otherwise inaccessible, application
execution must start from the beginning.

6. Conclusions and future work. Services for fault tolerance are essential in computational Grids. The
aim of this work is to provide a set of new Grid services for remote execution of fault-tolerant parallel appli-
cations. CPPC is used to save the state of sequential and MPI processes in a portable manner. The new Grid
services ask for the necessary resources; start and monitor the execution; make backup copies of the checkpoint
files; detect failed executions; and restart the application. All this is done in a completely transparent fashion.

The proposed Grid services are loosely coupled, up to the point that it is not necessary for them to reside
in the same Globus container. Distributing the functionality into a number of separate services improves both
modularity and reusability. Also, it allows to easily replace current services by new ones with desirable features.
For instance, other scheduler service can be used instead of SimpleScheduler. Also, the CPPC framework
could be replaced by any other checkpoint framework provided that it generates the necessary metadata files.

The functionality of already existing Globus services is harnessed whenever possible: CPPC-G uses WS-
GRAM as job manager and to monitor the applications; RFT to transfer the state files; GridFTP to detect
new state files; MDS to discover available computing resources; and GIS for authentication, authorization and
credential delegation. Additionally, the modifications made to the existing CPPC library have been kept to a
minimum.
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At the moment, the CPPC-G architecture is not itself fault-tolerant. In the future it is planned to use
replication techniques for the FaultTolerantJob, SimplerScheduler and CkptWarehouse services. Other
future direction will be to automate the finding of potential checkpoint backup repositories over the Grid by
querying a MDS index service.
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