
Scalable Computing: Practice and Experience

Volume 10, Number 1, pp. 13–23. http://www.scpe.org
ISSN 1895-1767

c© 2009 SCPE

SIMULATION FRAMEWORK FOR THE EVALUATION OF DEPENDABLE

DISTRIBUTED SYSTEMS

CIPRIAN DOBRE∗, FLORIN POP†, AND VALENTIN CRISTEA‡

Abstract. The use of discrete-event simulators in the design and development of distributed systems is appealing due to their
efficiency and scalability. Their core abstractions of process and event map neatly to the components and interactions of modern-
day distributed systems and allow designing realistic simulation scenarios. MONARC, a multithreaded, process oriented simulation
framework designed for modelling large scale distributed systems, allows the realistic simulation of a wide-range of distributed
system technologies, with respect to their specific components and characteristics. In this paper we present an innovative solution
to the problem of evaluating the dependability characteristic of distributed systems. Our solution is based on several proposed
extensions to the simulation model of the MONARC simulation framework. These extensions refer to fault tolerance and system
orchestration mechanisms being added in order to asses the reliability and availability of distributed systems. The extended
simulation model includes the necessary components to describe various actual failure situations and provides the mechanisms to
evaluate different strategies for replication and redundancy procedures, as well as security enforcement mechanisms.

Key words: dependable distributed systems, grid computing, fault tolerance, simulation, performance analysis.

1. Introduction. Nowadays there is an increasing interest in large scale distributed systems, in both
academic and industrial environments. Today more than ever distributed systems represent the preferred
instruments for developing a wide range of new applications. Due to the offered technological opportunities,
the domains of usage of Grid computing in particular have been extending during the past years from scientific
to commercial applications.

Together with the extension of the application domains, new requirements have emerged for large scale
distributed systems; among these requirements, reliability, safety, availability, security and maintainability, in
other words dependability [1], are needed by more and more modern distributed applications, not only by the
critical ones. However, building dependable distributed systems is one of the most challenging research activities.
The characteristics of distributed systems make dependability a difficult problem from several points of view.
A first aspect is the geographical distribution of resources and users that implies frequent remote operations
and data transfers; these lead to a decrease in the system’s safety and reliability and make it more vulnerable
from the security point of view. Another problem is the volatility of the resources, which are usually available
only for limited periods of time; the system must ensure the correct and complete execution of the applications
even in the situations when the resources are introduced and removed dynamically, or when they are damaged.

The management of distributed systems is also complicated by the constraints that the applications and
the owners of the resources impose; in many cases there are conflicts between these constraints. For example,
an application needs a long execution time and performs database operations, while the owner of the machine
on which the application could be run only makes it available in a restricted time interval and does not allow
database operations.

Solving these issues still represents a research domain and, although numerous projects have obtained
significant results, no complete solution has been fond yet to integrate all requirements involved in obtaining a

∗Ciprian Dobre received his PhD in Computer Science at the University “Politehnica” of Bucharest in 2008. He received his MSc
in Computer Science in 2004 and the Engineering degree in Computer Science in 2003, at the same University. His main research
interests are Grid Computing, Monitoring and Control of Distributed Systems, Modeling and Simulation, Advanced Networking
Architectures, Parallel and Distributed Algorithms. He is member of the RoGrid consortium and is involved in a number of
national projects (CNCSIS, GridMOSI, MedioGRID, PEGAF) and international projects (MonALISA, MONARC, VINCI, VNSim,
EGEE, SEE-GRID, EU-NCIT). His research activities were awarded with the Innovations in Networking Award for Experimental
Applications in 2008 by the Corporation for Education Network Initiatives (CENIC). (ciprian.dobre@cs.pub.ro).

†Florin POP is a PhD student at Computer Science department in University “Politehnica” of Bucharest. His research interests
are oriented to: scheduling in Grid environments (his PhD research), distributed system, parallel computation, communication
protocols. He received engineering degree in Computer Science, in 2005, on Decentralized Scheduling Methods for Grid and MSc
in 2006. He is member of RoGrid consortium and developer in the national projects (CNCSIS, GridMOSI, MedioGRID) and
international projects (EGEE, SEE-GRID, EU-NCIT). (florin.pop@cs.pub.ro).

‡Valentin CRISTEA is a Professor at Computer Science department in University “Politehnica” of Bucharest. His main fields
of expertise are Grid Computing, e-Learning, e-Business, e-Government, Distributed Systems and Web-based Application Devel-
opment. He is the Director of the National Center for Information Technology. Prof. Valentin Cristea has a long experience in
the development, management and/or coordination of research national and international projects on distributed computing, Grid
computing, High Performance Computing, and e-Learning. (valentin.cristea@cs.pub.ro).

13



14 Ciprian Dobre, Florin Pop and Valentin Cristea

dependable system. The current research in this domain considers several aspects like control of complexity, early
defect detection, rigorous translation, ease of simulation, model checking, productivity gains for teams, wide
applicability [1]. It means collecting informal requirements, requirements translation, build requirement behavior
trees, making requirements integration and integrated behavior tree, and then make simulation, verification and
implementation [2]. In this paper we present a solution to evaluate the correctness and performance of various
dependability-related technologies for distributed systems using the formalism provided by the modeling and
simulation domain. Simulation is a powerful method to perform system analysis, even when the involved system
does not physically exist or if it is very expensive to use it. Our proposed solution is based on an extension
proposal of the simulation model being provided by MONARC, a generic simulation framework designed for
modeling large scale distributed systems.

As described next, no existing simulator that addresses the evaluation of distributed systems related tech-
nologies is mature enough to consider the problem of dependability evaluation in the generic sense, considering
all entities part of such systems, together with the corresponding characteristics. Our model considers the
generic aspects of a wide-range of distributed architectures, preserving their components and characteristics.
Because of this, the model can be used to validate a wide-range of dependability solutions, such as a networking
protocol that can cope with faults in transmissions or a scheduling algorithm designed to consider the case of
resource faults.

The rest of this paper is structured as follows. Section 2 presents related work to the problem of analyzing
dependable distributed systems using simulation. The next section presents the MONARC architecture and
the simulation model. Sections 4 and 5 present the proposed solutions for simulating dependable distributed
systems. Finally, in Section 6 we present some conclusions and future work.

2. Related Work. SimGrid [7] is a simulation toolkit that provides core functionalities for the evaluation
of scheduling algorithms in distributed applications in a heterogeneous, computational Grid environment. It
aims at providing the right model and level of abstraction for studying Grid-based scheduling algorithms and
generates correct and accurate simulation results.

GridSim [8] is a grid simulation toolkit developed to investigate effective resource allocation techniques
based on computational economy.

OptorSim [9] is a Data Grid simulator project designed specifically for testing various optimization tech-
nologies to access data in Grid environments. OptorSim adopts a Grid structure based on a simplification of
the architecture proposed by the EU DataGrid project.

ChicagoSim [10] is a simulator designed to investigate scheduling strategies in conjunction with data loca-
tion. It is designed to investigate scheduling strategies in conjunction with data location.

None of these projects present general solutions to modeling dependability technologies for large scale
distributed systems. They tend to focus on providing evaluation methods for the traditional research in this
domain, which up until recently targeted the development of functional infrastructures. However, lately, the
importance of dependable distributed systems was widely recognized and this is demonstrated by the large
number of research projects initiated in this domain. Our solution aims to provide the means to evaluate a
wide-range of solutions for dependability in case of large scale distributed systems.

Another issue is related to the generic evaluation of dependable distributed systems. A fault occurring in
such systems could lead to abnormal behavior of any of the system’s components. For this reason we argue
that a correct evaluation of dependability in distributed systems should provide a complete state of the entire
distributed system.

Because of the complexity of the Grid systems, involving many resources and many jobs being concurrently
executed in heterogeneous environments, there are not many simulation tools to address the general problem
of Grid computing. The simulation instruments tend to narrow the range of simulation scenarios to specific
subjects, such as scheduling or data replication. The simulation model provided by MONARC is more generic
that others, as demonstrated in [11]. It is able to describe various actual distributed system technologies,
and provides the mechanisms to describe concurrent network traffic, to evaluate different strategies in data
replication, and to analyze job scheduling procedures.

3. A taxonomy of distributed system-based simulation tools. Simulation is applied in many appli-
cation areas, one of which is the design and evaluation of parallel and distributed systems (PDSs). Simulation
tools for PDSs are then differentiated by four taxonomies [5]. Figure 3.1 provides a categorization of simulation
tools. PDS taxonomy identifies the type of target systems to be simulated; usage taxonomy illustrates how the



Simulation Framework for the Evaluation of Dependable Distributed Systems 15

tool is used; simulation taxonomy highlights the characteristics of the simulation; design taxonomy describes
the components and features of the simulation tools.

Fig. 3.1. Categorization of simulation tools.

The PDS taxonomy, presented in Figure 3.2, separates the target systems to be simulated into parallel
systems and distributed systems. A parallel system consists of multiple processors in close communication,
normally located within the same machine.

Fig. 3.2. PDS taxonomy.

A distributed system spreads out the computation among autonomous computers, which are physically
distributed in general. Each distributed computer accesses its own local memory and communicates with other
computers through networks such as the Internet. A distributed system supports both resource sharing and
load sharing, and is fault-tolerant through the replication of devices and data in separate physical locations. It
also provides a good price/performance ratio. Simulation tool can be used as a simulator or an emulator (see
Figure 3.3).

A simulator is a tool that can model and represent the actual system. Simulation runs at any speed relative
to the real world and saves information for the entire simulation to facilitate analysis of the simulated behavior



16 Ciprian Dobre, Florin Pop and Valentin Cristea

Fig. 3.3. Usage taxonomy.

of the actual system. Conversely, an emulator is a tool that acts like the actual system. Emulation executes
like the actual system itself and is useful for accurate and reliable testing without having the real system. For
example, the Grid simulation tools described in the next sections are simulators, except MicroGrid [6], which
emulates Globus-based Grid applications.

The characteristics of the simulation highlighted by the simulation taxonomy (see Figure 3.4) consist of
three main properties. Presence of time indicates whether the simulation of a system encompasses the time
factor. A static simulation does not have time as part of the simulation, in contrast to a dynamic simulation.
Basis of value specifies the values that the simulated entities can contain. A discrete simulation has entities
only possessing one of many values within a finite range, but a continuous simulation has entities possessing
one of many values within an infinite range. Behavior defines how the simulation proceeds. A deterministic
simulation has no random events occurring, so repeating the same simulation will always return the same
simulation results. In contrast, a probabilistic simulation has random events occurring, so repeating the same
simulation often returns different simulation results.

Fig. 3.4. Simulation taxonomy.

Every simulation can be classified based on these three properties. An example of a dynamic, discrete and
probabilistic simulation is to generate a path that a data packet moves from a source host to a destination host
in a network. However, simulating the path of a missile given an initial firing velocity and fixed wind resistance
is an example of a dynamic, continuous and deterministic simulation. A chess game simulation comprises static,
discrete and probabilistic properties.

Finally the design taxonomy (Figure 3.1) categorizes simulation tools based on desired components and
features that are necessary to provide simulation of a PDS. These features and components not only provide a
framework for understanding the design of existing simulation tools, but also provide possible ways of improving
the design.

4. MONARC Architecture. MONARC is built based on a process oriented approach for discrete event
simulation, which is well suited to describe concurrent running programs, network traffic as well as all the



Simulation Framework for the Evaluation of Dependable Distributed Systems 17

stochastic arrival patterns, specific for such type of simulations [3]. Threaded objects or “Active Objects”
(having an execution thread, program counter, stack. . . ) allow a natural way to map the specific behavior of
distributed data processing into the simulation program. However, due to various optimizations considered, the
threaded implementation of the simulator can be used to experiment with scenarios consisting of thousands of
processing nodes executing a large number of concurrent jobs, as demonstrated in [12].

Fig. 4.1. The Regional center model.

In order to provide a realistic simulation, all the components of the system and their interactions were
abstracted. The chosen model is equivalent to the simulated system in all the important aspects. A first set of
components was created for describing the physical resources of the distributed system under simulation. The
largest one is the regional center (Figure 4.1), which contains a site of processing nodes (CPU units), database
servers and mass storage units, as well as one or more local and wide area networks. Another set of components
model the behavior of the applications and their interaction with users. Such components are the “Users” or
“Activity” objects which are used to generate data processing jobs based on different scenarios.

The job is another basic component, simulated with the aid of an active object, and scheduled for execution
on a CPU unit by a “Job Scheduler” object. Any regional center can dynamically instantiate a set of users or
activity objects, which are used to generate data processing jobs based on different simulation scenarios. Inside
a regional center different job scheduling policies may be used to distribute jobs to corresponding processing
nodes.

One of the strengths of MONARC is that it can be easily extended, even by users, and this is made
possible by its layered structure. The first two layers contain the core of the simulator (called the “simulation
engine”) and models for the basic components of a distributed system (CPU units, jobs, databases, networks,
job schedulers etc.); these are the fixed parts on top of which some particular components (specific for the
simulated systems) can be built. The particular components can be different types of jobs, job schedulers
with specific scheduling algorithms or database servers that support data replication. The diagram in Figure
4.2 presents the MONARC layers and the way they interact with a monitoring system. In fact, one other
advantage that MONARC have over other existing simulation instruments covering the same domain is that
the modeling experiments can use real-world data collected by a monitoring instrument such as MonALISA,
an aspect demonstrated in [13]. This is useful for example when designing experiments that are evaluating the
behavior of existing real distributed infrastructures using various assumed theoretical conditions.

Using this structure it is possible to build a wide range of models, from the very centralized to the distributed
system models, with an almost arbitrary level of complexity (multiple regional centers, each with different
hardware configuration and possibly different sets of replicated data).



18 Ciprian Dobre, Florin Pop and Valentin Cristea

Fig. 4.2. The layers of MONARC.

The superior performance of the simulator was demonstrated in terms of experimenting with a large number
of concurrent threads, evaluation of the interrupt model and in terms of time needed to conduct simulation
experiments of large scale [11]. For example, Figure 4.3 presents the performance results of the simulator in
terms of concurrent threads. The series represents the different architectures on which the evaluation experiment
was conducted. In MONARC all the jobs being concurrently processed by the same processing node are handled
by one thread, and all the messages being concurrently generated from the same host are also managed by one
thread. The obtained results demonstrate the capability of the simulator to cope with experiments describing
distributed systems consisting of thousands of processing nodes and concurrent network links.

Fig. 4.3. Performance of the MONARC simulator in terms of concurrent threads

The maturity of the simulation model was demonstrated in previous work. For example, a number of data
replications experiments were conducted in [3], presenting important results for the future LHC (Large Hadron



Simulation Framework for the Evaluation of Dependable Distributed Systems 19

Collider) experiments, which will produce more than 1 PB (petabyte) of data per experiment and year, data
that needs to be then processed. A series of scheduling simulation experiments were presented in [3], [4] and [5].
In [5] we successfully evaluated a simple distributed scheduler algorithm, proving the optimal values for the
network bandwidth or for the number of CPUs per regional centre. In [4] the simulation model was used to
conduct a series of simulation experiments to compare a number of different scheduling algorithms.

Probably the most extensive simulation scenario is the one described in [6]. The experiment tested the
behavior of the tier architecture envisioned by the two largest LHC experiments, CMS and ATLAS. The sim-
ulation study described several major activities, concentrating on the data transfer on WAN between the T0
at CERN and a number of several T1 regional centers. The experiment simulated a number of physics data
production specific activities (the RAW data production, Production and DST distribution, the re-production
and the new DST distribution and the detector analysis activity). We simulated the described activities alone
and then combined. The obtained results indicated the role of using a data replication agent for the intelligent
transferring of the produced data. The obtained results also showed that the existing capacity of 2.5 Gbps was
not sufficient and, in fact, not far afterwards the link was upgraded to a current 40 Gbps.

5. Simulation of Failure Models in MONARC. The characteristics of large scale distributed systems
make the problem of assuring dependability a difficult issue because of several aspects. A first aspect is the
geographical distribution of resources and users that implies frequent remote operations and data transfers;
these lead to a decrease in the system’s safety and reliability and make it more vulnerable from the security
point of view. Another problem is the volatility of the resources, which are usually available only for limited
periods of time; the system must ensure the correct and complete execution of the applications even in situations
such as when the resources are introduced and removed dynamically, or when they are damaged. Another issue
relates to the management of distributed resources. In many cases these are conflicts between the constraints
that the applications and owners of the resources impose. One could consider, for example, the case when the
execution needs of an application are sometimes conflicting with the restrictions imposed by the owners of the
machines on which it should execute.

Solving these issues still represents a research domain and, although numerous projects have obtained
significant results, no complete solution has yet been found to integrate all requirements involved in obtaining
a dependable system.

The means to achieve dependability are fault prevention, fault tolerance, fault removal and fault forecast-
ing [1]. Among these fault tolerance is the most difficult to achieve because of the complexity of the distributed
systems. We consider that the simulation model of MONARC is adequate to be augmented as presented in this
paper to testing various methods, techniques and technologies related to the different phases of fault tolerance
achievement in distributed systems: error and fault detection, recovery and fault masking (redundancy) [2].
Figure 5.1 presents the components of the proposed dependable modeling layer.

The first extension to the simulation model relates to modeling faults appearing inside the modeled dis-
tributed system. In a distributed system failures can be produced at hardware level (abnormalities in the
functionality of hardware components) or software level (the middleware or application deviating from their
normal functionality or delivery of services). We propose extending the simulation model to account for both
hardware, as well as software failures, modeling their occurrences and detection, as well as recovery and masking
(redundancy) mechanisms [1].

At hardware level different distributed components can be modeled as failing: the processing unit, the
network connectivity as well as the storage devices. At software level we consider the faults occurring in a
middleware component (the scheduler behavior could be erroneous, the database server could return wrong
values, etc.) or in the higher-level distributed application (for example the jobs could fail to return correct
results). For all the modeled components being considered by the simulation model we propose adding the
mechanisms to inject faults.

The injection of faults will affect primarily the behavior of the components. In this way we will be able to
model all types of faults: crash faults, omission faults, time faults, as well as Byzantine faults [2]. In order to
cover all possible faults, we propose the use of two mechanisms, as follows.

In the first approach the user will input into the simulation model values for the MTTF (mean time to failure)
parameter in case of the various components involved in a specific simulation experiment. In the simulation
this parameter represents the basis for simulating the haphazardness stimuli coming from external and internal
sources of influence that affect the characteristics of the modeled components and is seen as a probability



20 Ciprian Dobre, Florin Pop and Valentin Cristea

measure of fault occurrence that is supposedly computed for each component prior to its deployment in the
system.

Fig. 5.1. The layers of MONARC.

For modeling the fault injection mechanisms we will use the MTTF together with some mathematical
probability distributions (the simulation model already uses distributions such as binomial, Poisson, Gaussian,
standard uniform, exponential to implement the stochastic behavior of distributed systems). In this way, at
random intervals of time, a component will experience faulty behavior (failures), as well as possible recovery.
Regarding the failures, a component will experience complete crash (the component will not recover anymore
and will not be accessible by modeled entities), omissions (the network model will deliver only partial messages
for example) or delays (the component will experience modeled delays).

The second proposed approach considers a completely random occurrence of fault events, without the user
specifying any value. This is useful in modeling the most disruptive faults, the Byzantine failures that occur
arbitrary in the simulated system, such as in the case of transient hardware faults for example: they appear,
do the damage, and then apparently just go away, leaving behind no obvious reason for their activation in the
first place [14]. For these types of errors the simulation model will allow the resuming of the normal behavior
of the affected component, as it is usually enough to allow successful completion of its execution.

This is also useful for example when modeling the intervention of the human operator restarting or replacing
a faulty component. For modeling this behavior the user usually inputs into the simulation model a MTTR
(mean time to repair) value that, together with a probability distribution, represents the basis of a triggering
mechanism that allows the modeling of a resume operation event. In addition, in order to model a wider range
of possible fault-tolerance based scenarios, a second approach to resuming will consider that the timestamp of
the resuming event can also be based on a completely random decision.

A different faulty situation that needs to be addressed is represented by users or programs trying to gain
access to secured components.

For modeling security technologies we propose adding an extra layer that injects security problems. This
layer includes the mechanisms that are used to construct a special job that communicates with various compo-
nents in the attempt to gain access to restricted data or evaluate security technologies (single authentication,
credentials protection, interoperability with local security solutions, etc.).

6. Simulation of Dependable Distributed System Technologies using MONARC. The fault in-
jection mechanisms presented above will be used together with various fault detection and recovery mechanisms.
For that we propose the addition of an external monitoring component in the simulation model. The moni-
toring component will be responsible for receiving data of interest (such as fault occurrence triggered events),
for taking actions to update the state of the distributed system being modeled and possible inform interested
components of the events occurrences.



Simulation Framework for the Evaluation of Dependable Distributed Systems 21

For the purpose of the current proposal one of the roles of this component will be to keep track of the
resource faults in the system and generate appropriate controlling actions. For example, as described before,
based on various fault injection mechanisms, we could trigger the generation of a crash of a processing unit.
The trigger will translate in the generation of a special simulation event that will be received by the monitoring
component. Upon receive of such event the monitoring unit will remove the processing unit from the modeled
system (it will no longer be visible and all its on-going tasks will be forced to stop the state update action) and
inform all interested components of the occurrence of the event. In this approach a scheduler that is interesting
in monitoring the state of the processing unit on which it deployed a task for execution would register with
the monitoring component and, upon triggering of the crash event, will be informed of the failure so that to
take the appropriate correction actions). In this model an omission fault example is the simulation of a crushed
network link, where the monitoring unit will be responsible with generating corresponding interrupt events for
the still-running tasks that were using that modeled link.

For modeling timing faults the monitoring unit will also play an important role. In the simulation model
the boundaries of the action (start of the execution of a task, termination of a task, etc.) are modeled using
simulation events. When the monitoring unit receives a timing fault triggering event it will simply modify
termination events so that to be triggered at a later time in the future. In this way we simply change the
default behavior so that a task will not end when it was supposed to end, but sometimes later in the future.

A modeled fault-tolerant software component could then use timing checks (deadlines) to look for deviations
from the acceptable behavior. For example, the scheduler will also implement a fault-tolerant mechanism,
according to which whenever a new job is submitted the scheduler will also produce a special simulation event
that will be triggered when the timeout occurs (where by timeout we mean an amount of time dependant on
the user specification that will be triggered if the job fails to return results in due time).

The scheduler will then be interrupted by one of two actions: either the job finishes or the timeout event
occurs (which one happens faster in the simulation timeline). The same mechanisms will be implemented to
the network simulation model, a job being informed if a transfer failed to finished in a specified amount of time
(possible due to network congestion for example) in order to consider taking appropriate measures (such as
canceling the transfer for example).

We state that the described extension to MONARC’s simulation model will be useful for testing both
reactive and proactive fault tolerance existing techniques [15]. In case of the reactive fault tolerant systems
the fault monitoring systems is informed after the detection of the failure in order to start the corresponding
recovery processes. This is in concordance with the presented functionality of the proposed modeled monitoring
component. The predictive (proactive) fault tolerant systems predict a fault before its occurrence. Predictive
systems are based on the assumption that faults do show some disruptive effect on the performance of the
system [16]. Much effort has been put recently into developing proactive fault tolerant systems [17], [18]
and [19]. In our approach the user could evaluate the performance of the distributed system in the presence of
various predictive fault tolerance techniques by augmenting the monitoring component with various prediction
algorithms.

In order to allow the evaluation of a wide-range of dependability technologies, the simulation model will
also include the necessary mechanisms to allow the modeling of check-pointing or logging of the system’s state.
These mechanisms will be implemented based on the simulation events and the state of the objects used to
simulate the modeled components. For that the job interface will provide a method that, when called, will
result in the saving of the serialized objects as well as the state of the simulation on the local disk storage. This
will be useful in experiments dealing with both static and dynamic check-pointing strategies.

The simulation model will also include the evaluation of various replication and redundancy mechanisms.
The replication provides mechanisms for using multiple identical instances of the same system or subsystems and
choosing the result based on quorum. The simulation model already allows the simulation of DAG distributed
activities. This construction is also useful in modeling the replication of the jobs, where the same job would be
executed on multiple processing units and another job will be used to receive the outputs and select the correct
result. Another approach could be to model special voter jobs acting at the input of the replicated jobs and
selecting the correct results (as the one described in [15]). We propose augmenting the simulation model with
these approaches as well.

The redundancy is another characteristic that is important to be considered when evaluating dependable
distributed system strategies. The fault-tolerance techniques applicable to software, either single version of
multi-version, are based on their vast majority on the use of redundancy, on the use of resources beyond the



22 Ciprian Dobre, Florin Pop and Valentin Cristea

minimum needed to deliver the specified services [19]. For example, a strategy to achieve reliability could be
that when a storage component fails the system would select a different replica of that storage still functioning
and query it for the data of interest. This is already possible in MONARC, as demonstrated by the experiments
described in [3]. In the experiments we describe how the simulation model already deals with replicating
database storages. We propose to add replication mechanism in case of the simulated jobs and scheduler as
well.

The simulation of security technologies also plays an important part in assessing dependable systems. We
propose adding mechanisms to evaluate various security procedures that are essential in dependable distributed
systems. These mechanisms refer to providing availability for authorized users only, confidentiality and integrity.

The networking model being provided by MONARC can be easily extended to provide the modeling of
all these aspects. The message being transferred among simulated entities can carry inside a wide-range of
information. This can be used to implement various authorization enforcement mechanisms, such as for example
certificates that are provided as input to the modeling experiments and that are automatically verified upon the
receipt of the message. We propose extending the network and job models to incorporate several such security
technologies.

We also propose adding an extra layer to the simulation model, a security layer that could be used to
simulate various security-related procedures. The security layer will provide mechanisms to encrypt the data
that could be used in conjunction with the storage components for example. It will also include various security
protocols (such as SSL and TLS for example, or group key exchange protocols) that could be used of-the-shelf
by users trying to run their own experiments in the presence of various security mechanisms.

7. Conclusions. As society increasingly becomes dependent of distributed systems (Grid, P2P, network-
based), it is becoming more and more imperative to engineer solutions to achieve reasonable levels of depend-
ability for such systems. Simulation plays an important part in the building process of dependable distributed
systems.

MONARC is a generic simulation framework designed for modeling a wide range of distributed systems
technologies, with respect to their specific components and characteristics. Its simulation model incorporates the
necessary components to model various modern-day distributed systems technologies, providing the mechanisms
to describe concurrent network traffic and to evaluate different strategies in data replication or in the job
scheduling procedures. In this paper we described a solution to simulating dependable distributed systems
using MONARC. The solution is able to model failures in distributed systems at hardware level (abnormalities
in the functionality of hardware components) or software level (the middleware or application deviating from
their normal functionality or delivery of services). We aim at extending MONARC to account for types of
failures (at hardware and software levels), modeling their occurrences and detection, as well as recovery and
masking (redundancy) mechanisms.

REFERENCES

[1] A. Avizienis, J. C. Laprie, B. Randell, Fundamental Concepts of Dependability, Research Report No 1145, LAAS-CNRS,
April 2001.

[2] A. Avizienis, V. Magnus, J. C. Laprie, B. Randell, Fundamental Concepts of Dependability, presented at ISW-2000,
Cambridge, MA, 2000.

[3] I. C. Legrand, H. Newman, C. Dobre, C. Stratan, MONARC Simulation Framework, International Workshop on Ad-
vanced Computing and Analysis Techniques in Physics Research, Tsukuba, Japan, 2003.

[4] F. Pop, C. Dobre, G. Godza, V. Cristea, A Simulation Model for Grid Scheduling Analysis and Optimization, Proc. of
Parelec, Bialzsrok, Poland, pp. 133–138, September, 2006.

[5] C. Dobre, C. Stratan, MONARC Simulation Framework, Proc. of 3rd Edition of RoEduNet International Conference,
Timisoara, Romania, May, 2004.

[6] I. C. Legrand, C. Dobre, R. Voicu, C. Stratan, C. Cirstoiu, L. Musat, A Simulation Study for T0/T1 Data Replication
and Production Activities, The 15th International Conference on Control Systems and Computer Science, Bucharest,
Romania, pp. 127–130, 2005.

[7] H. Casanova, A. Legrand, M. Quinson, SimGrid: a Generic Framework for Large-Scale Distributed Experimentations,
Proc. of the 10th IEEE International Conference on Computer Modelling and Simulation (UKSIM/EUROSIM’08),
pp. 126–131, 2008.

[8] R. Buyya, M. Murshed, GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and
Scheduling for Grid Computing, The Journal of Concurrency and Computation: Practice and Experience (CCPE),
Volume 14, pp. 1507–1542, 2002.

[9] W. Venters et al, Studying the usability of Grids, ethongraphic research of the UK particle physics community, UK
e-Science All Hands Conference, Nottingham, 2007.



Simulation Framework for the Evaluation of Dependable Distributed Systems 23

[10] K. Ranganathan, I. Foster, Decoupling Computation and Data Scheduling in Distributed Data-Intensive Applications, Int.
Symposium of High Performance Distributed Computing, Edinburgh, Scotland, p. 352, 2002.

[11] C. Dobre, V. Cristea, A Simulation Model for Large Scale Distributed Systems, Proc. of the 4th International Conference
on Innovations in Information Technology, Dubai, United Arab Emirates, pp. 526–530, November 2007.

[12] C. Dobre, Advanced techniques for modeling and simulation of Grid systems, PhD Thesis presented to University Politehnica
of Bucharest, January 2008.

[13] C. Dobre, C. Stratan, V. Cristea, Realistic simulation of large scale distributed systems using monitoring, in Proc. of the
7th International Symposium on Parallel and Distributed Computing (ISPDC 2008), Krakow, Poland, July 2008.

[14] J. Gray, Why Do Computers Stop and What Can Be Done About It? Proc. of the Fifth Symposium On Reliability in
Distributed Software and Database Systems, Los Angeles, CA, pp. 3-12, 1986.

[15] N. Naik, Simulating Proactive Fault Detection in Distributed Systems, Proposal Draft for Capstone Project, 2007.
[16] T. A. Dumitras, P. Narsimhan, Fault-Tolerant Middleware and the Magical 1 percent, ACM/IFIP/USENIX Conference on

Middleware, Grenhole, France, 2005.
[17] L. Yawei, Z. Lan, Exploit Failure Prediction for Adaptive Fault-Tolerance in Cluster Computing, Proc. of the sixth IEEE

International Symposium on Cluster Computing and Grid, Vol. 1, p. 8, May 2006.
[18] P. Narasimhan, R. Rajkumar, G. Thaker, P. Lardieri, A Versatile, Proactive Dependability Approach to Handling

Unanticipated Events in Distributed Systems, Proc. of the 19th IEEE International Parallel and Distributed Processing
Symposium, pp. 136a, April, 2005.

[19] W. Torres-Pomales, Software Fault Tolerance: A Tutorial, Langley Research Center, Hampton, Virginia, NASA/TM-2000-
210616, October 2000.

Edited by: Fatos Xhafa, Leonard Barolli
Received: September 30, 2008
Accepted: December 15, 2008


