
Scalable Computing: Practice and Experience

Volume 11, Number 2, pp. 121–130. http://www.scpe.org
ISSN 1895-1767
c© 2010 SCPE

PREDICTION AND LOAD BALANCING SYSTEM FOR DISTRIBUTED STORAGE

RENATA S LOTA†, DARIN NIKOLOW†, STANIS LAW POLAK†, MARCIN KUTA†, MARIUSZ KAPANOWSKI†,

KORNEL SKA LKOWSKI†, MAREK POGODA‡, AND JACEK KITOWSKI†‡

Abstract. National Data Storage is a distributed data storage system intended to provide high quality backup, archiving and
data access services. These services guarantee high level of data protection as well as high performance of data storing and retrieval
by using replication techniques. Monitoring and data access prediction are necessary for successful deployment of replication.
Common Mass Storage System Model (CMSSM) is used to present a storage performance view of storage nodes in unified way for
monitoring and prediction purposes. In this paper some conceptual and implementation details on using CMSSM for creating a
Prediction and Load Balancing Subsystem for replica management are presented. Real system test results are also shown.

1. Introduction. National Data Storage (NDS) is a distributed data storage system intended to provide
high quality backup, archiving and data access services [1]. These services are capable of providing high level of
data protection, data availability and data access performance. In order to guarantee these capabilities replica-
tion techniques are used. Two problems arise with using this approach: selecting physical storage locations for
newly created replicas and choosing the best replica for a given data transfer. If these problems get solved we
can count on faster data access.

The client access to NDS is provided by Access Nodes (ANs). ANs spread over the country are located in
national computer centers having direct links to the NDS Pionier backbone network [2]. The general idea is
that client requests come via different ANs and the requested data is served by the most appropriate Storage
Node (SN), selected separately for each request, being the one which can provide requested data fastest. In this
way some natural load balancing is achieved depending on the client access pattern.

In order to provide the required high performance data access functionality a replica management system
called Prediction and Load Balancing System (PLBS) was implemented. This paper presents some conceptual
and implementation details on creating PLBS. Essential part of this research concerns replication and the
development of replication policies, which should help achieving reasonable level of storage load balancing.
These policies are based on CMSSM storage model [3] which allows to provide an unified layer for monitoring
purposes. The potential scope of application of the proposed approach is wide, for example it could be used for
multi-player on-line games [4] as well as for data storing from HEP experiments [5].

The rest of the paper is organized as follows: The next section presents the state of the art in the field of
replication strategies and storage system modeling and monitoring. The third section describes the CMSSM
storage model. Fourth section shows how CMSSM is adopted in the PLBS subsystem. The fifth section gives
some overview of the replication strategies used in the system. The test results are presented in the sixth section
and the last section concludes the paper.

The paper is an extended and modified version of the article [6] presented at the PPAM09 conference. The
extension concerns: (i) description of CMSSM, (ii) showing how CMSSM is adopted in the PLBS subsystem,
(iii) presenting new experimental results.

2. State of the Art. With the steadily growing users demand for data storage space and access quality
the data management techniques become an important issue of any distributed computing environment [7].
In [8] we can find survey of data management techniques in various distributed systems. Scalability taxonomy
of data management is also proposed. A part of the data management systems concerns data replication. There
are many researches focused on replication strategies. In [9] five replication strategies for read only data are
presented. The strategies have been tested using three different access patterns. The study assumes tiered
network with a central data source. Similar network model having constant storage nodes locations in the
network hierarchy is studied in [10]. Park et al. in [11] study replication with another network hierarchy with
no central storage node, where the node distance is expressed as link bandwidth. Their technique might be
better in the case when the Internet is used for data transfer.

The mentioned studies assume static hierarchy and do not take into account the dynamic changes of
bandwidth and latency resulting from the load of distributed system. In [12] an attempt to cope with this
problem has been made. For replica selection they propose a neural net based algorithm predicting the network

†Institute of Computer Science, AGH-UST, al. Mickiewicza 30, 30-059, Kraków, Poland (rena,darin,kito@agh.edu.pl)
‡Academic Computer Center CYFRONET-AGH, ul. Nawojki 11, 30-950 Kraków, Poland

121

122 Renata S lota Darin Nikolow et al.

transfer time of a replica. Another example of research on replica access time prediction based on previous data
transfers measurements is [13] in which the Markov chains are used for prediction.

Authors of paper [14] propose 3 heuristic algorithms for selecting the location of new replica based on
network latency parameters and number of client requests observed in a certain time interval from the past.
Fair-Share replication presented in [15] for choosing new replica location takes into account previous access load
of server as well as availability of storage device represented by their storage load. In this way better load
balancing among the storage servers is achieved.

Tests of the proposed replication strategies in the studies mentioned by now are conducted by using simu-
lations. Results of real implementation of proposed models and strategies using monitoring of existing storage
environment are shown in [16] and in their previous studies. The presented in these papers replication algo-
rithms embody, besides the data access cost imposed by the network, also the cost caused by storage devices
capabilities. In the case when a distributed storage system uses high bandwidth network it turns out that
the system bottleneck are the storage devices, which bandwidth can be additionally limited according to their
actual access load.

The majority of replica selection algorithms assumes that many users access the same data sets. In the
case of data storage service holding mainly private user data, users will rather access their own particular files
(holding backups or archives). That is why, essential in this case is access load balancing increasing the overall
system utilization and thus reducing the access cost. In the proposed solution essential part of the process
of existing replica selection and the process of new replica location selection is focused on the evaluating of
storage system performance and evaluating of server load. The evaluation is based on the adopted Common
Mass Storage System Model (CMSSM) proposed in [17].

Using of general monitoring system like Nagios [18], Ganglia [19] or Gemini [20] for monitoring the perfor-
mance of HSM systems is troublesome since these systems do not provide the necessary utilities and methods of
data gathering, for example, interactive queries to the monitored system or monitoring of storage request queue.
Taking into account the heterogeneity of storage systems in term of hardware and software it is important to
have an unified access to the monitoring data. Some effort in this area is done by Distributed Management Task
Force [21] by specifying the Common Information Model (CIM) [22] for managing computer systems. SMI-S [23]
is a CIM based standard which defines interface for managing storage environments. Grid Laboratory Uniform
Environment (GLUE) [24] is a conceptual, object-oriented, information model of Grid environments, and its
main goal is to provide interoperability among elements of the Grid infrastructure. The above models do not
accurately present HSM systems.

The review of related works shows that the problem of data management for performance and load balancing
purposes in distributed system with underlying HSM systems as storage horses is not fully addressed which
motivated us to start this research.

3. Common Mass Storage System Model. Storage systems used in modern grid-like computing en-
vironment are often heterogeneous for historic or economics reasons. Within a virtualized environment with
dynamic changing parameters a proper performance monitoring is a hard task. The lack of an unified represen-
tation of performance related view of storage systems and especially of HSM storage system was the motivation
for developing the Common Mass Storage System Model [3].

The model supports various storage systems with special attention taken to the HSM systems. In the model
a set of performance related parameters are defined and grouped in appropriated classes according to type of
storage subsystems or parts (e.g. tape drive, library, etc) they are related to.

The model can be used for internal object based representation of storage system for simulation purposes
and is used by various monitoring services to give a performance point of view at the given storage system.

The class diagram for the model representing HSM systems is shown in Fig.3.1. The model is able to
represent any HSM systems with a certain accuracy, which depends on the vendor’s availability of methods for
obtaining the performance related parameters specified in the model. We can see that the model can be quite
accurate since parameters like queue of waiting requests with detailed information about each request are speci-
fied. This allows for very accurate performance prediction for a particular piece of data residing anywhere in the
storage hierarchy since it is possible to monitor where the data resides - on disk cache or tertiary storage (which
tape, block, etc), it is possible to monitor if there are free resources (for example tape drives) to fulfill the request.

Our vision of a general distributed storage system which makes use of CMSSM for data access prediction
is presented in Fig.3.2. The system has well defined functional layers. On the bottom there is the storage layer

Prediction and Load Balancing System for Distributed Storage 123

Fig. 3.1. CMSSM’s class diagram for HSM system.

Local Disk

Storage layer

Monitoring layer

Estimation layer

Data Management

HSM System Disk Array

Fig. 3.2. Layered view of distributed storage system with data access prediction using CMSSM.

representing complete storage systems (hardware + software) like HSM systems, disk arrays, etc. Sensor layer
contains pieces of software which are able to obtain one or more parameters about the given storage system.
Generally, sensors are storage system dependent, but in some cases, like for instance a sensor measuring the
read/write performance by doing real file I/O, one sensor can fit to more than one types of storage system.
Sensors have well defined interface and can be included as plugins to a higher level monitor. Monitoring layer
contains of monitors running on the monitored storage node. Monitors have well defined unified interface
allowing other services to get selected parameters from them via the network. Requested parameters are sent
in data format compatible with CMSSM. Estimation layer contains estimation services, which estimates the
performance of storage system or time-to-complete for particular future data transfer. There can be various
estimation services using different algorithms and having different estimation accuracy.

Services associated with a certain layer can use services from the lower layers and can bypass layers. For
instance management layer service can use directly storage layer tools.

124 Renata S lota Darin Nikolow et al.

4. Application of CMSSM in NDS. NDS is aimed at building a national storage system providing high
quality backup, archiving and data access. The system uses high bandwidth network - Pionier, as a backbone.
The system consists of Access Nodes (ANs), which provide the end user interface to system, and storage nodes
(SNs) with HSM systems attached. There are also a couple of management nodes. One of the goals of the
project is to provide high efficiency based on replication techniques according to user profiles. In the case of
data reading the best replica needs to be selected while in the case of data writing the best storage location
needs to be chosen. These tasks are completed by the PLBS system briefly described below.

4.1. PLBS. Prediction and Load Balancing System (PLBS) is responsible for load balancing of data access
requests among the SNs being part of the NDS. PLBS consists of three subsystems (see Fig.4.1): adopted JMX
Infrastructure Monitoring System (JIMS) [25], Advanced Monitoring Database (AMDB) for keeping the values
of monitored parameters and Advanced Monitoring and Prediction Daemon (AMPD).

The JIMS based monitoring system consists of Monitoring Agents (JIMS+AMT) installed on every HSM
system being part of NDS, and JIMS Gateway collecting data from the agents and storing it to database.
JIMS+AMT, JIMS Gateway and AMDB implement the sensors and aggregation layer (see section 3) respec-
tively. The AMPD is responsible for proposing the best replica and location according to the chosen replication
policy (see section 5) and implements the estimation layer. One of the requirements for the AMPD is that it
must quickly respond, so the user requesting a storage operation does not experience system or data unavail-
ability. Monitoring parameters are measured cyclically by background threads and are stored in the database.
In this way the actual parameters (for a certain time interval) can be quickly retrieved from the database and
the AMPD can return the results.

Local Disk

Storage layer

Monitoring layer

Estimation layer

Data Management

Fig. 4.1. Application of CMSSM in NDS.

The HSM monitoring parameters are derived from the CMSSM model described in section 3. The pa-
rameters are used to predict the system performance. The parameters are divided into two categories: static
parameters changing their values rarely and dynamic parameters changing their values frequently. Part of the
model used by the replication policies implemented in PLBS so far is presented below along with the database
description.

4.2. The PLBS database–AMDB. The goal of the AMDB is to collect monitored parameters (from
the CMSSM model) of distributed nodes in a single place. The approach to store current values of monitored
parameters in a database has been chosen, because it allows to completely separate an application logic layer
from a monitoring layer.

The AMDB is realized in the standard relational model and conforms to the CMSSM model. The structure
of the database is derived from the structure of the monitored systems, which means that the database tables suit
to essential HSM components, such as: libraries, drives, pools, tapes, disk cache, etc. The parameters, stored
in the database, are divided into two groups: static parameters and dynamic parameters. A simple diagram
showing relations between the PLBS database tables is shown in Fig. 4.2. The table columns specification is
omitted for simplicity. The dynamic hsm parameters history table stores history of changes of the dynamic

Prediction and Load Balancing System for Distributed Storage 125

Fig. 4.2. The AMDB diagram.

HSM parameters. This table allows the application logic layer to make decisions based not only on the current
values of parameters, but also on their statistical values.

Table 4.1 presents summary of the static parameters stored in the AMDB, which are used in the replication
policies. Updates of these parameters are performed only on user’s demand, for example after a HSM system
reconfiguration. Some of these parameters constitutes average values (like average disk cache transfer rate),
which are provided by external measurements.

Table 4.1

Description of static parameters used in the replication policies.

Parameter name Description Implementation

TotalCapacity Estimated total capacity
of a storage system in-
stalled on a single server.

The value of this parameter
is estimated as a sum of disk
cache capacities

TotalDCCapacity Total capacity of a single
HSM system disk cache.

The value of this parameter
is received from the df UNIX
systems command.

AverageDCReadRate Estimated value of aver-
age disk cache read trans-
fer rate.

The value of this parame-
ter is measured by special
benchmarks.

AverageDCWriteRate Estimated value of aver-
age disk cache write trans-
fer rate.

The value of this parame-
ter is measured by special
benchmarks.

NumberOfLibraries Total number of tape li-
braries connected to a sin-
gle server.

The value of this parame-
ter is received from configu-
ration files.

Table 4.2 presents summary of the dynamic parameters stored in the AMDB, which are used in the NDS
replication policies. These parameters are updated periodically. The update interval is set manually in the
PLBS configuration files.

5. Replication policies. The selection of SN for a given data access request is done by heuristic methods
taking into account relevant monitoring parameters described in the previous section. Depending on the user
profile an appropriate method (called further policy) is used. The AMPD component implements 5 replication
policies: round robin—RR, reading in shortest time—R ST, reading from the minimally loaded device—R ML,
writing replicas of big files—W BF, writing replicas to the minimally loaded device—W ML.

126 Renata S lota Darin Nikolow et al.

Table 4.2

Description of dynamic parameters, which are used in the replication policies.

Parameter name Description Implementation

FreeCapacity Estimated free capacity of
a storage system installed
on a single server.

The value of this parameter is es-
timated as a sum of free tapes ca-
pacity.

FreeDCCapacity Free space in a single HSM
system disk cache.

The value of this parameter is ob-
tained from the df UNIX systems
command.

CurrentRate Transfer rate value from
the last measurement.

The value of this parameter is
measured by periodically.

HSMLoad Number of requests wait-
ing or being processed by
the HSM system.

The value of this parameter is re-
ceived from the dsmq command
for the Tivoli Storage Manager
(TSM) systems and from the fse-
job command for the File System
Extender (FSE) systems.

The RR policy is implemented mainly for testing purposes—it does not require monitoring data and it just
selects cyclically the next available SN for subsequent requests. The other four policies select the location, for
which the value Loc, defined in equations 5.1–5.4, is maximized. The R ST policy is defined by:

Loc = α1 ·
RD

RDMax

+ α2 ·
CT

RD
+ α3 ·

1

1 +HL
, (5.1)

where RD—average disk cache read transfer rate, RDMax—maximal value of average disk cache read transfer
rate, taken over all locations, CT—current transfer rate, HL—hsm load,

∑
i∈{1..3} αi = 1, αi > 0. The exact

meaning of these values is given in Tables 4.1 and 4.2.
Equation (5.2) expresses the R ML policy:

Loc = β1 ·
ND

NDMax

+ β2 ·
1

1 +HL
+ β3 ·

1

1 + CL
, (5.2)

where ND—number of drives, NDMax—maximal value of number of drives, taken over all locations, CL—CPU
load,

∑
i∈{1..3} βi = 1, βi > 0.

Each writing policy determines first whether enough free space is available in a HSM system. Equation 5.3
defines the W BF policy.

Loc = γi ·
FCDC

TCDC

+ γ2 ·
FC

TC
+ γ3 ·

WR

WRMax

+ γ4 ·
1

1 +HL
, (5.3)

where FCDC—free disk cache capacity, TCDC—total disk cache capacity, FC—free capacity, TC—total capac-
ity, WR—average disk cache write transfer rate, WRMax—maximal value of average disk cache write transfer
rate, taken over all locations,

∑
i∈{1..4} γi = 1, γi > 0.

The policy W ML is defined by equation 5.4,

Loc = δ1 ·
FCDC

TCDC

+ δ2 ·
WR

WRMax

+ δ3 ·
1

1 +HL
, (5.4)

where
∑

i∈{1..3} δi = 1, δi > 0.
α, β, γ and δ are coefficients specifying the impact of the particular monitoring parameters being used in

the above formulas. They need to be tuned for the given environment. The above policies are chosen according
to the client profile making request and the type of the request. For instance, if the client has defined in the
profile that it needs the data as fast as possible than the R ML policy is chosen.

Prediction and Load Balancing System for Distributed Storage 127

6. Test results. Four types of tests has been conducted:
• Monitoring influence tests—showing PLBS impact on the performance of the monitored HSM systems,
• Response time tests—showing how fast PLBS responds,
• Load balancing tests—showing data access requests distribution among the storage nodes in multi user
and multi requests data access paradigm,

• Throughput tests—showing the total throughput of NDS for selected PLBS replication policy.
The monitoring influence tests are targeted at the JIMS+AMT module while the response time tests are

targeted at AMPD module and the both concern the overhead introduced by PLBS to NDS. Load balancing
and throughput tests concern the efficiency of data access which can be obtained due to deploying of PLBS to
NDS and are provided for a selected policy.

The tests have been conducted using the PLATON [26] infrastructure on which the NDS described above
is deployed. The testing environment consists of 5 nodes described in detail in Table 6.1 and connected via
Pionier network with 1Gb links. Monitoring agents are installed on every SN while JIMS Gateway, AMPD and
AMDB are installed on the kmd2 host (see Sec. 4). The results are presented in the following subsections.

Table 6.1

Test environment nodes

name location type CPU HSM drives HSM cache
[TB]

Cyfronet Krakow SN 2×Xeon 3.3GHz IBM TSM 4x LTO 2
PCSS Poznan SN 2×Xeon 2.8GHz IBM TSM 3x LTO 2
WCSS Wroclaw SN 2×Xeon 2.8GHz IBM TSM 2x LTO 1
TASK Gdansk SN 2×Xeon 2.8GHz IBM TSM 3x LTO 0.2
kmd2 Krakow MN 2×Xeon 2.8GHz na na na

SN—Storage Node, MN—Monitoring Node

6.1. Influence tests. In order for the JIMS to retrieve monitoring data from storage nodes a monitoring
agent (JIMS+AMT) (see Fig.4.1) needs to be present on these nodes. The goal of these tests is to measure the
influence to performance of storage system when the JIMS+AMT is running on the same node. These tests
were performed on the Cyfronet SN (see Table 6.1). This HSM system is in production and the measurements
were done during periods of low activity. The main disk storage of the server resides on HP EVA8000 disk
array and is attached via 2 FC 2Gb/s links. It is used as disk cache for the HSM system. Repeated patterns
of simulated users activities were generated by ftp transfers from other hosts (HSM clients). The JIMS+AMT
performed measurements every 10 minutes. Disk reads and writes generated by the measurements had little
impact (maximum 5%) on overall execution times of data transfers to and from clients. An example test result
is shown in Fig. 6.1

The most influence of JIMS+AMT activity on users data transfers occurs in short periods when the agent
measures disk write performance used to calculate AverageDCWriteRate (see Table 4.1). The system utilization
statistics come from sar program. The user data rates were taken from network traffic statistics as there was
no other network traffic on the server during the tests.

6.2. Response tests. Response tests measure the time of processing prediction requests to AMPD. Ta-
ble 6.2 presents test results for the implemented replication policies. Each value is taken as an average over
5000 requests. We distinguished two cases: (1) the client is on the same machine that AMPD, (2) the client is
located remotely to the AMPD component.

We can see that the response times are acceptable for all policies and they do not exceed 102 ms for remote
clients and 65 ms for local ones. The network overhead has great influence on the final response times - without
it the processing time is shorter by about 37 ms.

6.3. Load balancing test. Load balancing test shows how the requests get distributed among the storage
nodes. One monitoring node and four storage nodes have taken part in this test (see Table 6.1). The testing
procedure is as follows: First, a set of 100 files has been written to the storage nodes in such way that all
files are replicated to all four storage nodes. The file size is 1GiB. Next, a script requesting storage nodes
performance prediction and reading data from the appropriate replica is run. The script starts new requests

128 Renata S lota Darin Nikolow et al.

 0

 40

 80

 120

 160

 0 300 600 900 1200 1500 1800

D
is

k
 I

/O
 [

M
B

/s
] total reads

total writes

 0

 20

 40

 60

 0 300 600 900 1200 1500 1800

U
s
e

r
I/

O
 [

M
B

/s
]

user data rate (read)

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200 1500 1800

C
P

U
 u

ti
liz

a
ti
o

n
 [

%
]

time [s]

%CPU system
%CPU iowait

%CPU idle

Fig. 6.1. An example result of monitoring influence test.

Table 6.2

Time of serving prediction requests

Replication policy
Response time [ms]
local remote
client client

Reading in shortest time 64.5 101.6
Reading from the minimally loaded device 18.6 55.1
Writing big files 14.7 51.3
Writing to the minimally loaded device 13.3 50.0
Round Robin 11.8 48.8

until 8 concurrent transfers get present. When a transfer is over another request is started. For each test run
2000 requests have been done. The number of requests has been chosen big enough to allow at least few updates
of monitoring performance data (used for the prediction) to occur.

It should be noted that result of performance prediction is a sorted list of storage nodes. The nodes are
sorted according to the value obtained for the given replication policy. A normalized value (between 0–100) is
assigned to each node indicating its relative storage performance. In order to prevent overloading of one storage
node (by always sending the request to the best node) the script selects a storage node with a certain probability
which is proportional to its current storage performance (obtained from the monitoring and prediction).

Figure 6.2 provides results of prediction tests for the R ST policy with the following coefficient values:
α1 = 0.6, α2 = 0.2, α3 = 0.1. Each point represents the fraction of requests for which a particular host has
been selected within the given range of request numbers. The range has been set to 100 requests. At a given
moment additional storage load has been issued to the best storage node (PCSS) to study the adaptability of
the system in changing environment (mark A). We can see that shortly after that the requests distribution gets
reorganized and the TASK storage node gets serving more requests.

We can see that the requests are distributed between the nodes according to their storage processing
power—the most powerful storage nodes (PCSS and TASK) have served the majority of requests.

6.4. Throughput tests. The throughput tests are intended to compare the overall storage throughput
of the system for the R ST replication policy and the RR policy. The testing procedure is the same as the one
for the load balancing tests. The tests have been conducted for idle and loaded storage devices. The results
are presented in Table 6.3. We can see that the R ST policy is much better than the RR policy especially

Prediction and Load Balancing System for Distributed Storage 129

 0

 10

 20

 30

 40

 50

 60

 70

0 500 A 1000 1500 2000

request number

re
q
u
e
s
ts

 [
%

]

CYFRONET
TASK
PCSS
WCSS

Fig. 6.2. Replication tests for R ST policy

if additional load is put on the system. We can also observe that for the R ST policy the throughput is not
influenced by the additional storage load. It is because the load gets distributed proportionally to the other
nodes which are still having unused storage performance.

Table 6.3

Storage throughput

Replication policy
Storage throughput [MiB/s]
idle loaded

R ST 325 327
RR 233 101

7. Summary and future work. In this paper the application of CMSSM in the national distributed
storage system, NDS, has been described. The PLBS subsystem being a part of the NDS system and providing
advanced monitoring and prediction functionalities has been presented. The system makes use of replication
techniques to increase availability and performance of data access. Monitoring parameters, methods for re-
trieving them and replication policies have been described. The influence tests showed that the monitoring did
not cause essential storage system performance degradation. The system response times are within the tens
of milliseconds range which is satisfying. Load balancing test shows that requests get distributed between the
nodes proportionally according to their storage processing power. Our future plans focus on using CMSSM and
its ontological representation in knowledge supported distributed storage system with quality of service.

Acknowledgments. This research is partially supported by the MNiSW grant nr N N516 405535 and
PLATON project POIG.02.03.00-00-028/08. AGH-UST grant nr 11.11.120.865 is also acknowledged. Thanks
go to: prof. K. Zieliński for giving access to the JIMS software, M. Brzeźniak for support with PLATON
infrastructure, M. Jarza̧b for support with JIMS, PLATON partners for sharing storage resources.

REFERENCES

[1] National Data Storage project, Polish MNiSW grant nr R02170170170172055 03, https://kmd.pcss.pl
[2] Pionier—Polish Optical Internet, http://www.pionier.gov.pl
[3] D. Nikolow, R. Slota, J. Kitowski, “Knowledge Supported Data Access in Distributed Environment”, Proc. of CGW’08,

October 13-15 2008, ACC-Cyfronet AGH, 2009, Krakow, pp. 320-325.
[4] J.H. Han, D.H. Lee, H. Kim, H. P. In, H.S. Chae, Y.I. Eom “A situation-aware cross-platform architecture for ubiquitous

game”, Computing and Informatics, vol. 28, nr 5, 2009, pp. 619-633
[5] Funika, W. - Korcyl, K. - Pieczykolan, J. - Skital, L. - Balos, K. - Slota, R. - Guzy, K. - Dutka, L. - Kitowski, J. - Zieli1717ski,

K. “Adapting a HEP Application for Running on the Grid”, Computing and Informatics, vol. 28, nr 3, 2009, pp. 353-367
[6] S lota, R., Nikolow, D., Kuta, M., Kapanowski, M., Ska lkowski, K., Pogoda, M., Kitowski, J., “Replica Management for

National Data Storage”, Proceedings PPAM09, LNCS 6068, Springer, in print.
[7] Chai, E., Matsumoto, K., Uehara, M., Mori, H., ”Virtual Large-scale Disk Base on PC GRID”, Scalable Computing: Practice

and Experience, vol. 10, nr 1, SWPS, 2009, pp.87-98.
[8] Srinivas, A., Janakiram, D., “Data Management in Distributed Systems: A Scalability Taxonomy”, Scalable Computing:

Practice and Experience, vol. 8, nr 1, SWPS, 2007, pp.115-130.

130 Renata S lota Darin Nikolow et al.

[9] Ranganathan K., Foster I.: “Identifying Dynamic Replication Strategies for a High-Performance Data Grid”. in: Proc. Int.
Workshop on Grid Computing, Denver, Nov. 2001.

[10] Lamehamedi H., Szymański B., Deelman E., “Data Replication Strategies in Grid Environments”, in: IEEE Computer Science
Press, Los Alamitos, CA, 2002, pp. 378-383.

[11] Park S., Kim J., Ko Y., Yoon W., “Dynamic Data Grid Replication Strategy Based on Internet Hierarchy”, LNCS 3033,
Springer, 2004, pp.838-846.

[12] Rahman R.M., Barker K., Alhajj R., “A Predictive Technique for Replica Selection in Grid Environment”, in: 7-th IEEE Int.
Symp. on Cluster Computing and the Grid, IEEE Computer Society, 2007.

[13] Li, J., “A Replica Selection Approach based on Prediction in Data Grid”, in: Proc. Third Int. Conf. on Semantics, Knowledge
and Grid - SKG2007, 29-31 Oct. 2007, Xi’an, Shan Xi, China, pp. 274-277.

[14] Rahman R.M., Barker K., Alhajj R., “Replica placement Strategies in Data Grid”, in: J Grid Computing (2008) 6:103-123,
Springer Science + Business media B.V. 2007.

[15] Rasool, Q., Li, J., Oreku, G.S., Zhang, S., Yang, D., “A load balancing replica placement strategy in Data Grid”, Third IEEE
Int. Conf. on Digital Information Management (ICDIM), Nov. 13-16, 2008, London, UK, Proc. IEEE 2008, pp. 751-756.

[16] S lota, R., Skita l, L., Nikolow D., Kitowski J., “Algorithms for Automatic Data Replication in Grid Environment”, in: LNCS,
3911, Springer, 2006, pp. 707-714.

[17] D. Nikolow, R. S lota, and J. Kitowski, “Grid Services for HSM Systems Monitoring”, LNCS 4967, Springer, 2008, pp.321-330.
[18] Nagios, http://www.nagios.org/
[19] Ganglia monitoring system, http://ganglia.sourceforge.net
[20] B. Balís, M. Bubak and B. Labno, GEMINI: Generic Monitoring Infrastructure for Grid Resources and Applications, Proc.

of Cracow’06 Grid Workshop, Oct 15-18, 2006, Cracow, Poland, ACC Cyfronet AGH, 2007, pp. 60-73.
[21] Distributed Management Task Force, http://www.dmtf.org
[22] Common Information Model, http://www.dmtf.org/standards/cim/.
[23] Storage Management Initiative Specification (SMI-S), http://www.snia.org/tech_activities/standards/curr_standards/

smi.
[24] Grid Laboratory Uniform Environment (GLUE), http://forge.gridforum.org/sf/projects/glue-wg.
[25] Zieliński, K., Jarza̧b, M., Balos, K., Wieczorek, D., “Open Interface for Autonomic Management of Virtualized Resources in

Complex Systems—Construction Methodology”, in: FGCS, vol. 24, Issue 5, May 2008, pp. 390-401.
[26] PLATON—Service Platform for e-Science, http://www.platon.pionier.net.pl/.

Edited by: Norbert Meyer
Received: March 30, 2010
Accepted: June 18, 2010

