
Scalable Computing: Practice and Experience

Volume 9, Number 3, pp. 197–206. http://www.scpe.org
ISSN 1895-1767

c© 2008 SCPE

LATENCY IMPACT ON SPIN-LOCK ALGORITHMS FOR MODERN SHARED MEMORY

MULTIPROCESSORS

JAN CHRISTIAN MEYER∗
AND ANNE C. ELSTER∗

Abstract. In 2006, John Mellor-Crummey and Michael Scott received the Dijkstra Prize in Distributed Computing. This
prize was for their 1991 paper on algorithms for scalable synchronization on shared memory multiprocessors, which included a
novel spin-lock algorithm (a.k.a. MCS spin-lock). Their spin-lock algorithm distributes spin locations in memory to lessen the
impact of bandwidth limitations. Their empirical work and architectural suggestions have since had a major impact on how the
field has viewed spin-locks. Motivated by emerging architectures with an increasing number of cores, we present an empirical study
on recent shared memory architectures, including IBM P5+ and SGI ccNUMA systems. Our results show that latency will have a
much greater impact on performance than bandwidth on these and future architectures. Several testcases and a tabular overview
of our results are included.

1. Introduction. Shared memory distributed computing is becoming more and more important as multi-
core architectures are used to overcome the power and frequency “walls.” With increasingly many cores fighting
for shared resources, how resource allocation is handled will have a major impact on performance.

A process may request exclusive access to a resource by using a spin-lock which polls a shared data struc-
ture, “busy-waiting” or “spinning” until the state of the shared structure indicates that the lock is acquired
by the requesting process. Spin-locks are typically used to protect short critical sections where the time to
suspend/resume a requesting process is greater than the time spent on polling the shared variable. The design
of a suitable data structure for spin-locks requires consideration of both scalable performance and fairness. As
pointed out by Mellor-Crummey and Scott [1], interconnects may be saturated by a large number of requests
for a shared data structure, and a poorly designed lock may cause starvation. This is further complicated by
the multiple hierarchical memory levels of today’s multi-core processors.

This study arose from looking at the cache coherency protocols of the Stanford Dash [8] architecture as
adopted on SGI platforms with ccNUMA interconnects [7], and the outline of the Power5 cache system given by
Kumar et. al. [9]. Both designs share the property that write requests are buffered enroute to their destination.
This provides an opportunity to arbitrate memory access by transmitting negative acknowledgements to requests
in transit before they are able to saturate the interconnect. Since this potentially alters the relationship between
the actual performance of a shared spin location and the common preconception of their inefficiency, our study
represents an attempt to quantify the significance of applying spin-lock algorithms which use a software approach
to co-locate spin locations with their respective processors.

2. Historical Notes and Related Work. The use of a spin-lock algorithm for mutual exclusion was
first suggested in a concise paper by Dijkstra [2], which proposed an algorithm which resolved conflicts due to
concurrency by awarding the lock to the process which issued the last executed write request.

The acclaimed empirical work of Mellor-Crummey and Scott [1] from 1991 examined a range of spin-lock
and barrier algorithms based on fetch-and-φ operations (a class of atomic read-modify-write instructions). Their
work presented strong empirical evidence that significant performance improvements could be made by paying
attention to how spin locations are distributed in memory. It also introduced novel algorithms for both barriers
and spin-locks, most notably the aforementioned MCS spin-lock which exploits this bandwidth limiting effect.
Part of their contribution was to show that the problems associated with contention for a shared location could
be reduced by a sufficiently sophisticated software algorithm, although this was commonly thought to require
special-purpose hardware at the time. Their work and architectural suggestions have had a major impact on how
the field has since viewed the importance of local spins. Consequently, in a literature which spans the range from
theoretical correctness proofs [6] through detailed program analysis and simulation [3, 4] to empirical studies [5],
great attention has been given to ensure that locking algorithms spin only on memory addresses which can be
co-located with the spinning processor, either in a local share of global memory, or in cache memory.

Magnusson et. al. [3] compare algorithms purely on the basis of the number of global memory references in
their run-time analyses. Their paper includes detailed run-time analysis of three queue-based locks including
the MCS lock, and propose two new locks which reduce lock release costs.

∗Norwegian University of Science and Technology, Department of Computer and Information Science, Sem Sælands v. 7–9,
NO-7491 Trondheim, Norway, {janchris, elster@idi.ntnu.no}

197

198 Jan Christian Meyer and Anne C. Elster

Michael and Scott [4] compare the performances of various implementations of fetch-and-φ operations,
compare-and-swap and load-linked/store-conditional (LL/CS) in a simulated MIPS R4000 64-node multipro-
cessor, and make architectural suggestions for future multiprocessors based on their results.

A recent paper by Anderson and Kim [6] use a time complexity measure based on the number of remote
memory references, which is defined as the number of references which cause interactions over the interconnect.
They generalize spin-locking algorithms with respect to the atomic operation employed, and introduce a ranking
system for the relative power of various fetch-and-φ operations. Given atomic operations of a suitable rank, they
use the ranking system to prove time bounds for correct and starvation-free mutual exclusion on cache-coherent
and distributed shared memory architectures.

Both Anderson and Kim [6] and Yang and Anderson [5] present asymptotic time complexities measuring
time in terms of number of remote memory references.

3. Background. Given the amount of attention devoted to the concept of local spins in the literature
published since the Mellor-Crummey and Scott article [1] established their significance, it is interesting to note
that already at that time, cache coherent memory was observed to counteract the effect of contention in barrier
algorithms. This is because the spinning associated with such algorithms mostly consists of extended strings of
read operations in a wakeup phase, permitting a shared spin location to be cached (offloading the interconnect),
and using the eventual cache invalidation as a broadcast wakeup signal. Note that simple spin-lock algorithms
do not enjoy this property, since their spins consist of lots of write requests that require testing against a shared
memory location, introducing traffic which may saturate the interconnect.

Many developments pertaining to the implementation of coherent cache memory have taken place since
the saturation effect was first pointed out. In particular, current architectures come with notions of a memory
hierarchy far more complex than the coherent cache/shared bus combination of the Sequent Symmetry which
was used to establish the barrier results reported by Mellor-Crummey and Scott [1].

Based on these results, Michael and Scott [4] recommended using LL/CS to create atomic primitives for
future architectures. Such instructions are hence included on modern shared-memory architectures such as the
MIPS 14000 and IBM Power5. Our work empirically tests all of the spin-lock algorithms tested by Mellor-
Crummey and Scott [1] on recent two recent larger shared-memory systems.

Our results question the conventional cost models which limits itself to local and remote accesses. Today’s
shared memory systems typically have several levels of memory hierarchy and is shown to be much more sensitive
to latency rather than purely bandwith bound, as we will show in Section 6.

4. Target Platforms. Motivated by emerging multicore architectures with an increasing number of cores,
we selected the following two platforms, both with 16 or more processors in a shared memory system as our test
beds: an SGI Origin 3800 (up to 32 processors tested), and an IBM System p575+ (up to 8 dual cores tested).
While these systems are not highly parallel in the multi-core sense, the authors believe that the communication
issues faced by the larger scale interconnects of contemporary supercomputers will soon become relevant for
emerging multi-core architectures. These architectures are rapidly approaching the same degree of parallelism,
and are likely to confront the same “memory wall” which has precipitated the hierarchical memory structure of
our test platforms, albeit on a chip-level scale.

The SGI Origin 3800 consists of “bricks” of 4 MIPS 14000 processors clocked at 600 MHz, which share
a memory module via a crossbar. These 4-way units are interconnected in a fat tree. The system features
a ccNUMA interconnect, which provides programs with a shared address space potentially spanning several
physical racks of compute nodes. Transmissions of data across the interconnect is transparently handled via
address translation, so that the system may be programmed as a symmetric multiprocessor. Memory traffic is
handled by the same routing system regardless of the proximity of the communicating nodes, to provide the
best approximation to uniform memory access the system can offer. Cache coherency in ccNUMA systems is
maintained using a variant of the protocol in the Stanford Dash multiprocessor [8], using a directory approach
where a snooping bus connects a small set of processors with their local part of the distributed memory. This
bus is also connected with the local share of the directory, which maintains the caching status of the local lines,
and forms an interface to the other parts of the directory [7].

The IBM System p575+ restricts shared memory to a node, which consists of 8 dual-core Power 5 processors,
clocked at 1.9GHz. Each pair of cores share a level 2 cache, and 4 pairs are completely interconnected in a
multi-chip module.

Latency Impact on Spin-Lock Algorithms 199

Detailed information regarding IBM System p575+ coherency protocol is difficult to find, but some informa-
tion can be gleaned from Kumar et. al. [9], who give an explicit description of Shared Bus Fabric (SBF) design,
stating that “Details of the modeled design [. . .] are based heavily on the shared bus fabric in the Power 5
multi-core architecture” [9]. Bearing in mind that the source is not an official technical document, it will still be
used here as a high-level description of the Power5 coherence mechanism. Cache coherency is maintained using
a “[. . .]MESI-like snoopy write-invalidate protocol[. . .]” [9], which is implemented with a set of unidirectional,
pipelined buses and a hierarchy of dedicated units which arbitrate bus usage and queue requests.

Both platforms feature ‘load linked’ and ‘store conditional’ (LL/SC) instructions. These instructions work
in pairs: LL is a read operation which marks a location as read, and a corresponding SC is allowed to write
to the same location only if the value went unmodified in the meantime. This enables a processor to support
the full range of fetch-and-φ operations without extending the instruction set, since they can be implemented
in terms of short sequences of instructions with the final SC instruction failing if the entire operation was not
carried out atomically.

We expect that the behaviors observed on these systems will be similar to future multicore architectures.

Although LL/SC can be used for all the semantic properties of fetch and φ operations, the SGI Origin 3800
also supports some fetch-and-φ operations natively, most notably fetch and increment, and fetch and decrement.
Following the recommendations made by Michael and Scott [4], these depend on the use of special-purpose
uncached memory (called atomic reservoir memory in the SGI Origin series). A similar mechanism is mentioned
in the description of the Stanford Dash [8].

The properties of this feature are not examined here since atomic reservoir memory is not cached, making
it less relevant with respect to examining effects of memory hierarchy on spin-locks.

5. Experimental Methodology. The empirical results in this study are divided into a set of general
experiments which form an overview of lock performances on both target architectures, and a more specific set
which validates the implications of the general experiments by isolating predictable effects. This reflects the
timeline of the underlying research effort, as the general experiments form a preliminary evaluation of relative
performances and tentative explanations, while later experiments address some of the questions raised in the
initial phase.

Although the result material is reiterated below for the benefit of the discussion, the interested reader may
trace this development, as the general experiments alone formed the basis of our previous conference paper [10].

The implementations used in the general experiments are based on pseudocode given by Mellor-Crummey
and Scott [1]. The test suite includes implementations of a plain test and set lock, a version with exponential
backoff, a test and test and set lock, the ticket lock with proportional backoff, as well as Anderson’s lock and
the MCS lock.

Modified versions of the test and test and set and ticket locks are tested on the IBM System p575+ only. The
extensions made to these locks primarily address properties of the experimental setting, and are not intended
as generally useful lock designs; their purpose is to further isolate the communication properties of locks which
are prone to starvation.

In the interest of producing comparable results, the same program code was used in the general experiments
on both platforms, except for a few conditionally compiled macros to handle the minor idiosyncrasies of each
platform. All locks were implemented using compare and swap operations available in system libraries on the
respective systems. Since the IBM System p575+ compare and swap does not preserve the comparison value
when the operation fails, we wrapped the call in a conditionally compiled macro, in order to provide identical
semantics on both platforms without introducing the extra overhead of a function call. We verified that the
generated assembly code of our lock implementations in fact used the respective LL/SC instructions.

Since neither of the target platforms provides directly addressable local memory per processor, the effect of
locality had to be reproduced by manipulating the memory layout of the lock data structures to exploit cache
memory. This was done by padding the data structures so that each value which should be locally accessible was
separated by the length of a cache line. As a control experiment, a modified version of the Anderson lock which
was not padded was tested to see if it would result in a lock which consistently performed considerably worse
than the original, padded Anderson lock. This predicted behavior is readily observable in the collected timings.

Each of the presented timing results represents the average lock acquisition time of 5000 locks, acquired
and released in a tight loop, with or without a small critical section between acquisition and release. To reduce
system induced variances, each presented result is the median of 75 runs.

200 Jan Christian Meyer and Anne C. Elster

Experiments with the modified test and test and set lock also monitored the fairness of tested algorithms,
using the assumption that a fair lock will distribute the locks in all tests uniformly, awarding N

p
locks to each

processor. The fairness results given are the median of 75 tests each reporting the maximal deviation from this
expected value in a 5000 lock run.

5.1. Tested Locks. This section briefly describes each of the tested algorithms. We include all the locks
described by Mellor-Crummey and Scott[1], as well as two versions we modified to isolate specific communication
properties.

The test and set lock maintains a single global variable for locking, and has each contesting processor
waiting in a tight loop, attempting to set it atomically. The test and test and set lock lowers the bandwidth
requirements of the test and set lock by reading the present lock value to determine whether it can be acquired
before attempting an atomic update. The test and set lock with exponential backoff, on the other hand,
responds to a failed atomic update by waiting for a basic time period before attempting another update. This
waiting period is doubled with each successive failure.

The modified test and test and set lock exploits the fact that the original lock reserves an entire memory
location to store one out of two states. Using integers smaller than 0 to represent the open state, and positive
integers to lock, it is possible to retain memory of which contestant won the last lock without significantly
altering the amount of interconnect traffic. This is done by using an identifier for the acquiring process(or) as
the lock value, and releasing it by negating this number. It is thereby possible to prevent the lock from being
acquired twice by the same contestant, at the cost of a single local comparison operation.

The ticket lock maintains two global counters which track acquisition attempts and lock releases separately,
effectively forming a FIFO queue (thus eliminating starvation). Each failed attempt to acquire the lock results
in a waiting period which is proportional to the length of the queue at the time of the attempted acquisition.

The modified ticket lock uses the same mechanism, but only forces an adjustable-length tail of the queue
to back off and wait. The remaining pool of processors at the head of the queue participate in a contest for a
test and test and set lock. This modification makes the lock prone to starvation, as a single processor can enter
the pool and be bypassed any number of times. The purpose of testing this lock is that the permitted length of
the queue effectively puts a limit on how many lock acquisitions must take place between successive acquisitions
by a single processor. It should be noted that this technique subsumes the modified test and test and set lock
as a special case (length 1). The extra overhead of managing two structures, however, incurs an overhead
which means that it is not competitive with other tested locks; results are included mainly to provide a test
environment for comparing the results of variable queue length.

The Anderson lock uses a queue like the ticket lock, but distributes the target locations of the waiting
spins in an array. The array locations are chosen so that only the spinning processor and its predecessor in the
queue are accessing them. This attempts to reduce contention to a greater extent than the global counters of
the ticket lock, while preserving its starvation freedom.

The MCS lock uses a similar construct, but replaces the array in the Anderson lock with a linked list,
moving the significant part of the lock data structure into processor-local memory. When implemented using
coherent caches as processor-local memory, its main difference from the Anderson lock is that the MCS lock re-
quires each contesting processor to enter the linked list by performing a remote write operation to its predecessor
in the list, to communicate its own spin location.

6. General Experiments. The results of the general experiments are presented in Figures 6.1 through 6.5.
Fig. 6.3 presents the same material as Fig. 6.2, except for the removal of the test and set lock with expo-

nential backoff, to emphasize the differences between the remaining locks using a more appropriate scale.
Tables 6.1, 6.2 summarize the result material for the tests with a critical section, describing relative lock

performance and scalability for each combination of target architecture and lock type. The results with im-
mediate lock release are omitted from these summaries for the sake of brevity, since the tests with critical
section both capture all behavioral differences, and are likely to be of greater practical importance. Acquisition
time is categorized according to performance relative to other locks tested under the same conditions. Scaling
properties are noted where a clear tendency is visible already by the limited number of processors in the results.
Locks which exhibit favorable scaling properties are labelled with the highest number of processors for which
this is observed. Entries of particular significance to our conclusions are highlighted in boldface.

The most striking feature of the presented results can be found in the difference between Figures 6.1 and 6.2,
where the test and set lock with exponential backoff goes from displaying favorable acquisition times with no

Latency Impact on Spin-Lock Algorithms 201

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 1.2e-06

 1.4e-06

 2 4 6 8 10 12 14 16

t
i
m
e

[
s
]

of processors

T&S
T&T&S

T&S+backoff
TICKET

ANDERSON
ANDERSON+NOPAD

MCS

Fig. 6.1. Performance of all locks on IBM System p575+, no critical section.

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 2 4 6 8 10 12 14 16

t
i
m
e

[
s
]

of processors

T&S
T&T&S

T&S+backoff
TICKET

ANDERSON
ANDERSON+NOPAD

MCS

Fig. 6.2. Performance of all locks on IBM System p575+, small critical section.

 1.4e-06

 1.6e-06

 1.8e-06

 2e-06

 2.2e-06

 2.4e-06

 2.6e-06

 2.8e-06

 3e-06

 2 4 6 8 10 12 14 16

t
i
m
e

[
s
]

of processors

T&S
T&T&S

TICKET
ANDERSON

ANDERSON+NOPAD
MCS

Fig. 6.3. Performance of selected locks on IBM System p575+, small critical section.

202 Jan Christian Meyer and Anne C. Elster

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 0 5 10 15 20 25 30 35

t
i
m
e

[
s
]

of processors

T&S
T&T&S

T&S+backoff
TICKET

ANDERSON
ANDERSON+NOPAD

MCS

Fig. 6.4. Performance of all locks on SGI Origin 3800, no critical section.

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0 5 10 15 20 25 30 35

t
i
m
e

[
s
]

of processors

T&S
T&T&S

T&S+backoff
TICKET

ANDERSON
ANDERSON+NOPAD

MCS

Fig. 6.5. Performance of all locks on SGI Origin 3800, small critical section.

critical section, to showing drastic increases when there is a critical section. In Fig. 6.2, the exponential backoff
is visible in the shape of the graph. It is evident that the waiting periods dominate lock acquisition time, as
a given number of processors implies that acquisition time becomes proportional to one of the power-of-two
multiples of the basic delay. The slope of this effect will depend on that basic waiting time as well as the
degree of contention, but the characteristic behavior indicates that this lock needs to be tuned with a number
of processors in mind, and thus is poorly scalable. The timings from the SGI Origin 3800 in Fig. 6.4, 6.5 display
the same behavior, although slightly more erratically.

Note that Fig. 6.5 in particular displays a sharp jump in acquisition times, corresponding with the need
to traverse another level of switching for address translation to complete the memory access requests of the
starvation-free locks. This consideration leads us to the central observation of this work, which is that when
considering the performance implications of local spins, interconnect latency has supplanted limited bandwidth

as the primary reason for degradation, at least on the architectures under examination. The presented results
are evidence of this to this in two ways:

1. The variations on the test and set lock display scalable characteristics in all the general tests. This
would not be true if acquisition time was dominated by the hardware struggling to serialize an increasing
number of write requests for a single, shared location.

2. The performance of the ticket lock appears similar to the MCS and Anderson locks, particularly in
the cases where a critical section is present. The common property shared by these locks is that they

Latency Impact on Spin-Lock Algorithms 203

Table 6.1

Summary of results with critical section, IBM System p575+

Lock type FIFO Acq. time Scaling
Test&set No Low #cpus
Test&test&set bound
Test&set No High #cpus
w.backoff bound
Ticket Yes High Scales
Anderson for
MCS p < 16

Table 6.2

Summary of results with critical section, SGI Origin 3800

Lock type FIFO Acq. time Scaling
Test&set No Low Scales
Test&test&set for

p < 32
Test&set No High #cpus
w.backoff bound
Ticket Yes High Latency

Anderson bound

MCS

maintain a FIFO ordering on lock acquisitions, forcing a modest number of remote write operations
when the lock is handed to a remote process. The time taken to perform these remote writes visibly
dominate the performance degradation due to contention for a shared location: on the IBM PSeries
575+ there is a small benefit from laying out spin locations in processor-local caches (Fig. 6.3), while
the SGI Origin 3800 shows no observable advantage (Fig. 6.5).

The implication for lock design is that the benefits from the effort of ensuring that spin locations are tightly
bound to each single processor may reasonably be called into question. Instead of asking how many remote
write operations are required for a given locking algorithm, the presented results indicate that it is equally
relevant to ask exactly how remote these operations are likely to be.

The results for less than 10 processors on the SGI Origin 3800 are inconclusive with respect to which lock
has the superior acquisition time, particularly for the cases with immediate release in Fig. 6.4, but also for the
test and set and test and test and set locks with critical sections in Fig. 6.5. A relevant comment to this is
that during the experiments, it proved particularly tricky to get any measure of stability from timings collected
on this machine. This is at least partly due to the fact that the transparent address translation of the ccNUMA
architecture gives the operating system great freedom in the (re-)scheduling of processes at run time, effectively
making it extremely difficult to predict the layout of processes. The noisy result material is included here for
completeness, modest as its information value may be for comparisons.

7. Experiments with the Modified Test and Test and Set Lock. Figure 7.1 plots acquisition times
in a repetition of the critical section experiment on IBM System p575+, with the addition of the modified
test and test and set lock.

The two simple test and set-type locks appear to be superior to all other tested algorithms in Figures 6.3,
6.5. The common trait shared by these locks is that they contain the possibility of starvation. The observation
that communication latency dominates lock acquisition times predicts low acquisition times for these locks when
acquiring multiple locks in a tight loop, as a processor which has already cached the lock structure will have a
significant advantage over others in the next acquistion.

The modified test and test and set lock is designed to eliminate the possibility for a single processor to
monopolize the lock, effectively enforcing that each acquisition will pass the lock structure far enough down the
memory hierarchy to reach a level accessible by multiple cores. It is still prone to starvation by permitting a
small set of processors to pass the lock between them.

204 Jan Christian Meyer and Anne C. Elster

 1.4e-06

 1.5e-06

 1.6e-06

 1.7e-06

 1.8e-06

 1.9e-06

 2e-06

 2.1e-06

 2.2e-06

 2.3e-06

 2.4e-06

 2 4 6 8 10 12 14 16

t
i
m
e

[
s
]

of processors

T&S
T&T&S

MODIFIED
TICKET

ANDERSON
MCS

Fig. 7.1. Performance with modified Test and Test and Set lock and critical section

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10 12 14 16

M
a
x
.

d
e
v
i
a
t
i
o
n

f
r
o
m

N
/
p

a
c
q
u
i
s
i
t
i
o
n
s

of processors

T&S
T&T&S

MODIFIED
TICKET

ANDERSON
MCS

Fig. 7.2. Fairness with modified Test and Test and Set lock and critical section

The impact of this is observable in Figure 7.2, which plots deviations from the assumption that a fair
algorithm will distribute locks uniformly among participating processors. The validity of this measure of fairness
is supported by the fact that all the starvation-free locks display near perfect fairness. It is evident that the
observed run times from both of the test and set-type locks are heavily biased by the increased speed of a
single processor re-aquiring a recently released lock, given the marked improvement in fairness which stems
from explicitly disallowing this behavior.

The other interesting feature of this experiment is that the resulting acquisition times for the modified lock
closely follow those of the Anderson lock in Figure 7.1. Both lock structures force a remote access for each
acquisition and release. This agrees with the observation that increased contention for a single memory location
has an insignificant effect compared to the overhead of accessing any remote memory. Predicting acquisition
time is nevertheless more complicated than counting the number of remote accesses. This is shown by the MCS

lock outperforming both the modified test and test and set and Anderson locks in spite of requiring at least
as many remote accesses for a typical acquire/release cycle, and more in the worst case.

Given the otherwise similar structure of the MCS and Anderson locks when implemented using cache
coherency and padding, the main difference which separates their operation is that the MCS lock requires each
new member of the ordered queue to register by its predecessor. This invalidates the cache line which holds its
spin location, while the Anderson lock only invalidates the spin locations of successors, waking them when they
acquire the lock. When a successor in the MCS algorithm causes the lock of its predecessor to be re-fetched

Latency Impact on Spin-Lock Algorithms 205

 2.05e-06

 2.1e-06

 2.15e-06

 2.2e-06

 2.25e-06

 2.3e-06

 2.35e-06

 2 4 6 8 10 12 14 16

t
i
m
e

[
s
]

of processors

length=1
length=2
length=3
length=4

Fig. 8.1. Comparison of modified ticket locks with variable queue length

while it is being released, the resulting memory transfer will have some of its latency masked as a side-effect
of the former invalidation. This predicts that the MCS lock’s advantage is related to the fact that a short
critical section may release the lock before a line has formed, while a long critical section will complete the
establishment of a longer queue before the lock is released to its head.

Figure 6.1 shows that the absence of any critical section gives an advantage to the Anderson lock. We found
that repeated testing involving only the Anderson and MCS locks shows that their run-time characteristics
become indistinguishable when adjusting the length of the critical section by factors 1

5
and 10, but distinguishable

between these points. This is a curious effect to observe on an architecture which otherwise should suit the cost
model of local vs. remote access (featuring private L2 caches and a crossbar interconnect [9]). As consistent
performance advantages are still tied to reduced latency, and increasingly nonuniform interconnect performance
can be expected from future architectures, this further supports the argument that practical communication
cost models must account for processor locality to enable the differentiation of faster and slower remote accesses.

8. Experiments with the Modified Ticket Lock. The design of the modified ticket lock is intended
to elicit similar effects to the modified test and test and set lock, by forcing each successive lock acquisition by
a single processor to be separated by an adjustable number of other acquistions. The reason for this experiment
is that the 16 cores on the test system are distributed as 8 dual cores, and the shared bus fabric of the Power5
design of the IBM System p575+ implements its snoopy cache coherency protocol by a dedicated bus which
shortcuts the interconnect to update cache lines between cores on the same chip. Such updates would give an
advantage to neighboring cores when acquiring a lock which does not enforce ordering. The behavior of the
modified lock can hence be expected to alter when the queue length exceeds the number of cores per chip,
yielding an estimate of the magnitude of the advantage lost.

Figure 8.1 shows that for the IBM System p575+, the expected change in behavior is observable between
queue lengths 1 and 2. While the modified lock design naturally prevents a full set of measurements to be
obtained for p < length, there is still a clear indication that queue length 1 gives a measurable performance
advantage, while no systematic differences were found for longer queues.

This observation adds weight to the argument that future communication cost models will need locality
details. While the significance of the observable difference between closely and loosely coupled interconnect on
the test platform is small, its significance can be expected to increase with growing numbers of cores on a chip.

9. Conclusions and Future Work. The larger scale interconnects of recent supercomputers such as IBM
Power systems and SGI’s Origin series may soon become relevant for large multi-core processor systems. This
article hence examines the performance of several spin-lock algorithms on such systems.

In contrast to observations from older architectures [1], this work shows that neither the test and set nor
the test and test and set lock suffers degraded acquisition times with upscaling. Modern interconnects are
not saturated by the bandwidth requirements of the tested algorithms. Unlike the older test systems which
had severe bandwidth restrictions, modern interconnects feature highly connected topologies such as crossbars

206 Jan Christian Meyer and Anne C. Elster

and fat trees. Increasing the connectivity of the interconnect greatly improves the aggregate bandwidth of the
system, but has a more moderate impact on latency. Modern systems also feature snoopy cache coherency
protocols between on-chip cores. Our experiments showed that locks performing well on such systems favored
processes on processors near the one which last held the lock. Unfortunately, this impacts fairness.

Secondarily, the scaling properties of the ticket lock was observed to be similar to those of the Anderson and
MCS locks. The assumption that the ticket lock’s use of a shared spin location would saturate the interconnect
and cause performance degradation, led to the prediction that the ticket lock should scale poorly compared to
the Anderson and MCS locks. However, in the practically useful cases, where the lock protects a critical section,
such an effect was visible to only a moderate extent on the IBM System p575+, and not at all on the SGI Origin
3800. Our conclusion is that the interconnect bandwidth of the test platforms is sufficient to reasonably handle
the greater demands of the ticket lock, because of its similar performance to the other starvation-free locks.

Thirdly, the remote writes of both the ticket, Anderson and MCS locks visibly dominated acquisition
time in the same way for all three locks when the distance to remote memory increased on the SGI Origin
3800. This showed that the latency of these remote writes had a more significant effect on acquisition time than
saturation of the interconnect due to the greater amount of traffic generated by the ticket lock. This conclusion
was supported by further experiments on the IBM System p575+. There it was found that starvation-prone
locks achieve favorable run time when awarding locks to a single processor many times in succession. Forcing
these locks to perform remote writes resulted in improved fairness, but also in run times comparable to those
of the poorer performing starvation-free locks. This demonstrated that the same latency penalty applied when
locks were transferred across the interconnect.

Finally, it was shown that lock exchanges between neighboring cores permitted a small performance im-
provement on the IBM System p575+.

Our tests only include dual-core processor nodes, but the lower latency exhibited between the cores indi-
cates that models of future many-core architectures should distinguish between multiple levels of interconnect.
Locking algorithms with a detailed measure of distances to remote memory is hence an interesting topic for
further study.

Acknowledgements. The authors thank Prof. Lasse Natvig at NTNU and Helge Rustad at SINTEF for
their valuable feedback on early versions of this work. Magnus Jahre and Rune E. Jensen at NTNU provided
enlightening discussions and meticulous scrutiny of the experimental code. The many useful comments of the
referees are also appreciated.

REFERENCES

[1] J. M. Mellor-Crummey and M. L. Scott, Algorithms for Scalable Synchronization on Shared-Memory Architectures, in
ACM Transactions on Computer Systems, Vol. 9, No. 1, 1991, pp. 21–65.

[2] E. W. Dijkstra, Solution of a problem in concurrent programming control, in Communications of the ACM, Vol. 8, No. 9,
1965, pp. 569.

[3] P. Magnusson, A. Landin and E. Hagersten, Queue Locks on Cache Coherent Multiprocessors, in Proceedings of the
Eighth International Parallel Processing Symposium, 1994, pp. 26–29

[4] M. M. Michael and M. L. Scott, Scalability of Atomic Primitives on Distributed Shared Memory Multiprocessors, University
of Rochester Computer Science Department, Tech. rep. #528, July 1994.

[5] J-H. Yang and J. H. Anderson, A Fast, Scalable Mutual Exclusion Algorithm, in Distributed Computing, Vol. 9, No. 1,
1995, pp. 51–60.

[6] J. H. Anderson and Y-K. Kim, A Generic Local-spin Fetch-and-φ-based Mutual Exclusion Algorithm, in Journal of Parallel
and Distributed Computing, Vol. 67, Issue 5, 2007, pp. 551–580.

[7] J. Laudon and D. Lenoski, The SGI Origin: A ccNUMA Highly Scalable Server, in ACM SIGARCH Computer Architecture
News, Vol. 25, No. 2, 1997, pp. 241–251.

[8] D. E. Lenoski, J. Laudon, K. Gharachorloo, W-D. Weber, A. Gupta, J. Hennessy, M. Horowitz and M. S. Lam,
The Stanford Dash multiprocessor, in IEEE Computer, Vol. 25, No. 3, 1992, pp. 63–79.

[9] R. Kumar, V. Zyuban and D. M. Tullsen, Interconnections in Multi-core Architectures: Understanding Mechanisms,

Overheads and Scaling, in ACM SIGARCH Computer Architecture News, Vol. 33, No. 2, 2005, pp. 408–419.
[10] J. C. Meyer, A. C. Elster, Latency Impact on Spin-Lock Algorithms for Modern Shared Memory Multiprocessors, in

Proceedings of CISIS2008, IEEE Computer Society CPS, March 2008, pp. 786–791.

Edited by: Sabri Pllana, Siegfried Benkner
Received: June 16, 2008
Accepted: July 28, 2008

