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PARALLEL QUASIRANDOM APPLICATIONS ON HETEROGENEOUS GRID

A. KARAIVANOVA, E. ATANASSOV, T. GUROV, S. IVANOVSKA, M. DURCHOVA∗

Abstract. In this paper we present error and performance analysis of quasi-Monte Carlo algorithms for solving multidi-
mensional integrals (up to 100 dimensions) on the grid using MPI. We take into account the fact that the Grid is a potentially
heterogeneous computing environment, where the user does not know the specifics of the target architecture. Therefore parallel
algorithms should be able to adapt to this heterogeneity, providing automated load-balancing. Monte Carlo algorithms can be
tailored to such environments, provided parallel pseudorandom number generators are available. The use of quasi-Monte Carlo
algorithms poses more difficulties. In both cases the efficient implementation of the algorithms depends on the functionality of the
corresponding packages for generating pseudorandom or quasirandom numbers. We propose efficient parallel implementation of
the Sobol sequence for a grid environment and we demonstrate numerical experiments on a heterogeneous grid. To achieve high
parallel efficiency we use a newly developed special grid service called Job Track Service which provides efficient management of
available computing resources through reservations.

1. Introduction. Quasi-Monte Carlo methods and algorithms are proved to be efficient in many areas
ranging from physics to economy. They are based on quasirandom (also called low discrepancy) sequences while
Monte Carlo methods are based on pseudorandom numbers [3]. As a rule the computational schemes of the
quasi-Monte Carlo methods are simple and convenient for use in applied computing. There has been renewed
interest in quasi-Monte Carlo in recent times, the primary reason for this is that quasi-Monte Carlo methods
usually give much better rate of convergence than Monte Carlo ones, and, in the same time, preserve the good
parallel properties of Monte Carlo applications.

Monte Carlo and quasi-Monte Carlo are often used for solving computationally intensive problems. Studying
their performance on different parallel and distributed computer systems is an important practical problem. For
example, problems with dimension 100 and more are typical for financial mathematics. For such problems it is
natural to use parallel and Grid systems. Nowadays, from the other hand, the computational Grid proved to be
a very efficient computing model [12]. The Grid aims ultimately to turn the global network of computers into one
vast computational resource [4]. Grid computing in general is a special type of parallel computing. Technically
Grid coordinates resources which are not a subject to central administrative control and utilizes general-purpose
protocols. Another distinction is that a Grid could in principle have access to parallel computers, clusters, farms,
local Grids, even Internet computing solutions, and would choose the appropriate tool for a given calculation.
In this sense, the Grid is the most generalized form of distributed computing.

One major advantage of Monte Carlo methods is that they are usually very easy to be parallelized. This
is, in principal, also true of quasi-Monte Carlo methods. However, the successful parallel implementation of a
quasi-Monte Carlo application depends crucially on various quality aspects of the parallel quasirandom sequences
used [5, 6]. Much of the recent work on parallelizing quasi-Monte Carlo methods has been aimed at splitting a
quasirandom sequence into many subsequences which are then used independently on various parallel processes,
for example in [1, 7]. This method works well for the parallelization of pseudorandom numbers, but due to the
nature of quality in quasirandom numbers, this technique has some difficulties. Our algorithms are based on
scrambling which is suitable for heterogeneous computing environments.

In the present paper we propose and study parallel Sobol sequence application in heterogeneous grid en-
vironment. Sobol sequence is one of the most popular quasirandom sequences. We first present the algorithm
for fast generation of scrambled Sobol sequence, parallelization techniques, and some numerical results for solv-
ing multidimensional integrals which show the quality of our generation. In the next section we present grid
performance results for a quasi-Monte Carlo method intended for heavy computations (dimension 100). Our
tests proved the applicability of the presented scrambled Sobol sequence in grid environment. Moreover, the
MPI code is executed simultaneously on two different grid clusters (one with Mirynet interconnect, the other
with conventional interconnect) and high parallel efficiency has been achieved. For the purpose of efficient
implementation of MPI applications a special grid service called Job Track Service (JTS) has been developed
and its initial version has been tested here.
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2. Monte Carlo and Quasi-Monte Carlo Integration. Consider an integral on the unit cube Is =
[0, 1]s in s dimensions,

I[f ] =

∫

Is

f(x)dx, (2.1)

of a Lebesgue integrable function f(x), and note that this integral can be expressed as the expectation of the
function f , I[f ] = E[f(x)], where x is a uniformly distributed vector in the unit cube.

Consider the following approximation of the integral (2.1):

IN [f ] =
1

N

N
∑

n=1

f(xn). (2.2)

If {xn} is a sequence sampled from uniform distribution, equation (2.2) is called (crude) Monte Carlo quadrature
formula. The integration error, defined as

ǫN [f ] = |I[f ]− IN [f ]|, (2.3)

has a standard normal distribution, with expectation

E[ǫN [f ]] =
√

V ar(f)N−1/2. (2.4)

An exact upper bound for (2.2) is given by Koksma-Hlawka inequality,

ǫN [f ] ≤ V [f ]D∗

N , (2.5)

in which V[f] is the variation of f in the Hardy-Krause sense and D∗

N is the star discrepancy of the sequence
{xn}, [3]. Equation (2.5) is valid for any function with bounded variation and any choice of sequence [3], however
the best results are obtained with low discrepancy (also called quasirandom) sequences for which

D∗

N ≤ c(logN)kN−1,

where c and k are constants independent of N but dependent on s.
In this paper we use scrambled Sobol sequence. The purpose of using scrambled sequences in quasi-Monte

Carlo methods is twofold. Primarily, it provides a practical method to obtain error estimates for QMC based
on treating each scrambled sequence as a different and independent random sample from a family of randomly
scrambled quasirandom numbers [1, 11]. Thus, randomized QMC overcomes the main disadvantage of QMC
while maintaining the favorable convergence rate of QMC. Secondarily, scrambling gives us a simple and unified
way to generate quasirandom numbers for parallel, distributed, and Grid-based computational environments
[4, 5, 6].

The test functions for numerical integration in this paper are:

F1 =

s
∏

i=1

(

xi
3 +

3

4

)

,

F2 =
s
∏

i=1

|4xi − 2|.

The first of test function is described in [8]. The second is known as Roos and Arnold’s example and it is
suggested as test function in [9].

3. Sobol sequences. Sobol sequence proved to be one of the most efficient sequences for quasi-Monte Carlo
integration, [2, 3, 10]. The original sequence is not suitable for grid implementation, [5, 6]. Here we present a fast
algorithm for generation of a scrambled Sobol sequence suitable for parallel and grid implementations. We use
the Definition below, which covers most digital (t,m, s)-nets in base 2. The Sobol sequence is a (t, s)-sequence
in base 2 and is a particular case of this definition.
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Definition. Let A1, . . . , As be infinite matrices Ak = {a
(k)
ij }, i, j = 0, 1, . . . , with a

(k)
ij ∈ {0, 1}, such that

a
(k)
ii = 1 for all i and k, a

(k)
ij = 0 if i < j. The τ (1), . . . , τ (s) are sequences of permutations of the set {0, 1}.

Each non-negative integer n may be represented in the binary number system as

n =

r
∑

j−0

bi2
i.

Then the n-th term of the low-discrepancy sequence σ is defined by

x(k)
n =

r
∑

j=0

2−j−1τ
(k)
j (⊕j

i=0bia
(k)
ij ),

where by “⊕” we denote the operation “bit-wise addition modulo 2”.

Next lemma explains how we generate consecutive terms of the sequence.
Lemma. Let σ be a sequence or net satisfying the above Definition, and let the non-negative integers n, p,m

be given. Suppose that we desire the first p binary digits of elements in σ with indices of the form 2mj+n < 2p.
This implicitly defines a set of compatible j′s. Thus the only numbers we need to compute are

y
(k)
j = ⌊2px

(k)
2mj+n⌋.

The integers {v
(k)
r }∞r=0, which we call ”twisted direction numbers”, are defined by

v(k)r =

p−1
∑

t=0

2p−1−t ⊕p−1
j=m a

(k)
tj .

Suppose that the largest power-of-two that divides 2m(j + 1) + n is l, i. e. 2m(j + 1) + n = 2i(2K + 1). Then

the following equality holds

y
(k)
j+1 = y

(k)
j ⊕ v

(k)
i .

The main algorithm for generating scrambled Sobol sequence is described in [1]. Here we study the quality
and the applicability of the generated sequence in grid environment. The algorithm allows consecutive terms
of the scrambled sequence to be obtained with essentially only two operations per coordinate: one floating
point addition and one bit-wise xor operation (this omits operations that are needed only once per tuple).
This scrambling is achieved at no additional computational cost over that of unscrambled generation as it
is accomplished totally in the initialization. In addition, the terms of the sequence are obtained in their
normal order, without the usual permutation introduced by Gray code ordering used to minimize the cost of
computing the next Sobol element. This algorithm is relatively simple and very suitable for parallel and grid
implementation.

The mathematical explanations can be found in [1] and [2], here we present the algorithm in pseudo code.
• Input initial data:

– if the precision is single, set the number of bits b to 32, and the maximal power of two p to 23,
otherwise set b to 64 and p to 52;

– dimension s;
– direction vectors {aij}, i = 0, p, j = 1, . . . , s representing the matrices A1, . . . , Ad

(always aij < 2i+1);
– scrambling terms d1, . . . , ds - arbitrary integers less than 2p, if all of them are equal to zero, then

no scrambling is used;
– index of the first term to be generated - n;
– scaling factor m, so the program should generate elements with indices 2mj + n, j = 0, 1, . . ..

• Allocate memory for s⋆l b-bit integers (or floating point numbers in the respective precision) y1, . . . , ys.
• Preprocessing: calculate the twisted direction numbers vij , i = 0, . . . , p− 1, j = 0, . . . , s:

– for all j from 1 to s do
– for i = 0 to p− 1 do
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Fig. 3.1. Accuracy of numerical integration of Test function F1 with sample size N and dimension 10 using pseudorandom

numbers and Sobol sequence.

– if i = 0, then vij = aij2
p−m,

else vij = vi−1jxor(ai+m,j ⋆ (2
p−i−m));

• Calculate the coordinates of the nth term of the Sobol sequence (with the scrambling applied) using any
known algorithm (this operation is performed only once). Add 1 to all of them and store the results as
floating point numbers in the respective precision in the array y.

• Set the counter N to the integer part of
n

2m
.

• Generate the next point of the sequence:
– When a new point is required, the user supplies a buffer x with enough space to hold the result.
– The array y is considered as holding floating point numbers in the respective precision, and the

result of subtracting 1 from all of them is placed in the array x.
– Add 1 to the counter N .
– Determine the first nonzero binary digit k of N so that N = (2M + 1)2k (on the average this is

achieved in 2 iterations).
– Consider the array y as an array of b-bit integers and updated it by using the kth row of twisted

direction numbers:
for i = 1 to d do yi = yixorvki.

– Return the control to the user. When a new point is needed, go to beginning of this paragraph
(Generate the next point of the sequence).

Numerical results for approximate calculation of 10 and 20 dimensional integrals with Monte Carlo and
quasi-Monte Carlo using scrambled Sobol sequence are shown on Figure 3.1 and Figure 3.2 (test function F1)
and Table 3.1 (test function F2). Let us mention that usually dimension 20 is considered as too high for quasi-
Monte Carlo treatment. Here we see that the quasi-Monte Carlo algorithm with scrambled Sobol sequence
(Sobol in the Table3.1) gives better results than Monte Carlo (SPRNG available on [14] in the Table 3.1). The
good properties of the sequence motivated us for using this generator in our grid applications.

Parallelization.

There are three basic ways to parallelize quasirandom number sequences:

• Leap-frog—the sequence is partitioned in turn among the processors like a deck of cards dealt to card
players.

• Sequence splitting or blocking—the sequence is partitioned by splitting it into non-overlapping contigu-
ous subsections.

• Independent sequences—each processor has its own independent sequence.

The first and second schemes produce numbers from a single quasirandom sequence. The third scheme needs a
family of quasirandom sequences. Scrambling techniques can generate such a stochastic family of quasirandom
sequences from one original quasirandom sequence. Numerical calculations presented in this paper are done
using scrambling and blocking. In this way we can exactly repeat the results for comparisons.



Parallel Quasirandom Applications on Heterogeneous Grid 77

10
-4

10
-3

10
-2

10
-1

 10  11  12  13  14  15  16  17  18  19

E
rr

o
r

N (number of integration points 2
N

)

SPRNG
SOBOL

Fig. 3.2. Accuracy of numerical integration of Test function F1 with sample size N and dimension 20 using pseudorandom

numbers and Sobol sequence.

Table 3.1

Accuracy of numerical integration of Test function F2 with sample size N when using pseudorandom numbers and Sobol

sequence.

N dim SPRNG Sobol

210 10 7.033e-02 1.220e-02
20 3.164e-01 2.114e-01

211 10 2.622e-02 2.504e-02
20 2.851e-02 1.331e-02

212 10 1.106e-01 2.225e-02
20 9.003e-02 4.579e-02

213 10 4.254e-02 3.722e-02
20 1.454e-01 1.403e-01

214 10 4.777e-02 1.667e-02
20 1.064e-02 8.385e-02

215 10 3.482e-02 1.456e-02
20 3.751e-02 1.514e-01

216 10 2.622e-02 2.919e-03
20 1.528e-02 3.104e-02

217 10 2.098e-02 2.059e-03
20 2.966e-02 8.379e-03

219 10 2.024e-03 2.475e-05
20 1.190e-02 1.716e-02

4. Quasi-Monte Carlo Computations on the Grid. We take into account the fact that the Grid is
a potentially heterogeneous computing environment, where the user does not know the specifics of the target
architecture. Therefore parallel algorithms should be able to adapt to this heterogeneity, providing automated
load-balancing. Monte Carlo algorithms can be tailored to such environments, provided parallel pseudorandom
number generators are available.
The use of quasi-Monte Carlo algorithms poses more difficulties. In both cases the efficient implementation
of the algorithms depends on the functionality of the corresponding packages for generating pseudorandom or
quasirandom numbers.

4.1. Grid-enabled Parallel Implementation of the Algorithm for Numerical Integration. Our
tests are implemented on the two main Grid clusters in IPP-BAS which are included in the Pan-European
(EGEE) and regional (SEE-GRID) grid infrastructures and which have completely different characteristics.
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Fig. 4.1. JTS working scheme.

EGEE (www.eu-egee.org) grid infrastructure serves a wide range of European scientific communities and is
currently the largest, most widely used multidisciplinary grid infrastructure in the world [12]. The EGEE grid
uses gLite (www.glite.org), an open source middleware distribution that combines components developed in
various related projectsin particular Condor and Globusvia the Virtual Data Toolkit.

The parameters of the grid clusters used in our experiments are: The BG03-NGCC grid cluster has 25
worker nodes, 2 x Intel Xeon E5430 2.66 GHz Quad Core CPU (total 200 Cores, > 400 kSI2000). Each node
has 16 GB RAM. The BG04-ACAD has 40 worker nodes with 2 CPU Opteron 2,4 GHz (total 80 cores > 120
KSI2000), 4GB RAM for each node, and low-latency Myrinet interconnection for MPI jobs as in [13]. Here we
present grid-enabled parallel implementation of the standard Monte Carlo and quasi-Monte Carlo methods for
numerical integration. In our grid tests we use the function F1 with dimension s = 100.

The parallelization is based on the master-slave paradigm, with some ramifications. We divide the work into
chunks, corresponding to the sub-domains, which are requested from the master process by the slave processes.
In order to increase the efficiency, the master also performs computations, while waiting for communication
requests. Thus we achieve overlap of computations and communications, and we do not lose the possible output
of the master process. When using low-discrepancy sequences, we take care in both master and slave processes
to fast-forward the generator exactly to the point that is needed. The scrambling that is provided by the
generators enables a posteriori estimation of the error in the quasi-Monte Carlo case.

4.2. Job Track Service. In order to run MPI application simultaneously on different grid clusters we
use newly developed service called Job Track Service (JTS) which allows CPU reservation for parallel jobs, and
collecting and analysis of the results of these parallel jobs. JTS (see Fig. 4.1) implements messaging system to
allow Quality of Service (QoS) for jobs, gathering and analysis of performance data and provision of application
specific info from central point.

Some details about JTS:
• The core of the JTS is a JTS server. In this initial version there is only one instance of this server,
located at IPP.

• The JTS server accepts connections via AMQP (Advanced Message Queuing Protocol, www.amqp.org),
XMPP (Extensible Messaging and Presence Protocol, www.xmpp.org), and SOAP.

• The grid clients are running on the Grid Computing Elements. They connect with the JTS server using
AMQP and send/receive messages, related to jobs.

• The users can send additional performance information or can manipulate jobs in a desired way. For
instance, they can tag jobs as higher priority and they can direct jobs to VO reservations, available to
their application.

The JTS provides efficient management of available computing resources through reservations. Systems
of this kind can interoperate and probably will become the standard 2-3 years from now. The potential for
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Table 4.1

Parallel efficiency measurements for N = 109 points - T1 is the theoretically optimal time and T2 is the measured time.

T1 T2 Efficiency

SPRNG 117.10 129.87 90.17%
Sobol 14.37832 15.34 93%

Table 4.2

Time for test function F1 with 108 points.

1 CPU (BG03) 1 CPU (BG04)

SPRNG 785.64 533.90
Sobol 65.79 95.65

standards-based (AMQP, STOMP, HTTP, XMPP) integration of information from different services and easy
presentation to end user/site admin/VO admin can enhance the utilization and experience while using the Grid
infrastructure. This trend is visible in the Cloud computing world (see, e.g., ElasticFox, S3Fox).

In our computations we use the JTS in order to ensure simultaneous startup of the MPI jobs on the two
chosen clusters.

4.3. Numerical Experiments. Our numerical tests are performed for 100-dimensional integrals which
is usual dimension for many applications in financial mathematics. The presented results are from parallel
implementation of our algorithm on 20 CPU cores on BG04-ACAD and 32 CPU cores on BG03-NGCC simul-
taneously. The start of these MPI jobs on both clusters has been achieved by calling the Job Track Service on
these two clusters.

In Table 4.1. we compare the estimated time for running our algorithm on the Worker Nodes of the
grid sites BG03-NGCC and BG04-ACAD in parallel, in case of perfect parallel efficiency, with the measured

execution time. Here T1 is theoretically optimal time, T2 is measured time and the efficiency is the ratio
T1

T2
.

We used the MPICH-G2 implementation of MPI, which is the most general approach for running parallel jobs
on computational grids.

We obtained roughly the same accuracy with low-discrepancy sequences as with pseudorandom numbers,
due to the high effective dimension. The CPU time in Table 4.2 of our implementations of the quasi-Monte Carlo
versions was significantly smaller, due to the efficient generation algorithms. Quasi-Monte Carlo algorithms are
more difficult to parallelize due to the nature of the sequences, but this can be done if the generators of the
low-discrepancy sequences have the necessary functionality.

5. Conclusion and future work. The purpose of this paper is to present and study quality of a fast
generator of scrambled Sobol sequence, and its grid implementation. The comparative study of Monte Carlo
and quasi-Monte Carlo method using Sobol sequence for computing very high-dimensional integrals (s=100)
show the advantages of our generator even in heterogeneous computing environment. In any case high dimen-
sional problems are good candidates for execution in the Grid environment, although the use of quasi-Monte
Carlo or true random number generators poses certain technical challenges, related to the parallelization of the
computations or the repeatability of results.

As a future work we plane to use other scrambling methods for Sobol sequence and its usage in large
problems.
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