
Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 305�325. http://www.spe.org ISSN 1895-1767© 2010 SCPEWIDE AREA DISTRIBUTED FILE SYSTEMS�A SCALABILITY AND PERFORMANCESURVEYKOVENDHAN PONNAVAIKKO∗AND JANAKIRAM DHARANIPRAGADA∗Abstrat. Reent deades have witnessed an explosive growth in the amounts of digital data in various �elds of arts, sieneand engineering. Suh data is generally of interest to a large number of people spread over wide geographial areas. Over theyears, several Distributed File Systems (DFS) have, to varying degrees, addressed this requirement of sharing large amounts ofdata, stored in the form of �les, among several users and appliations. Salability and performane are two important measuresthat determine the suitability of a �le system for the appliations exeuting over them. We perform a detailed omparative analysisof popular distributed �le systems in terms of these measures in our survey.1. Introdution. In reent deades, we have been witnessing inreasingly large rates of data generationand growing numbers of widely spread ollaborative appliations. For example, data requirements of HighPerformane Computing (HPC) appliations have been ontinuously growing over the past few years and areexpeted to grow even more rapidly in the years to ome [23℄. Experimental setups, deployments of sensors,simulators, agents, et. generate large amounts of data whih researhers world over an have use for. Otherexamples inlude WikipediaFS [10℄, and large sale telemediine [24℄.Organizing and sharing raw and proessed data �les owned by di�erent users and groups alls for the needof large sale Distributed File Systems (DFS) [46℄ [7℄ [8℄.Any �le system that allows �les to be plaed aross the network and yet make aesses appear loal is adistributed �le system. Certain systems are Client-Server based (Asymmetri) in that dediated servers existto provide �le servies. In Peer-to-Peer (P2P) or Symmetri �le systems, data/metadata management load isdistributed among all the nodes. Clustered �le systems are those in whih the data/metadata server is replaedby a luster of servers to better distribute load and handle failures. A Parallel �le system enables onurrentreads and writes of the same �le and parallel I/O [22℄. Some parallel �le systems support the striping of a �leaross multiple storage devies.There exist several large sale distributed �le systems. For our survey, we onsider a set of popular produ-tion systems and researh prototypes (table 1.1)1. This set has been hosen so as to over the major arhiteturalvariations of existing systems.These systems vary in terms of their typial appliation workloads and the geographial spread of theirtypial usage. For example, some of them are designed for desktop workloads and some for sienti� appliations.Some of the analyzed systems are not designed to be wide area �le systems, i. e., lients and servers are notdesigned to be geographially spread aross Wide Area Networks (WAN). However, other features suh as highsalability have prompted researhers to adapt even suh systems for use aross WANs. Some examples inludethe usage of Lustre �le system in [42℄ and Parallel Virtual File System 2 in [5℄.Keeping in mind the ommon nature of new generation appliations, we analyze the arhitetures of thesesystems with respet to the following appliation requirements. The �rst requirement is that of salability withrespet to the number of nodes and �les. In other words, inreasing the number of nodes and/or �les mustnot adversely a�et query/aess times. The other major requirement is that of maintaining high appliationperformane. For HPC appliations, performane an be measured in terms of makespan, omputation or I/Othroughput, et. In �le systems maintained for home diretories and suh, performane an be measured interms of query response latenies, �le aess/update times, and so on.Using a few system parameters, we attempt to haraterize the e�ets of inreasing query and I/O loadson individual �le system servers. We also study the support provided by the di�erent systems for sophistiateddata plaement and migration strategies, whih are ritial for high appliation performane. In setion 2, wedisuss some of the design onsiderations in the ontext of large sale DFSs. Setion 3 summarizes the systemarhitetures of the various DFSs analyzed in this survey. The omparative analysis is presented in setion 4.
∗Distributed and Objet Systems Lab, Department of Computer Siene and Engineering, Indian Institute of Tehnology Madras,Chennai, India
1An extensive list of omputer �le systems an be found at [3℄. Comparisons of general and tehnial features of a large numberof �le systems an be found at [2℄. 305



306 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 1.1Set of Analyzed File SystemsAndrew File SystemCephCommon Internet File SystemEdge Node File SystemFarsiteGoogle File SystemIvyLustre File SystemOeanStorePanasas Parallel File SystemPangaeaParallel Virtual File System 2WheelFS Table 2.1Classi�ation of the Analyzed File SystemsCategory Name SystemsI Traditional DistributedFile Systems Andrew File System, Common Internet File SystemII Asymmetri Cluster FileSystems Ceph, Google File System, Lustre File System, Panasas Par-allel File System, Parallel Virtual File System 2, WheelFSIII Self-OrganizingP2P File Systems Edge Node File System, Farsite, Ivy, OeanStore, Pangaea2. Design Considerations. Traditionally, distributed �le system designers have adopted a lient-servermodel. In these asymmetri systems, dediated servers exist to provide �le servies and lients only onsumethe servies. Typially, the server exports hierarhial namespaes and lients mount the exported hierarhiesin their loal namespaes.A lient-server approah has several advantages suh as ease of maintenane, e�ient management of on-urrent reads and writes of the same �le, and entralized seurity ontrol. However, the presene of a entralizedserver presents signi�ant salability onstraints. File system performane degrades with inreasing �le sizes,and inreasing numbers of �les and users.One of the early approahes to improve �le system performane is lient side ahing. While ahing helpsin reduing network tra�, it also introdues onsisteny issues. Cahed ontent an beome stale and writeollisions an our, espeially in �le systems with stateless servers.In later distributed �le system designs, a multitude of strategies have been employed to address issuesrelated to salability. Individual servers have been replaed by lusters of servers. Analogous to Sharding indatabases, in suh �le systems, namespaes are partitioned and distributed among the di�erent servers in theluster. This helps in the distribution of load and hene better performane.Another e�etive strategy is to deouple data management from metadata management. While data refersto the atual ontent of �les, metadata in the ontext of �le systems refers to the data about �le ontents.Unlike data operations, metadata operations are usually small, random and non-sequential.Deoupling is ahieved by using di�erent sets of servers for data and metadata management. In a typial �lesystem, a large proportion of queries are related to �le metadata. On the other hand, responses to data aessqueries are muh more voluminous. Using di�erent sets of servers for managing data and metadata thereforehelps improve system performane. Clustering and deoupling data and metadata have enabled other salabilityand performane optimizing strategies suh as repliation and striping a �le's ontent aross multiple storagedevies.DFS features suh as onurrent aess, �le striping and repliation ompliate the task of presenting aonsistent view of the �le system to all users. Conurrent aesses an be ontrolled by assoiating data and
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Fig. 3.1. AFS System Arhiteturemetadata with di�erent kinds of loks. In UNIX, the two ommon loking mehanisms, fntl and �ok, allowExlusive and Shared loks to be applied to �les/bloks. All exlusive loks must have been released beforeshared loks an be obtained by lients and all kinds of loks (shared and exlusive) must be released before anexlusive lok an be obtained.While pessimisti approahes suh as loking allow �le systems to support Strit Consisteny Semantis2,they also a�et appliation performane by inreasing messaging overheads and wait times. Certain �le systemssupport weaker onsisteny semantis by allowing onurrent aesses in on�iting modes. In suh systems,appliations either ensure that olliding aesses do not our, or have appropriate on�it resolution mehanismsin plae.High availability of data and metadata is usually a ruial requirement of distributed �le systems. Severalapproahes exist to improve a �le system's availability, eah assoiated with ertain overheads. Some of theapproahes are repliation, ahing, versioning, logging, and antiipatory reads. Di�erent systems employdi�erent ombinations of these tehniques to ahieve the required levels of availability.Though lustered �le systems are more salable than traditional lient-server systems, their salability islimited beause of the manually maintained set of server lusters. A entral augmentable set of servers hasother drawbaks too. Clusters are expensive to set up and maintain. Storage of entire �le systems in a limitednumber of sites makes aess from distant loations ine�ient as a result of high network latenies. Moreover,suh setups reate single points of failure, and are prone to physial vulnerabilities.Inreasing rates of data generation and number of ollaborations among geographially distributed groupsof users have reated the need for Global and P2P �le systems. P2P systems involve minimal or no entraloordination. In P2P or symmetri �le systems, data and metadata management load is distributed among allthe nodes in the system. These systems are generally designed to be self-organizing due to the impratialityof manually administrating huge numbers of storage/ompute resoures.Based on the di�erent evolutionary stages of DFS design, we lassify the analyzed systems into the ategoriesof Traditional Distributed File Systems, Asymmetri Cluster File Systems and Self-Organizing P2P File Systems(table 2.1).3. System Arhitetures. In this setion, we present brief independent reviews of the system arhite-tures of the onsidered �le systems.3.1. Traditional Distributed File Systems. Though Network File System (NFS) [39℄ (up to version 3)is one of the most ommonly used distributed �le system protools, it is usually used in a loal area networkor within a single administrative domain. We have therefore not inluded NFS in this survey. In�uened by
2A read returns the most reently written value.
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Fig. 3.2. CIFS System ArhitetureAndrew File System [21℄ and Common Internet File System [28℄, version 4 of NFS [43℄ supports stateful serversand loks, inludes other performane improvements and an be used in wide area networks.3.1.1. Andrew File System (AFS). Started at the Carnegie Mellon University, AFS [21℄ uses a set oftrusted servers for sharing a ommon diretory struture among several thousand lient mahines. AFS relieson data ahing to address the issue of salability. While earlier versions of AFS required lients to feth whole�les, versions sine AFS 3 support the transfer of smaller bloks of �les.Servers maintain state about lients whih have �les open. Callbaks are used to maintain the onsistenyof ahe ontents. Whenever �le ontents are altered, servers send invalidation messages to the orrespondinglients. A lient, on the other hand, informs the server about the hanges that it has made only at the timeof losing. As a result, AFS only supports Session Semantis3 and not One-Copy Update Semantis4, whih issupported by UNIX.The AFS model (�gure 3.1) omprises of a set of ells, eah ell usually being a set of hosts with the sameInternet domain name. Eah ell has servers exeuting the Vie proess and lients exeuting the Venus proess.AFS provides loation independene by performing the mapping between �lenames and loations at the servers.The hierarhial diretory struture is partitioned into Volumes, whih at as ontainers for related �les anddiretories. Volumes an be transparently migrated between servers. Read-only loned opies of volumes mustbe reated by administrators to enable reovery in the ase of failures. The Kerberos [44℄ protool is used forthe mutual authentiation of lients and servers.3.1.2. Common Internet File System (CIFS). CIFS [28℄ is Mirosoft's version of the Server MessageBlok (SMB) protool along with ertain other protools. CIFS provides remote �le aess over the Internet(�gure 3.2) with features suh as global naming, ahing, volume repliation, remote sharing and loking. SMBuses �at namespaes to address �les and CIFS makes use of the Internet naming system, Domain Name Servie(DNS). While hanges in �le addresses are di�ult to propagate in SMB, CIFS uses the salable noti�ationsystem of DNS to handles suh hanges. Unlike several other wide area �le systems, Uniode �lenames aresupported.Parallelism is supported at the diretory level only and individual �les annot be split among multipleservers. Sine eah �le/diretory must be assoiated with partiular servers and servers are manually adminis-tered, salability with respet to installations and query/data transfer loads in CIFS is limited.
3Changes made to a �le are visible to the other lients only after the writing lient loses the �le.
4In one-opy update semantis, every read sees the e�et of all previous writes and a write is immediately visible to lients whohave the �le open for reading.
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Fig. 3.3. GoogleFS System Arhiteture3.2. Asymmetri Cluster File Systems. There are di�erent kinds of storage arhitetures that dis-tributed �le systems use. Traditional distributed �le systems disussed in setion 3.1 suh as NFS, AFS andCIFS adopt a Network-Attahed Storage (NAS) arhiteture. Servers in these systems provide �le-based aessto their dediated storage devies, to lients aross networks.In the Storage Area Network (SAN) arhiteture, large storage devies suh as arrays of disks are sharedby a luster of nodes. Unlike NAS, data aess is blok-based (�ner granularity), whih results in inreased�exibility in storing huge �les. SAN based �le systems translate �le-level operations to blok-level operations atthe lient. Metadata management is either handled by a entral server or distributed among the luster nodes.IBM's General Parallel File System (GPFS) [18℄ is an example for a lustered �le system that adopts theSAN arhiteture. GPFS uses a distributed token management system to handle onurrent �le aesses amongluster nodes. It also supports data sharing among multiple GPFS lusters.Another storage arhiteture employed by several lustered �le systems suh as Lustre [40℄, Panasas [50℄and Ceph [48℄, uses Objet-based Storage Devies (OSD). OSDs are evolved disk drives that an diretly handlethe storage and serving of objets as against normal disk drives whih work at the level of bits, traks, andsetors. In other words, an OSD handles lower level funtionalities related to objet management within thedevie and exposes objet aess interfaes to appliations.In blok-based �le systems, �le metadata, whih inludes blok loations, is managed by the �le system.As a result, performane is e�eted for large �les sine metadata sizes are also large. On the other hand, OSDbased �le systems manage objets only. The lower level details about ontent striping are handled by the storagedevies themselves. This results in improved performane and throughput.Several lient appliations bene�t from moving omputation to where the data is, instead of getting theontent transferred to the lients [36℄ [47℄. For suh appliations, performane depends on the intelligene ofOSDs [17℄, in terms of their ability to exeute user spei�ed omputations, as well as on their proessing power.3.2.1. Google File System (GoogleFS). GoogleFS [19℄ is a DFS for data intensive appliations, ustom-built for the appliation workload and tehnial environment at Google. A GoogleFS luster omprises of asingle Master and several Chunkservers, as shown in �gure 3.3.The master manages the metadata and the hunkservers store the data. The master uses Heartbeat messagesto periodially monitor the hunkservers. A Shadow master is maintained in order to handle the failure of theprimary master. Files are split into �xed size hunks. A ertain number of replias (three is the default number)of the hunks are stored in the hunkservers. Chunk replias are spread aross raks to maximize availability.The master maintains information about the loation of eah hunk and aess ontrol information. Themaster performs periodi re-balaning of data to ensure that the hunkservers are uniformly loaded at all times.Clients obtain �le metadata from the master and perform all data related operations at the hunkservers.The datasets that appliations at Google work with are usually huge in size and the workload primarilyinvolves append operations. Hene, GoogleFS supports reord append operations only and not random writeoperations. Servers are stateless and lients do not ahe data in GoogleFS. That is beause appliations at
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Fig. 3.4. Lustre System ArhitetureGoogle usually require ertain operations to be performed on �le ontents and only the result to be returned tothem. In fat, the predominant lass of appliation is MapRedue [16℄.The arhiteture of GoogleFS makes it suitable for a speialized set of workloads only. Also, its entralizedmaster an beome a performane bottlenek, espeially for metadata intensive workloads. Hadoop DistributedFile System (HDFS) [13℄ is an open soure Java produt with almost the same arhiteture as that of GoogleFS.3.2.2. Lustre File System. Lustre [40℄ is an objet based DFS used primarily for large sale lusteromputing. It is a prodution system used in several HPC lusters. The system arhiteture of the Lustre �lesystem is shown in �gure 3.4. The system omprises of three main omponents, namely, �le system lients,Objet Storage Servers (OSS) whih provide �le I/O servies, and Metadata servers (MDS).Typially, the above three omponents are on independent nodes whih ommuniate over the network.Using an intermediate network abstration layer, Lustre supports multiple network types suh as Ethernet andIn�niband. Redundany, in the form of an ative/passive pair of MDSs and ative/ative pairs of OSSs, helpsLustre maintain high availability.Lustre enfores strit onsisteny semantis, using loks to enfore serialization. It also uses the JournalingFile System Tehnology5 to prevent data/metadata orruption due to system failures and to enable persistentstate reovery.Sine metadata servers as well as objet storage servers need to be manually administered, Lustre does notsale transparently.3.2.3. Panasas Parallel File System. Panasas [50℄ uses parallel and redundant aess to OSDs toprovide a high performane DFS. At a high level, the system model of Panasas is similar to that of the Lustre(�gure 3.4).The Panasas objet storage nodes have a Blade arhiteture, eah blade omprising of disks, a proessor,memory, and a network interfae. Thus, adding storage apaity inludes the addition of the required omputingpower to e�iently manage the new disks. The storage blades use a speialized �le system whih implementthe objet storage primitives. A per-�le RAID system [32℄ is used to provide for data integrity and salableperformane.The storage blades are managed by a set of Quorum-based luster managers. The set of managers maintainsthe repliated system state using a quorum-based voting protool. Managers stripe �le ontents aross the OSDs.They also handle multi-user aess, onsistent metadata management, lient ahe oherene, and reovery fromlient and OSD failures. Transation Log Repliation protool is used to tolerate metadata server rashes.3.2.4. Parallel Virtual File System, Version 2 (PVFS2). PVFS2 [4℄ is an open soure DFS thatprovides high performane and salable �le system servies for large node lusters. Eah luster node an be a
5Maintains logs of impending hanges before ommitting them to the �le system.
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Fig. 3.5. Ceph System Arhitetureserver, a lient, or both. Like several other lustered �le systems, PVFS2 also supports the striping of a �le'sdata aross several storage nodes. PVFS2 allows for a subset of the servers to be on�gured as metadata servers.PVFS2 servers are stateless and as a result, loks are not supported. Client failures thereby do not a�etthe system in anyway. While this lets the system sale to a large number of lients, it results in little support fordi�erent kinds of aess semantis. While PVFS2 provides atomiity guarantees for updates to non-overlappingportions of a �le, simultaneous writes to overlapping regions an result in inonsistent �le states.New �le/diretory reation is performed by �rst reating the data objet and the orresponding metadataobjet, and then making the metadata objet point to the data objet, and �nally reating a diretory entrypointing to the metadata objet. This way, the �le system remains in a onsistent state always. This mehanisman result in signi�ant amounts of lean up load in ase of ollisions, i. e., in ase of simultaneous updates tothe same portions of the namespae.PVFS2 speializes in supporting �exible data distribution as well as �exible data aess patterns. Forexample, it supports aess to non-ontiguous portions of a �le in a single operation. In that sense, PVFS2implements MPI-IO Semantis losely.Like Lustre, PVFS2 uses an intermediate layered interfae to support multiple network types. Traditionalsolutions for high availability, suh as those used by Lustre, an be used in PVFS2. An experimental omparisonof PVFS2 and Lustre for large sale data proessing is presented in [41℄.3.2.5. Ceph. Ceph [48℄ is an objet-based distributed �le system designed to provide high performane,reliability and salability. Dynami Subtree Partitioning and the distribution of objets using a pseudo randomfuntion, are a ouple of its unique features. The system (�gure 3.5) omprises of lients, OSDs and a metadataservers luster.Ceph ompletely does away with alloation lists and inode tables. Instead, a pseudo random funtion alledCRUSH [49℄ is used for the distribution of objets among the OSDs. Clients an therefore alulate the loationof �le objets instead of performing a look-up.Some �le systems use stati subtree partitioning to delegate authority for di�erent subtrees of a hierarhialnamespae to di�erent metadata servers. Another approah uses hash funtions to distribute metadata. Whilethe �rst approah annot handle dynami loads e�iently, the later approah does away with metadata loality.Ceph uses a dynami subtree partitioning strategy, in whih responsibilities for di�erent subtrees of the names-pae are dynamially distributed among the MDSs. The distribution ensures that server loads are kept balanedwith hanging aess patterns. Popular portions of the namespae are also repliated on multiple servers.Ceph repliates data using a variant of the Primary-Copy Repliation6 tehnique to maintain high avail-ability. The usage of CRUSH rules out the possibility of onsidering spei� node harateristis while making
6One of the replias, whih is made the primary opy, serializes transations and sends updates to the seondary replias.
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Fig. 3.6. WheelFS System Arhitetureobjet plaement deisions. In wide area installations, the average network lateny between lients and Ceph'smetadata servers an be high, a�eting the performane of appliations involving large proportions of metadataoperations.3.2.6. WheelFS. WheelFS [46℄ provides appliations ontrol over replia plaement, onsisteny andfailure handling mehanisms using Semanti Cues. The system allows appliations to manage the trade-o�between the immediay of update visibility and the independene of lient sites to operate on the data. A setof WheelFS servers (�gure 3.6) store �le and diretory objets. Eah �le/diretory has a primary server whihholds its latest ontent. Clients also maintain loal ahes of the �les aessed. By default, WheelFS uses stritClose-to-Open Consisteny Semantis7, with the primary server being responsible for serializing operations.Semanti ues an be used to speify appliation poliies with respet to plaement, durability, onsistenyand large reads. To redue the e�ets of network lateny, data an be plaed lose to lients that are likely touse the data. Files an be lustered together to optimize the performane of operations that aess multiple�les, and repliation levels an be spei�ed.The system an be adjusted to wait for only a spei�ed number of replias to be reated or updated beforeaknowledging a lient's new �le or �le update request respetively. This helps in ahieving quiker responsetimes even in the presene of slow servers. Consisteny related ues allow lients to speify time-out periodsfor remote ommuniations orresponding to �le system operations. Appliations an also use the EventualConsisteny Semantis8 to improve availability.Also, a lient an prefer to read stale opies of �les when the primary servers are hard to reah. Whilereading large �les, lients an hoose to prefeth entire �les into its loal ahe. Cues also enable lients toobtain �le ontents from multiple ahed soures in parallel to redue the load on the primary server.A Con�guration Servie, maintained as a repliated state mahine at multiple sites, is used by lients tolearn about the servers responsible for the di�erent objets. Based on the �rst S bits of the objet identi�er,the identi�er spae is split into 2S slies. The on�guration servie maintains a mapping between slies and theprimary and replia servers responsible for the slies.While resoure loation aware data plaement is supported, WheelFS does not provide resoure hara-teristis aware data plaement. The on�guration servie, maintained as a repliated state mahine, an be abottlenek for large system sizes and heavy query loads.3.3. Self-Organizing P2P File Systems. In P2P systems, every node is both a supplier and onsumerof resoures. Some of the bene�ts of suh an arhiteture are distribution of load among all the peers, inreasedrobustness, and lak of a single point of failure. On the other hand, high system dynamis is one of its major
7When A opens a �le after B has modi�ed and losed it, A is guaranteed to see B 's updates.
8If no new updates are made, the latest updates will propagate through the system eventually and make all the replias onsistent.
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Directory GroupFig. 3.8. Farsite System Arhiteturedrawbaks. In P2P �le systems, peers share the load of �le storage and metadata management. Figure 3.7shows some of the system requirements of P2P �le systems. As disussed earlier, salability and high appliationperformane are the two primary requirements under onsideration.It is well known that deentralization of ontrol and autonomous system management are entral to thedesign of salable distributed systems. In suh systems, load balaning and resoure disovery are omplex tasksbeause of the lak of any entral entity with knowledge about the entire system.However, awareness of resoure harateristis and loations while plaing �le replias is ritial for ahievinghigh appliation performane. That is beause network bandwidth and lateny onerns ditate that data andmetadata be plaed in proximity to where they are onsumed. Ahieving a trade-o� between these on�itingrequirements of deentralization and system awareness is an important design onsideration, espeially in thease of P2P �le systems. One of the approahes to ahieve the trade-o� is to design the system as a federationof manageable lusters.3.3.1. Farsite. Farsite (Federated, Available, and Reliable Storage for an Inompletely Trusted Environ-ment) [6℄ [12℄ is a DFS from Mirosoft Researh built over a network of unstrutured desktop workstations.Farsite provides high �le availability and seurity utilizing the unused storage spae and proessing power of alarge number of nodes. Issues of seurity and trust are addressed using Publi-Key Cryptographi Certi�atessuh as namespae, user and mahine erti�ates. Users and diretory groups authentiate eah other beforeperforming �le system operations.File ontents are enrypted and repliated and the orresponding metadata are managed by Byzantine-Repliated �nite state mahines [33℄. Farsite provides hierarhial diretory namespaes, eah namespae havingits own root. Roots are maintained by a designated group of nodes. Diretory groups an split to distributemetadata management load. Splitting an happen by randomly seleting a group of nodes and designating aportion of the namespae to them (�gure 3.8).Content hashes of �les are stored in the orresponding diretory groups to maintain �le integrity. Di�erentkinds of leases are issued on �les to lients. Cahing is used for improving aess times and reduing networkload. Updates made to �les are not immediately propagated to all the replias. Instead, a lazy propagationmehanism is employed in order to improve performane.
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Fig. 3.9. OeanStore System ArhitetureAs with other hierarhy traversal systems, loating the diretory group for a �le deep in the hierarhymay require several hops, thus making metadata aess expensive. In systems with high hurn rates, groupmembership an keep hanging, resulting in high group management overheads.3.3.2. OeanStore. OeanStore [26℄ is a global sale data storage utility that uses untrusted infrastru-ture. The primary objetive is to provide ontinuous aess to persistent information.Eah objet in OeanStore is assigned a unique global identi�er and is repliated and stored in a set ofservers. A few of the servers in the high onnetivity and high bandwidth regions are made primary repli-as and the rest are made seondary replias (�gure 3.9). Updates made to the objets are ordered by theprimary replias using a Byzantine Fault Tolerant algorithm [14℄. Seondary replias ommuniate with theprimary replias and among themselves to propagate updates in an epidemi manner. Every update resultsin the reation of a new version whih is arhived in the system, making the system ine�ient for large sized�les.Eah objet is assoiated with a root node in the system whih holds information about the objet's replialoations. A variation of Plaxton's randomized hierarhial distributed data struture [34℄ is used by nodes toreah the root of any objet in O(logN) hops, where N is the number of nodes in the system. A probabilistialgorithm using attenuated Bloom Filters [11℄ is also used to rapidly loate objets if they are in the loalviinity.The poliy of Promisuous Cahing whih allows �les to be repliated in any node in the system makesOeanStore highly salable. However, the overheads involved in the maintenane of two tiers of nodes and adissemination tree for eah data objet an be high. High hurn rates among the primary tier nodes an alsoresult in expensive maintenane overheads. Maintenane of Bloom �lters and the Plaxton data struture ateah node an result in high network usage.3.3.3. Ivy. Ivy [31℄ is a P2P read/write �le system based on logs. Eah partiipant maintains a log withinformation about all the hanges made to the �les in the system by the partiipant. The logs of all thepartiipants need to be parsed to be able to get the urrent state of a �le. Updating a �le's ontents howeverrequires an append to the partiipant's log only. Ivy uses DHash [1℄ as the Distributed Hash Table (DHT) [45℄for storing all its logs and, as a result, all its data. The set of all logs in the �le system is referred to as View(�gure 3.10).A partiipant's log is a linked list of log reords. The log-head points to the most reent entry. Contenthashes are used as keys for storing log reords in DHash. The publi key of a partiipant is the key for alog-head. The log-head is digitally signed by the partiipant's private key. The digital signatures and ontenthashes help ensure the integrity of logs in Ivy.



Wide Area Distributed File Systems 315
Participants

Log RecordsLog−HeadView Block

Fig. 3.10. Ivy: File System View
/.../dirA

Golden Replica

Random Graph

/.../dirA/fil1 /.../dirA/fil2

Fig. 3.11. Pangaea System ArhitetureA private snapshot of the system is maintained by the partiipants in order not to have to san all the logsfor every read. Only the most reent log reords need to be sanned. Sine Ivy avoids using shared mutabledata strutures, loking is not neessary. Ivy logs ontain version vetors and timestamps. These an helpappliations in deteting and resolving on�its that may arise due to onurrent updates.This strategy of maintaining per-partiipant logs makes Ivy suitable only for a small number of ooperatingusers. Moreover, high possibilities of on�iting onurrent updates result in Ivy providing weak onsistenysemantis.3.3.4. Pangaea. The objetive of Pangaea [38℄ is to build a planetary-sale P2P �le system used by groupsof ollaborating users all over the world. The system attempts to ahieve low aess lateny and high availabilityusing Pervasive Repliation tehniques. Whenever and wherever a �le is aessed, a replia is reated. Popular�les therefore get heavily repliated and personal �les reside only on the nodes used by the owners.A random graph of all the replias is maintained for propagating updates and ensuring availability (�g-ure 3.11). The random graph is reated by making eah replia maintain links to k other replias hosenrandomly. A few of the replias are designated as Golden replias. The golden replias maintain links with eahother and ensure that their set always maintains spei�ed membership levels. Replias perform random walksstarting from one of the golden replias to reate random links. This way the graph stays onneted.Links to the golden replias are reorded in the data objet's parent diretory (whih is also maintained asa �le). To aess and repliate a �le, its parent diretory must be aessed and hene repliated. The reursiveoperation an proeed all the way to the �le system's root.By default, update propagation happens lazily. A strategy involving Harbinger messages is used to build aspanning tree whih is used for quik update propagation. Strit onsisteny semantis are also supported by
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Edge NodeFig. 3.12. ENFS System Arhiteturemaking the updating lient wait for aknowledgments from the replias. A version vetor based algorithm [37℄is used for resolving on�iting updates.3.3.5. Edge Node File System (ENFS). ENFS [25℄ exploits the resoures of Internet edge nodes toprovide salable DFS servies. Undediated Internet edge nodes are enabled to funtion as both data andmetadata servers. The presene of a large number of edge nodes results in salable metadata aess and highI/O throughputs.ENFS uses proximity-based lustering of edge nodes (�gure 3.12) for the e�ient management of resoures,balaning of load (storage, omputational, query), and handling lateny issues. A few reliable and apable edgenodes from eah luster are hosen to be the metadata servers (Supernodes) for that luster. These supernodesare hosen based on apabilities suh as network bandwidth, proessor speed, storage spae, and memoryapaity. Eah supernode is assoiated with a replia set onsisting of a �xed number of other supernodes fromthe same luster. The replia sets ensure high system availability.Supernodes from all the lusters form a single system-wide strutured P2P overlay network for use as a dis-tributed hash table. By onneting up all the lusters in the system, the overlay enables nodes of a luster to dis-over supernodes (of other lusters) whih are responsible for spei� portions of the �le namespae. The stru-tured overlay also helps in the e�ient disovery of resoures with spei� harateristis in the entire system.Sine the sets of data and metadata servers hange autonomously and dynamially to suit prevalent work-loads, ENFS sales transparently. The arhiteture of the system allows data plaement/aess deisions to bebased on appliations' requirements of resoure harateristis and loations. The metadata of eah �le has asingle point of aess (one of the luster supernodes). This allows ENFS to support a large spetrum of aesssemantis.4. Comparative Analysis. In this setion, we analyze the above reviewed systems with respet to theirsalability and the support they provide for high appliation performane only. We do not address other aspetsof distributed �le systems suh as user/group management, seurity and trust, et. In [30℄, the authors providea survey of deentralized aess ontrol mehanisms in large sale distributed �le systems. An overview of I/Osystems (inluding �le systems) dealing with massive data is presented in [22℄.The manner in whih the load on di�erent �le system servers vary with inreasing numbers of users, andtherefore user �les, primarily determines the salability of a distributed �le system. Inrease in the number of�les results in an inrease in the number of queries and in the amount of data I/O.The system parameters used in the analysis are shown in table 4.1. For the sake of simpliity, we assumeuniform server apabilities and that the �le system metadata and data are equally distributed among the servers.We also assume that the metadata queries and I/O requests are generated in an independent and ompletelyrandom manner.We study the dependene of metadata and data server loads on the query and I/O rates in tables 4.2 and4.3 respetively. The overheads of overlay network management also add to server loads, espeially in the P2P�le systems. The overheads are presented in table 4.4.



Wide Area Distributed File Systems 317Table 4.1System Parameters and MetrisParameter Details
N Number of nodes (servers/lients/peers) in the system
NM Number of metadata servers in the system
ND Number of storage nodes (data servers) in the system
F Number of data items (�les and diretories) in the system
R Average number of replias per data item
Q Number of metadata queries generated per unit of time in the system
D Data transfer demand to and from the data servers in the system per unitof time
lC Network lateny between nodes within a luster/LAN (Intranet)
lW Network lateny between nodes in di�erent lusters (Internet)
P (n) Cost of ahieving onsensus (Paxos [27℄, Byzantine fault tolerant algo-rithm, quorum-based voting) among n nodes in terms of time and numberof messages
LMS Average query handling load on a metadata server
LDS Average I/O load on a data server
LOM Message, time and spae overheads of maintaining the di�erent overlaysIn GoogleFS, Lustre, Panasas, PVFS2, Ceph, OeanStore and ENFS, support for �le striping and parallelI/O helps in distributing data server load at a �ner granularity. From table 4.3, we an see that, LDS , thedata server load, an be represented as f(D/ND) for ategory I and ategory II �le systems and as f(D/N) forategory III �le systems.The omponents that get overloaded in the �rst ategory of �le systems are learly the servers. In thesesystems, the NM metadata servers are usually the data servers also. The load on eah server therefore is

LMS + LDS . Both inreasing query rates and I/O demands a�et the same set of servers.In the seond ategory of �le systems, deoupling of data and metadata helps in splitting the load amongdi�erent sets of servers (LMS for metadata servers and LDS for data servers). However, due to rigid serveron�gurations whih require manual administration, the values of NM and ND are more or less �xed. Thisresults in these systems supporting only onstrained levels of metadata and I/O demands. Additionally, inWheelFS, the on�guration servie an potentially beome a bottlenek with inreasing query rates.Sine Farsite, OeanStore, Ivy, Pangaea and ENFS are P2P �le systems (ategory III), the load on eahnode is LMS + LDS + LOM . The number of nodes, N , is however virtually unlimited. Therefore, the loads arewell distributed.However, Ivy is a log-based �le system and so performane falls signi�antly with inreasing numbersof partiipants. Network usage is exessively high in OeanStore and Pangaea due to overlay managementmessages, pervasive repliation and update propagations. Sine a onsiderable number of peers in a wide areainstallation may possess low bandwidth onnetions, system performane an be a�eted by inreasing loadlevels in these two systems.The performane of appliations exeuting over �le systems depends mainly on the speed of metadata aessand data I/O throughput. Metadata query and update times experiened by appliations depend on severalfators suh as metadata server load, query routing mehanism, network lateny, and onsisteny managementstrategy. Table 4.5 analyzes these fators in the various systems.Data I/O throughput depends on server load and network lateny/bandwidth. Server loads are disussedin table 4.3. The support provided by the �le systems to redue the e�ets of network lateny and bandwidthon data transfer/proessing speed, and hene on appliation performane, is disussed in table 4.6.



318 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 4.2Metadata Server Load as a Funtion of Query RateSystem Load/Server (LMS) CommentsAFS f(Q/NM ) The load is distributed among the NM servers. Sinethe number of servers is �xed and an be extended onlythrough administrator intervention, server load keeps in-reasing with Q.CIFS f(Q/NM ) The load is distributed among the NM servers that aresharing ontent. Typially, the number of servers inCIFS installations are muh larger than in AFS installa-tions. Query loads are therefore better distributed.GoogleFS f(Q) The master server handles all the queries. As a result,suh an arhiteture's salability is limited.Lustre/Panasas/PVFS2 f(Q/NM ) The query load is distributed among the NM metadataservers. Sine the number of MDSs is �xed and an beextended only by manual intervention, load on an MDSkeeps inreasing with Q.Ceph f(α ·Q/NM ) The metadata query load is distributed among theservers in the MDS luster. The dynami subtree parti-tioning sheme employed by Ceph distributes the queryload among the servers uniformly. Moreover, sinelients an alulate objet loations themselves, meta-data server loads are signi�antly redued (representedby α).WheelFS f(Q/NM ) The query load is distributed among the NM WheelFSprimary servers.
f(Q) Clients get information about the primary servers re-sponsible for �les from the on�guration servie. Theload on the on�guration servie therefore inreasesalong with Q.Farsite f(Q/(κ ·N)) When query rates inrease, diretory groups split anddistribute the load among more nodes. Sine any peeran be a part of a diretory group, query loads are sharedby a signi�ant fration (κ) of all the nodes in the system.OeanStore f(Q/N) Information about �les in OeanStore are obtained us-ing pure P2P algorithms. The metadata query load istherefore distributed among all the peers.Ivy f(Q/N) Metadata queries result in getting the reent log reordsof all partiipants and sanning the reords loally atthe querying peer. Thus, the query load is distributedamong all the peers.Pangaea f(Q/N) Metadata aesses happen using P2P routing protoolsand result in replias getting reated at the queryingpeers. Thus the query load is shared by all the peers.ENFS f(Q/(κ ·N)) The number of supernodes inreases with inreasingquery loads (Q). Sine any node in the system an bemade a supernode, the load is shared by a signi�antfration (κ) of N , as in Farsite.



Wide Area Distributed File Systems 319Table 4.3Data Server Load as a Funtion of the I/O DemandSystem CommentsAFS Callbak promises and invalidations, and whole �le ahing help in reduing theload on the AFS servers. This is one of the main reasons for AFS saling betterthan NFS.CIFS Stateful servers, elaborate loking mehanisms, ahing, and read-aheads, help inreduing the load on the servers. A large number of servers sharing �les helpsdistribute the load better than in AFS.GoogleFS The data load is distributed among the ND hunkservers in the GoogleFS luster.GoogleFS does not support lient side ahing, espeially beause the appliationsusually require omputations to be performed at the hunkservers itself.Lustre The load is shared among the ND objet storage servers. Server based distributed�le loking protools and lient side ahing in Lustre help redue data server loads.Panasas The data serving load is shared among the ND OSDs. File loking servies andonsistent lient ahing is supported in Panasas.PVFS2 PVFS2 does not ahe data on the lients and so the entire load is distributedamong the ND I/O servers.Ceph Client side ahing absorbs some load o� the ND OSDs.WheelFS All lients maintain ahes of �les read. Semanti ues help in satisfying a lient'sdata needs with nearby ahes as muh as possible. Suh Cooperative Cahingmehanisms help in reduing the loads on WheelFS servers signi�antly.Farsite All the nodes in the system are apable of storing data. As data loads inrease,more replias an be reated among the peers. Thus, data transfer loads are sharedby a large number of nodes (O(N)).OeanStore Promisuous ahing and P2P data loation algorithms enable data serving loadsto be distributed among the peers in the system.Ivy All the data objets in Ivy are stored in the DHash DHT, whih omprises of allthe nodes in the system. Thus data transfer load is shared by the entire set ofnodes.Pangaea Pervasive ahing results in �les and diretories getting repliated in a large numberof peers in the system. I/O load is therefore distributed widely.ENFS Supernodes ensure that �le ontents in ENFS are distributed uniformly aross allthe storage nodes in the system. Data transfer loads are therefore shared by a largenumber of nodes (O(N)).Apart from data server loads, appliation performane largely depends on the network distane betweenservers and lients. In most �le systems of ategory I and II, server loations are �xed and so in wide areainstallations, data aess usually happens aross long distanes. Data ahing helps in reduing the distane tosome extent, espeially in AFS and WheelFS.File systems belonging to ategory III, however, do not have �xed servers. The peer-to-peer nature of thesesystems support the reation of new �le replias loser to their users. ENFS goes a step further and pro-ativelyreates �le replias on nodes whih are likely to proess the ontents, based on user spei�ation or appliationtype.4.1. Observations. In summary, our analysis of these systems has led to the following observations:
• Deentralization Most of the prodution �le systems today use entral servers (or lusters of servers).While suh an infrastruture an support a large number of users and �les, their salability is limited.Sine the digital data generation apabilities of the masses has inreased tremendously, the next fewyears are expeted to witness huge rates of data reation. Deentralization is therefore essential tomanage the aompanying data management demands. Deentralization also has other bene�ts suhas not having to ompletely trust one entral entity, lak of a single point of failure, robustness, andlak of the need for expensive servers.



320 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 4.4Overlay Maintenane OverheadsSystem Overhead (LOM) CommentsWheelFS f(CRSM ) The on�guration servie is implemented as a repliated statemahine with a ertain number of nodes. Maintaining thestate mahine involves operations suh as handling member-ship hanges, and eleting a new leader. CRSM represents theorresponding message and time overheads for the on�gura-tion servie nodes.Farsite f(CBFT ) All the nodes in Farsite whih are part of a diretory groupinur the overheads of maintaining a Byzantine fault tolerantgroup. The overhead assoiated with Byzantine fault toleraneis represented by CBFT .OeanStore f(logN,CBF ) Every node in OeanStore maintains a routing table assoiatedwith the Plaxton sheme for global data loation. The size ofthe table is O(logN). Moreover, hanging objet ontents in anode and its loal viinity, results in hanges to its attenuatedBloom �lter. The network and omputational (multiple hash-ing) overheads of maintaining the �lters is also signi�ant andis represented by CBF .Ivy f(logN) Nodes in Ivy are part of the DHash DHT and so maintainrouting tables with O(logN) entries.Pangaea f((F · R · k)/N) Every replia of a data item must maintain at least k links toother replias. This results in signi�ant message, time andspae overheads.ENFS f(logNM) Supernodes from all the lusters form a strutured overlayin ENFS. Eah supernode maintains a routing table of size
O(logNM ).

• Autonomi System Management Sine deentralized systems usually exploit the resoures of unre-liable nodes, mehanisms must be in plae to provide notions of reliability and availability to theusers/appliations. It is impratial for large distributed systems to be manually administered. Essen-tial tasks suh as handling node failures, and load balaning must be autonomially managed for betterresoure utilization and appliation performane.
• Pervasive Repliation High levels of repliation, espeially of read-only �les, inreases availability andbrings data loser to the users, thereby improving appliation performane. Repliation has the addedbene�t of enabling parallel aess to �les. Parallel aess enables omputations on di�erent parts of a �leto be performed simultaneously. In a well designed system, the bene�ts of repliation must over-weighthe overheads of additional data transfer and onsisteny management.
• Flexible Consisteny Semantis Often, the stronger the onsisteny semantis supported by a system,the poorer the appliation performane. The onsisteny requirements of di�erent appliations varywidely. Thus, �le systems must be apable of �exing their onsisteny semantis in aordane toappliation requirements. This way, users/appliations an themselves adjust the required levels ofonsisteny/performane trade-o�.
• Data A�nity Data a�nity refers to the onept of ensuring that �les are stored lose to the nodeswhih are most suited and likely to proess their ontents. For example, in HPC appliations, dueto large data set sizes, shedulers attempt to shedule omputations on resoures whih ontain therequired data [36℄ [47℄, thus reduing the amount of data movement. Therefore, �le systems whihsupport resoure harateristis aware data plaement are highly useful. Data migration with hangingaess patterns is also bene�ial.
• Proximity-based Node Clustering A large system whih annot be managed by a entral ontroller isbest managed by being partitioned into proximity-based node lusters of manageable sizes. In dis-



Wide Area Distributed File Systems 321Table 4.5Fators a�eting Metadata Query Response TimesSystem CommentsAFS f(LMS + LDS , lC(or)lW )Servers are usually distributed aross wide areas. Servers in every ell possess informationabout the servers hosting di�erent data volumes aross the entire system. Therefore, thereare no query routing overheads. The e�et of network lateny depends on whether queries aremade for �les served loally or by a server in a di�erent ell. Data volumes are plaed loseto users/groups owning the orresponding data items and so lateny e�ets are generally low.CIFS f(LMS + LDS , lC(or)lW )CIFS servers are usually distributed aross wide areas. Clients either possess informationabout servers hosting di�erent data items or an use browsing protools to searh for servers.When a lient queries a distant CIFS server, high network lateny is likely to a�et theresponse time.GoogleFS f(LMS , lC , P (2))Sine GoogleFS installations are usually luster based, network lateny is lC . All metadataqueries are handled by the master server. Metadata updates must be serialized in the masterserver and its shadow.Lustre f(LMS , lW , P (2))The set of metadata servers are lustered in a single loation and so most lient queries haveto travel aross the network in a wide area installation. Metadata updates must be serializedin the ative and passive metadata servers assoiated with a data item.Panasas f(LMS , lW , P (NM ))Panasas uses a quorum-based voting protool to ommit metadata operations in its metadataservers. As in Lustre, network lateny is usually lW sine the servers are lustered in oneloation.PVFS2 f(LMS , lW )PVFS2 avoids serialization of independent metadata operations using an expliit state ma-hine, threads (to provide non-bloking aess), and a omponent that monitors ompletionof operations aross devies. Avoiding serialization makes metadata aess faster.Ceph f(LMS , lW , P (k))Sine the metadata servers are lustered, far-o� lients experiene high network latenies.Metadata updates must be synhronously journaled to a luster (of size k) of OSDs forsafety.WheelFS f(LMS , lW )Aessing the on�guration servie to determine the primary may involve a query to a far-o�node. Clients an speify loation preferenes for the primary servers for their �les and dire-tories based on expeted aess patterns and so lateny overheads of aessing the primaryservers are optimized.Farsite f(LMS + LOM , d · lW , P (k))Metadata aess may require traversal from the root to the diretory of interest. Eahdiretory may be managed by a di�erent group. d represents the average number of hopsbetween diretory groups required to reah a data item. Metadata updates require Byzantinefault tolerant agreement among the k diretory group members.OeanStore f(LMS + LDS + LOM , lW · logN,CARC)Loating the root of an objet in OeanStore an require O(logN) hops aross a wide areanetwork. Some �les, espeially popular ones, an however be loated in the loal viinityof the lient. Every update (or group of updates) involves storing the objet in an arhivalform. CARC represents the orresponding osts of enoding the �le using erasure oding anddistributing it aross hundreds of mahines.Ivy f(LMS + LOM , p · (logN) · lW )Aessing the metadata requires the gathering of the most reent log reords of all thepartiipants (p). Metadata updates are performed in the loal log alone.Pangaea f(LMS + LOM , lC , CST )The pervasive repliation strategy results in most data items being available in lose prox-imity. Propagation of updates happens in two phases along the spanning tree for that dataitem rooted at the soure. The orresponding message and time osts are represented by
CST .ENFS f(LMS + LOM , lC(or)lW , P (k))Metadata of user �les are managed by supernodes in the same luster as that of the user.However, aessing the metadata of �les in other lusters requires aross network querying.Metadata servers responsible for individual �les/diretories are identi�ed using index �lesstored in the system wide DHT and atively ahed in the loal luster's supernodes. Dis-overy an therefore usually happen within a ouple of hops. Metadata updates are serializedin the responsible supernode and its replia set. k represents the supernode replia set size.



322 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 4.6Support for Appliation PerformaneSystem SupportAFS/ CIFS Servers in these systems only perform �le I/O. Any other operation to be per-formed on the data must be performed at the lient site. Client side ahingis supported to varying degrees. AFS, espeially, improves appliation perfor-mane using whole �le ahing. However, the bene�ts of ahing ome at theexpense of onsisteny management. AFS provides weak onsisteny seman-tis. CIFS uses elaborate loking mehanisms to provide strong onsistenysemantis. I/O throughputs are largely dependent on lient-server networkdistane.GoogleFS GoogleFS is optimized for the MapRedue lass of appliations. GoogleFS'ssupport for appending reords to existing datasets in a quik, atomi and rae-free manner is ritial for MapRedue appliations. GoogleFS stores replias ofdata hunks on di�erent mahines. This inreases the hanes of MapReduesheduling mappers on nodes with the data or on nodes lose to the data.GoogleFS supports relaxed onsisteny semantis, whih helps speed up dataappends.Lustre/Panasas/Ceph Sine objet-based storage devies support the storage and serving of objets di-retly at the hardware level, better I/O throughputs an be ahieved omparedto normal dis I/O. Appliation spei� proessing/omputations however an-not be performed at the servers. These systems provide strong onsistenysemantis. I/O throughputs are largely dependent on lient-server networkdistane.PVFS2 Client side ahing is not supported. Client server distane an therefore bedetrimental to appliation performane. PVFS2 implements Non-Con�itingWrite semantis, thus allowing lients to update non-on�iting portions of thenamespae simultaneously without loks.WheelFS Plaement semanti ues suh as .Site, .KeepTogether and .RepSites allow own-ers to plae their data lose to the users most likely to use the data. This helpsoptimize data throughputs. Cues an also be used to feth �le ontents fromthe ahe of other lients in parallel.Farsite Farsite does not attempt to redue lateny. It is designed to support typi-al user home diretory I/O instead of the high performane I/O of sienti�appliations. Byzantine fault tolerant agreement protools and leases help inproviding strong onsisteny guarantees in Farsite.OeanStore Users hoose primary and seondary tier storage nodes on whih to store their�les. Moreover, popular �les get widely ahed. These measures help in im-proving data throughputs. Based on appliation requirements, OeanStore anprovide a variety of onsisteny semantis.Ivy Nodes maintain a private snapshot of all the logs and so �le reads only requirethe most reent reords to be obtained from the DHash DHT. Ivy providesweak onsisteny semantis with appliation assisted on�it resolutions.Pangaea In Pangaea, replia loations are determined by user ativities. Files an there-fore usually be loated lose to the lients. By default, Pangaea implementsweak onsisteny semantis. However, stronger guarantees an be provided bytrading o� performane.ENFS ENFS fouses on the priniple that awareness of the apabilities of stor-age nodes is ritial for a �le system to be useful for appliations. Clustersupernodes an inexpensively disover resoures with spei� harateristisaross the entire system. File/Replia plaement deisions are based on therequirements of the appliations expeted to operate on the �les. This helpsappliations ahieve high performane. Home-based onsisteny protools al-low a wide variety of aess semantis to be supported.



Wide Area Distributed File Systems 323tributed systems, lustering supports the salable and e�ient disovery of data and resoures withspei� harateristis from the entire system [35℄. Clustering also provides for e�ient ommuniationmehanisms among proximal and far-o� nodes in the system. Co-loation of servers and their assoiatedlients, whih helps in optimizing network lateny, also beomes simpler when the system is partitionedinto lusters. A lot of work, done on network distane measurement [15℄, topology disovery [20℄ [9℄and proximity-based node lustering [51℄ [29℄ [35℄, an be used for autonomous luster formation andmanagement.
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