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WORKFLOW AND ACCESS CONTROL RELOADED: A DECLARATIVE SPECIFICATION
FRAMEWORK FOR THE AUTOMATED ANALYSIS OF WEB SERVICES

MICHELE BARLETTA∗, ALBERTO CALVI†, SILVIO RANISE‡, LUCA VIGANÒ§, AND LUCA ZANETTI¶

Abstract. Web services supporting business and administrative transactions between several parties over the Internet are
more and more widespread. Their development involves several security issues ranging from authentication to the management
of the access to shared resources according to given business and legal models. The capability of validating designs against fast
evolving requirements is of paramount importance for the adaptation of business and administrative models to changing regulations
and rapidly evolving market needs. We present formal specification and analysis techniques that allow us to validate the designs
of security-sensitive web services specified in the Business Process Execution Language and extensions of the Role-Based Access
Control model. We also present a prototype tool, called WSSMT, mechanizing our approach and describe our experience in using
it on two industrial case studies, on in the e-business and one in the e-government area.
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1. Introduction. Web services are becoming more and more widespread in many fields like e-commerce,
e-health, and e-governance, where services support business and administrative transactions between several
parties over the Internet. Their development involves several security issues ranging from authentication to the
management of the access to shared resources according to given business and legal models. The capability of
validating designs against fast evolving requirements is of paramount importance for the adaptation of business
and administrative models to changing regulations and rapidly evolving market needs. So, techniques for the
specification and automated analysis of dependable web services to be used in security-sensitive applications
are crucial in the development of these systems.

To design practically usable specification and analysis techniques, it is important to have a closer look at the
definition of web service. A web service is a piece of software with a clearly defined set of interface functionalities
that can be invoked according to a certain ordering specified by a workflow (WF). The WF level of a service
establishes whether a certain operation can be executed if the values of the state variables (the data flow) of
the service satisfy certain conditions (the control flow), and the values stored in the state variables may be
updated. This situation is further complicated by the fact that one may create several instances of the same
service: all the instances will share the same behavior but, at any given time, they may be in different states,
i.e., distinct control locations and values of the state variables. Thus, (unique) identifiers are required to name
the different particular instances. Several (executable) specification languages are available: the data part can
be described by, e.g., the Web Service Definition Language WSDL [10], the control part by, e.g., the Business
Process Execution Language BPEL [1], and the identifiers by Uniform Resource Identifiers.

An additional source of security problems is the fact that many deployed services work over the Internet
where identities should be certified and trusted so as to enable the deployment of flexible access policies. In fact,
one of the most relevant and hard-to-design parts of the security level of services is their policy management
(PM) level. Policies specify, for instance, what operations a service is granted or denied the right to execute,
are usually expressed in terms of a set of basic facts, and are combined to form certain access rules. The basic
facts depend on the particular application domain and are usually encapsulated in certificates whose possession
enables the application of access rules. Since certificates can be produced or revoked at different time points,
PM is an essentially dynamic activity. So, the PM level should be able to inspect part of the state of the WF
of the service and, in turn, operations performed at the WF level can update the basic facts used to specify
policies, so that we have an interplay from the WF to the PM and vice versa.

A widespread design approach to control the delicate interplay between the WF and PM levels of a service
consists of clearly separating them and identifying where and how they interact. This separation is beneficial in
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several respects for the design and maintenance of services, and also for their validation. So, in order to design
usable specification and analysis techniques, it is desirable to reflect the two level structure of a service design.
In this paper, we explain how this can be achieved by a suitable instantiation of the formal framework in [7].
In particular, we show how the WF level of web services described by BPEL processes can be mapped to Petri
nets and how this, in turn, can be translated to a class of transition systems involving integer variables by using
well-known results (see, e.g., [20]). For the PM level, we explain how RBAC4BPEL, a variant of the Role-Based
Access Control (RBAC [19]) model, can be easily expressed as a certain symbolic transition system by using a
fragment of first-order logic (FOL). Then, we explain how to combine the two (symbolic) transition systems to
obtain one system, abstractly describing the whole web service. This allows us to introduce a technique for the
exploration of the state space that is based on a symbolic execution procedure and exploits the capability of
solving logical problems in certain fragments of FOL.

We also discuss how to mechanize the symbolic execution procedure by describing the architecture of a
prototype tool, called WSSMT, which we have developed to allow designers of web services to gain confidence
in their designs. Since our framework reduces verification problems to logical (satisfiability) problems, it is
possible to use off-the-shelf state-of-the-art automated reasoning systems to automatically discharge the proof
obligations encoding the satisfiability problems. The predictability of the behavior of the automated provers on
the generated proof obligations is obtained by constraining the class of formulae used to describe the WF and
PM levels together with those describing the possible executions of the service. In this way, it is possible to reuse
decidability results for fragments of first-order logic that are supported by state-of-the-art theorem provers. We
illustrate the practical viability of our approach by considering the validation of two case studies inspired by
industrial systems, which have been considered in the context of the FP7 European project AVANTSSAR [3].

We proceed as follows. In Section 2, we first provide some background, in particular, on BPEL, Petri nets,
and RBAC4BPEL, and then introduce a running example. In Section 3, we introduce our formal two-level
specification framework, in particular, we discuss two-level transition systems and their symbolic execution. In
Section 4, we explain how security-sensitive services specified by (a sub-set of) BPEL and RBAC4BPEL can
be specified as two-level transition systems. In Section 5, we present our tool WSSMT and then, in Section 6,
we report on the application of WSSMT to the specification and analysis of the two industrial-strength case
studies we consider here. In Section 7, we draw some conclusions. Parts of the material included in this paper
have appeared in preliminary form in [5, 9].

2. Background and running example. We describe the Business Process Execution Language (BPEL)
[1] by using an example (a Purchase Ordering process, PO for short, taken from [16]) and explain how Petri
nets can be used as an abstract semantics modelling the control flow of a security-sensitive service ignoring data
and security issues. For a complete description of the semantics of BPEL and its relationship to Petri nets, the
reader is pointed to, e.g., [25].

2.1. BPEL and Petri nets. In Fig. 2.1, we show a high-level BPEL specification of the WF level of the
PO process. The <process> element wraps around the entire description of the PO process. The <sequence>

element states that the activities contained in its scope must be executed sequentially. The <flow> element
specifies concurrent threads of activities. The <invoke> element represents the invocation of an activity that is
provided by an available web service. Finally, the <receive> element represents the invocation of an activity
that is provided by the BPEL process being described. Indeed, BPEL provides a variety of constructs (e.g., to
represent variables) that are ignored here for simplicity; the interested reader is pointed to [1]. In the case of
the PO process, it is easy to see that the constraints on the execution described above are all satisfied by the
nesting of control elements in Fig. 2.1. For example, because of the semantics of <sequence>, crtPO will be
executed first while apprPay will be the activity finishing the PO process.

Fig. 2.1 shows also, on the right, a Petri net that can be seen as a (control-flow) abstraction of the BPEL
process on the left of the figure. In order to sketch the mapping from BPEL processes to Petri nets, we first
recall the basic notions concerning the latter.

A Petri net is a triple 〈P, T, F 〉, where P is a finite set of places, T is a finite set of transitions, and F (flow
relation) is a set of arcs such that P ∩T = ∅ and F ⊆ (P ×T )∪(T ×P ). Graphically, the Petri net 〈P, T, F 〉 can
be depicted as a directed bipartite graph with two types of nodes, places and transitions, represented by circles
and rectangles, respectively; the nodes are connected via directed arcs according to F (where arcs between two
nodes of the same type are not allowed). A place p is called an input (resp., output) place of a transition t iff
there exists a directed arc from p to t (resp., from t to p). The set of input (resp., output) places of a transition
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<process name="PO"/>
<sequence>

<receive operation="crtPO" ... > </receive>
<invoke operation="apprPO" ... > </invoke>

<flow>
<sequence>

<invoke operation="signGRN" ... > </invoke>

<invoke operation="ctrSignGRN" ... > </invoke>
</sequence>

<invoke operation="ctrPay" ... > </invoke>
</flow>
<invoke operation="apprPay" ... > </invoke>

</sequence>
</process>
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Fig. 2.1. The PO process: BPEL (left) and corresponding Petri net (right). Legend: yellow transitions specify normal tasks,
azure ones specify flow transitions (splits and joins) and grey places represents final places.

t is denoted by •t (resp., t•); •p and p• are defined similarly. A path in a Petri net 〈P, T, F 〉 is a finite sequence
e0, ..., en of elements from P ∪T such that ei+1 ∈ ei• for each i = 0, ..., n−1; a path e0, ..., en in the net is a cycle
if no element occurs more than once in it and e0 ∈ en• for some n ≥ 1. A Petri net is acyclic if none of its paths
is a cycle. A marking of a Petri net 〈P, T, F 〉 is a mapping from the set P of places to the set of non-negative
integers; graphically, it is depicted as a distribution of black dots in the circles of the graph representing the net.
A transition t is enabled in a marking m iff each of its input places p is such that m(p) ≥ 1, i.e., p contains at
least one token. An enabled transition t in a marking m may fire by generating a new marking m′, in symbols

m
t
→ m′, where m′(p) = m(p) if p 6∈ (•t ∪ t•), m′(p) = m(p) − 1 if p ∈ •t, and m′(p) = m(p) + 1 if p ∈ t•, i.e. t

consumes one token from each input place of t and produces one token in each of its output places. A marking
m is reachable from m0, in symbols m0 →∗ m, iff there exists a sequence m1, ..., mn of markings such that

mi
t
→ mi+1 for i = 0, ..., n− 1 and mn = m, for some n ≥ 0. (For n = 0, we have that m0 = m.) Given a Petri

net 〈P, T, F 〉 and a marking m, an instance of the reachable problem for Petri nets consists of checking whether
m0 →∗ m or not. A workflow (WF) net [28] is a Petri net 〈P, T, F 〉 such that (i) there exist two special places
i, o ∈ P with •i = ∅ and o• = ∅; and (ii) for each transition t ∈ T , there exists a path π in the net beginning
with i and ending with o in which t occurs.

The idea underlying the Petri net semantics of BPEL is simple. Activities are mapped to transitions (the
rectangles in Fig. 2.1) and their execution is modeled by the flow of tokens from input places to output places.
When two BPEL operations are enclosed in a <sequence> element (e.g., crtPO and apprPO), two transitions
are created (as in Fig. 2.1) with one input place (resp., p1 and p2) and one output place each (resp., p2 and
p3), and the input place of the second is identified with the output place of the first one (p2). When two BPEL
operations are in a <flow> element (e.g., crtPay and the sequence of operations signGRN and ctrSignGRN ),
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U := {u1, u2, u3, u4, u5}
R := {manager ,finAdmin,finClerk , poAdmin , poClerk}
P := {p1, ..., p5}
ua := {(u1,manager), (u2,finAdmin), (u3,finClerk ), (u4, poAdmin), (u5, poClerk )}
pa := {(finClerk , p4), (finAdmin, p5), (poClerk , p3), (poAdmin , p1)}
� least partial order s.t. manager � finAdmin, manager � poAdmin ,

finAdmin � finClerk , and poAdmin � poClerk .

Fig. 2.2. The PM level of the PO process.

four transitions are created: one to represent the split of the flow, one to represent its synchronization (join),
and one for each activity that can be executed concurrently with the appropriate places to connect them (in
Fig. 2.1, when a token is in place p3, the flow split transition is enabled and its execution yields one token in
place p4 and one in p5, which enables both transitions signGRN and crtPay that can be executed concurrently;
the two independent threads of activities get synchronized again by the execution of flow join , which is enabled
when a token is in p6 and a token is in p8). It is not difficult to see that the Petri net of Fig. 2.1 is an acyclic
WF net where p1 is the special input place i, p10 is the special output place o, and each transition occurs in a
path from p1 to p10.

2.2. RBAC4BPEL. In [16], Paci, Bertino and Crampton use RBAC4BPEL, an extension of the RBAC
framework [19] adapted to work smoothly with BPEL, to specify the PM level of applications like the PO
process. The components of RBAC4BPEL are: (i) a set U of users, (ii) a set R of roles, (iii) a set P of
permissions, (iv) a role hierarchy � (i.e. a partial-order relation on R), (v) a user-role assignment relation
ua, (vi) a role-permission assignment relation pa, and (vii) a set A of activities and a class of authorization
constraints (such as separation-of-duty) to prevent some user to acquire permissions in certain executions of
the application (see below for details). Note that components (i)–(vi) are standard in RBAC whereas (vii) has
been added to obtain a better integration between the PM and the WF levels.

First, we describe components (i)–(vi) and some related notions. A user u ∈ U is assigned a role r ∈ R if
(u, r) ∈ ua and permissions are associated with roles when (p, r) ∈ pa. In RBAC4BPEL, a user u ∈ U has a
permission p if there exists a role r ∈ R such that (u, r) ∈ ua and (p, r) ∈ pa. (We will see that each permission
is associated to a right on a certain activity in A of a BPEL process, e.g., its execution.) The role hierarchy
� ⊆ R × R is assumed to be a partial order (i.e., a reflexive, antisymmetric, and transitive relation) reflecting
the rights associated to roles. More precisely, a user u is an explicit member of role r ∈ R if (u, r) ∈ ua and it
is an implicit member of role r ∈ R if there exists a role r′ ∈ R such that (r′, r) ∈� (abbreviated as r′ � r),
r′ 6= r, and (u, r′) ∈ ua. Thus, � induces a permission inheritance relation as follows: a user u ∈ U can get
permission p if there exists a role r ∈ R such that u is a member (either implicit or explicit) of r and (p, r) ∈ pa.
For simplicity, we abstract away the definition of a role in terms of a set of attributes as done in [16].

Fig. 2.2 shows the sets U, R, P and the relations ua, pa, and � for the PM level of the PO process. Although
(manager , pi) 6∈ pa for any i = 1, ..., 5, we have that user u1, which is explicitly assigned to role manager in
ua, can get any permission pi for i = 2, ..., 5 as manager � r for any role r ∈ R \ {manager}, hence u1 can be
implicitly assigned to each role and then get the permission pi.

In RBAC4BPEL, each permission in P is associated with the right to handle a certain transition of T ,
uniquely identified by a label in A, for a Petri net 〈P, T, F 〉. In many cases, this is particularly simple since
only the right to execute a transition is considered as it is the case in the services considered in this paper. We
bind permissions pi to different tasks as follows: p1 is the permission for executing apprPO , p2 for signGRN , p3

for ctrSignGRN , p4 for crtPay , and p5 for apprPay . We are now in the position to describe component (vii) of
RBAC4BPEL. Note that there are no permissions associated to flow split and flow join as these are performed
by the BPEL engine and thus no particular authorization restriction must be enforced.

A role (resp., user) authorization constraint is a tuple 〈D, (t1, t2), ρ〉 if D ⊆ R (resp., D ⊆ U) is the domain
of the constraint, ρ ⊆ R× R (resp., ρ ⊆ U × U), and t1, t2 are in A. An authorization constraint 〈D, (t1, t2), ρ〉
is satisfied if (x, y) ∈ ρ when x, y ∈ D, x performs t1, and y performs t2. In other words, authorization
constraints place further restrictions (besides those of the standard RBAC components) on the roles or users
who can perform certain actions once others have been already executed by users belonging to certain roles.
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Constraints of this kind allow one to specify separation-of-duty (SoD) by 〈D, (t1, t2), 6=〉, binding-of-duty (BoD)
by 〈D, (t1, t2), =〉, or any other restrictions that can be specified by a binary relation over roles or users.

For the PO process, (vii) of RBAC4BPEL is instantiated as:

〈U, (apprPO , signGRN ), 6=〉, 〈U, (apprPO , ctrSignGRN ), 6=〉,

〈U, (signGRN , ctrSignGRN ), 6=〉, 〈R, (crtPay , apprPay),≺〉,

where ≺ := {(r1, r2) | r1, r2 ∈ R, r2 � r1, r1 6= r2} (recall that the sets U and R are defined in Fig. 2.2).

3. A formal two-level specification framework. Let us now consider the structure of the PO process
introduced in Section 2. We can regard it as structured in two levels: the WF level dealing with the control of
the flow (and the manipulation of data) and the PM level describing access control rules (and trust relation-
ships). Each level is further structured in a static and a dynamic part; the former specifies the data structures
manipulated by the service for the WF level or the relational structure used for the PM level, e.g., the user-role
assignment relation of RBAC system, while the latter describes the possible executions of the system, e.g., how
a certain integer variable storing the number of clients being served for the WF level or how a tuple is added
to or deleted from a relation in a database for the PM level.

All the four components of our framework (static/dynamic parts of the WF/PM levels) are symbolically
represented by formulae of many-sorted FOL with equality (see, e.g., [12] for definitions of the basic notions
that we use in the following of the paper), which is a well-studied logic that comes equipped both with a rich
catalogue of decidable fragments (i.e., classes of formulae for which there exist algorithms capable of solving
their satisfiability problems) and with several well-engineered automated theorem provers to support mechanical
reasoning in the logic or its fragments. The work in [6] has introduced a declarative framework that permits one
to specify the static and dynamic parts of the WF and PM levels, and then to reduce interesting verification
problems to satisfiability problems in decidable fragments. This paves the way to building push-button validation
techniques for security-sensitive service applications as demonstrated by our prototype tool WSSMT, which is
described in Section 5.

In this section, we briefly recall the main notions of the framework in [6] for specifying security-sensitive
services composed of the WF and PM levels. Formally, these two levels are specified by a particular class of
symbolic guarded assignment systems, called two-level transition systems, where first-order formulae are used
to represent sets of states (i.e. the static part) and the actions (i.e. the dynamic part) of the system. More
precisely, for this class of transition systems, the state variables are updated by applying a function to the
actual values of the variables provided that a guard (expressed as a condition again on the values of the state
variables) is satisfied. The state space of such transition systems can be explored by using a symbolic execution
based on satisfiability solving of a class of FOL formulae. In the rest of this section, we recall the notion of
two-level transition systems (Section 3.1) and then describe the symbolic execution technique (Section 3.2).

3.1. Two-level transition systems. A two-level transition system Tr is a tuple

〈x, p, In(x, p), {τi(x, p, x′, p′) | i = 1, ..., n}〉,

where x is a tuple of WF state variables; p is a tuple of PM state variables; the initial condition In(x, p) is
a FOL formula whose only free variables are in x and where PM state variables in p may occur as predicate
symbols; and for i = 1, ..., n and n ≥ 1 the transition τi(x, p, x′, p′) is a FOL formula whose only free variables
are in x, x′ and where PM state variables in p, p′ may occur as predicate symbols (as it is customary, unprimed
variables in τi refer to the values of the state before the execution of the transition while those primed refer to
the values of the state afterward).

We assume there exists a so-called first-order underlying structure 〈D, I〉 of the transition system Tr , where
D is the domain of values and I is the mapping from the signature to functions and relations over D, and in
which the state variables and the symbols of the signature used to write the formulae In and τi for i = 1, ..., n
are mapped. A state of Tr is a pair v := (vx, vp) of mappings: vx from the WF state variables to D and vp

from the PM state variables to relations over D.

A run of Tr is a (possibly infinite) sequence of states v0, v1, ..., vn, ... such that (i) v0 satisfies In, in symbols
v0 |= In , and (ii) for every pair vi, vi+1 in the sequence, there exists j ∈ {1, ..., n} such that vi, vi+1 satisfies
τj , in symbols vi, vi+1 |= τj , where the domain of vi is x, p and that of vi+1 is x′, p′. Given a formula G(x, p),
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called the goal, an instance of the goal reachability problem for Tr consists of answering the following question:
does there exist a natural number ℓ ≥ 0 such that the formula

In(x0, p0
) ∧

ℓ−1
∧

i=o

τ(xi, pi
, xi+1, pi+1

) ∧ G(xℓ, pℓ
) (3.1)

is satisfiable in the underlying structure of Tr , where xi, pi
are renamed copies of the state variables in x, p?

(When ℓ = 0, (3.1) is simply In(x0, p0
)∧G(x0, p0

)). The interest of the goal reachability problem lies in the fact
that many verification problems for two-level transition systems, such as invariant checking, can be reduced to
it.

3.2. Symbolic execution of two-level transition systems. If we were able to check automatically the
satisfiability of (3.1), an idea to solve the goal reachability problem for two-level transition systems would be to
generate instances of (3.1) for increasing values of ℓ. However, this would only give us a semi-decision procedure
for the reachability problem. In fact, this method terminates only when the goal is reachable from the initial
state, i.e., when the instance of (3.1) for a certain value of ℓ is unsatisfiable in the underlying structure of the
transition system Tr . But, when the goal is not reachable, the check will never detect the unsatisfiability and
we will be bound to generating an infinite sequence of instances of (3.1) for increasing values of ℓ. That is,
the decidability of the satisfiability of (3.1) in the underlying structure of Tr is only a necessary condition for
ensuring the decidability of the goal reachability problem.

We can formalize this method as follows. The post-image of a formula K(x, p) with respect to a transition
τi is

Post(K, τi) := ∃x′, p′.(K(x′, p′) ∧ τi(x
′, p′, x, p)).

For the class of transition systems that we consider below, we are always able to find FOL formulae that are
equivalent to Post(K, τi). Thus, the use of the second-order quantifier over the predicate symbols in p′ should
not worry the reader (see Section 4.2 for details).

Now, define the following sequence of formulae by recursion: FR0(K, τ) := K and FRi+1(K, τ) := Post i(FRi

, τ)∨FRi(K, τ), for i ≥ 0 and τ :=
∨n

k=1 τi. The formula FRℓ(K, In) describes the set of states of the transition
system Tr that are forward reachable in ℓ ≥ 0 steps.

A fix-point is the least value of ℓ such that FRℓ+1(τ, In) ⇒ FRℓ(τ, In) is true in the structure underlying
Tr . Note also that FRℓ(τ, In) ⇒ FRℓ+1(τ, In) by construction and hence if FRℓ+1(τ, In) ⇒ FRℓ(τ, In) is valid,

then also FRℓ(τ, In) ⇔ FRℓ+1(τ, In) is so and FRℓ(τ, In) ⇔ FRℓ′(τ, In) for each ℓ′ ≥ ℓ.
Using the sequence of formulae FR0(τ, In),FR1(τ, In), ... it is possible to check if the goal property G will

be reached by checking whether FRℓ(τ, In) ∧ G is satisfiable in the structure underlying Tr for some ℓ ≥ 0. In
case of satisfiability, we say that G is reachable. Otherwise, if FRℓ(τ, In) is a fix-point, the unsatisfiability of
FRℓ(τ, In) ∧ G implies that G is unreachable.

Finally, if FRℓ(τ, In) is not a fix-point and FRℓ(τ, In) ∧G is unsatisfiable, then we must increase the value
of ℓ by 1 so as to compute the set of forward reachable states in ℓ + 1 steps and perform the reachability
checks again. Unfortunately, also this process is not guaranteed to terminate for arbitrary two-level transition
systems. Fortunately, we are able to characterize a set of transition systems, corresponding to a relevant class
of applications specified in BPEL and RBAC4BPEL, for which we can pre-compute an upper bound on ℓ; this
paves the way to solving automatically the goal reachability problem for these systems.

To this end, we consider three sufficient conditions to automate the solution of the goal reachability problem.
First, the class C of formulae used to describe sets of states must be closed under post-image computation.
Second, the satisfiability (in the structure underlying the transition system) of C must be decidable. Third, it
must be possible to pre-compute a bound on the length of the sequence FR0,FR1, ...,FRℓ of formulae. Below,
we show that these conditions are satisfied by a class of two-level transition systems to which applications
specified in BPEL and RBAC4BPEL can be mapped. For ease of exposition, we first consider the WF and PM
levels in isolation and then show how the results for each level can be modularly lifted when considering the
two levels together. Before doing this, we introduce the notion of symbolic execution tree. The purpose of this
is two-fold. First, it is crucial for the technical development of our decidability result. Second, it is the starting
point for the implementation of our techniques as discussed in Section 5.

The symbolic execution tree of the two-level transition system Tr is a labeled tree defined as follows: (i) the
root node is labeled by the formula In, (ii) a node n labeled by the formula K has d ≤ n sons n1, ..., nd labeled
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by the formulae Post(τ1, K), ...,Post(τd, K) such that Post(τj , K) is satisfiable in the model underlying Tr and
the edge from n to nj is labeled by τj for j = 1, ..., d, (iii) a node n labeled by K has no son, in which case n is
a final node, if Post(τj , K) is unsatisfiable in the underlying model of the VAS, for each j = 1, ..., n. A symbolic
execution tree is 0-complete if it consists of the root node labeled by the formula In, it is (d + 1)-complete for
d ≥ 0 if its depth is d +1 and for each node n labeled by a formula Kn at depth d, if Post(τj , Kn) is satisfiable,
then there exists a node n′ at depth d + 1 labeled by Post(τj , Kn). In other words, a symbolic execution tree
is d-complete when all non-empty sets of forward states reachable in one step represented by formulae labeling
nodes at depth d − 1 have been generated. It is easy to see that the formula FRℓ(K, In), describing the set
of states of the transition system Tr forward reachable in ℓ ≥ 0 steps, is equivalent to the disjunction of the
formulae labeling the nodes of an ℓ-complete symbolic execution tree. This will be proved for the classes of
two-level transition systems that we consider below.

4. Mapping BPEL and RBAC4BPEL to two-level transition systems. We now explain how
security-sensitive services specified by (a sub-set of) BPEL and RBAC4BPEL (such as the PO process de-
scribed in Section 2) can be specified as two-level transition systems. To simplify the task of the specifier as
well as the technical development, we first describe how WF nets can be seen as a certain class of transition
systems (Section 4.1), then we show how an RBAC4BPEL system can be mapped to a certain transition system
(Section 4.2), and finally we explain how these specifications can be combined to obtain a complete specification
(Section 4.3). We illustrate the notions by using the PO process as the running example. Although we do
not show it for lack of space, transforming WF nets and RBAC4BPEL can be made automatic. For more
details about this point, see also Section 6.2 where we briefly discuss how we have modified an available tool for
generating Petri nets from BPEL files to derive the transition systems described in the following subsection.

4.1. WF nets and terminating forward reachability. We consider Vector Addition System (VAS), a
particular class 〈x, In(x), {τi(x, x′) | i = 1, ..., n}〉, of two-level transition systems such that (i) p = ∅; (ii) their
underlying structure is that of integers; (iii) each WF state variable in x = x1, ..., xm ranges over the set of
non-negative integers; (iv) the initial condition In(x) is a formula of the form x1 ⊲⊳ c1 ∧ · · · ∧ xm ⊲⊳ cm, where
cj is a natural number for j = 1, ..., m and ⊲⊳ ∈ {=, 6=, >,≥}; and (v) each transition τi, for i = 1, ..., n, is a
formula of the form

∧

i∈P

xi ≥ 0 ∧
∧

j∈U+

x′
j = xj + 1 ∧

∧

k∈U−

x′
k = xk − 1 ∧

∧

l∈U=

x′
l = xl ,

where P, U+, U−, U= are subsets of {1, ..., n} such that U+, U−, U= form a partition of {1, ..., n}.
It is well-known that Petri nets and VASs are equivalent in the sense that analysis problems for the former

can be transformed to problems of the latter whose solutions can be mapped back to solutions for the original
problem and vice versa (see, e.g., [20]). We briefly describe the correspondence by considering the Petri net in
Fig. 2.1. We associate an integer variable xi to each place pi for i = 1, ..., 10 whose value will be the number
of tokens in the place. The state is given by the value of the integer variables representing the marking of the
net, i.e., a mapping from the set of places to non-negative integers. Formulae can be used to represent sets of
states (or, equivalently, of markings). So, for example, the formula x1 = 1∧

∧10
i=2 xi = 0 represents the marking

where one token is in place p1 and all the other places are empty (which is the one depicted in Fig. 2.1 where
the token is represented by a solid circle inside that represents the place p1 while all the other places do not
contain any solid circle). The transition crtPO is represented by the formula

x1 ≥ 1 ∧ x′
1 = x1 − 1 ∧ x′

2 = x2 + 1 ∧
10
∧

i=3

x′
i = xi

saying that it is enabled when there is at least one token in p1 (x1 ≥ 1) and the result of its execution is that a
token is consumed at place p1 (x′

1 = x1 − 1), the tokens in p2 are incremented by one (x′
2 = x2 + 1), while the

tokens in all the other places are unaffected (x′
i = xi for i = 3, ..., 10). The other transitions of the Petri net

in Fig. 2.1 are translated in a similar way. In general, it is always possible to associate a state of a VAS to a
marking of a Petri net and vice versa. This implies that solving the reachability problem for a VAS is equivalent
to solving the reachability problem of the associated Petri net.

Now, we show that the three sufficient conditions (see Section 3.2) to mechanize the solution of the goal
reachability problem are satisfied by VASs when using forward reachability. First, the class of formulae is closed
under post-image computation:
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Fact 1. Post(K, τi) is equivalent to K[xj − 1, xk + 1, xl]∧
∧

i∈P xi ≥ 0, where K[xj − 1, xk + 1, xl] denotes
the formula obtained by replacing x′

j with xj − 1 for j ∈ U+, x′
k with xk − 1 for k ∈ U−, and x′

l with xl for
j ∈ U=. �

As a corollary, it is immediate to derive that if K is a formula of Linear Arithmetic (LA) [8] — roughly, a
formula where multiplication between variables is forbidden — then also Post(K, τi) is equivalent to an effectively
computable formula of LA. Second, the satisfiability of the class of formulae of LA is decidable by well-known
results [8]. Third, it is possible to pre-compute a bound on the length of the sequence FR0,FR1, ...,FRℓ of
formulae. Using the notion of symbolic execution tree introduced above, once specialized to VASs, we can then
prove:

Lemma 4.1. Let PN := 〈P, T, F 〉 be an acyclic workflow net and Π be the set of all its paths. Then, the set
of forward reachable states of 〈x, In(x), {τi(x, x′) | i = 1, ..., n}〉, the VAS associated to PN , is identified by the
formula FRℓ(τ, In) for ℓ = maxπ∈Π{len(π|T )}, where π|T is the sequence obtained from π by forgetting each of
its elements in P and len(π|T ) is the length of the sequence π|T . �

This result is proved in [9] by using the notion of symbolic execution tree introduced above, specialized to
VASs.

4.2. RBAC4BPEL and terminating forward reachability. Preliminarily, let Enum({v1, ..., vn}, S) be
the following set of FOL formulae axiomatizing the enumerated datatype with values v1, ..., vn for a given n ≥ 1
over a type S: vi 6= vj for each pair (i, j) of numbers in {1, ..., n} such that i 6= j and ∀x. (x = v1∨· · ·∨x = vn),
where x is a variable of type S. The formulae in Enum({v1, ..., vn}, S) fix the number of elements of any
interpretation to be v1, ..., vn; it is easy to see that the class of structures satisfying these formulae are closed
under isomorphism. We consider RBAC4BPEL, a particular class 〈p, In(p), {τi(p, p′) | i = 1, ..., n}〉 of two-level
transition systems such that (i) x = ∅; (ii) the initial condition In(p) is of the form ∀w. ϕ(w), where ϕ is a
quantifier-free formula where at most the variables in w may occur free; and (iii) the underlying structure is
one in the (isomorphic) class of many-sorted structures axiomatized by the following sentences:

Enum(U,User) ,
Enum(R,Role) ,
Enum(P,Permission) ,
Enum(A,Action) ,
∀u, r. (ua(u, r) ⇔

∨

cu∈Uua,cr∈Rua
(u = cu ∧ r = cr)) ,

∀r, p. (pa(r, p) ⇔
∨

cr∈Rpa,cp∈Ppa
(r = cr ∧ p = cp)) ,

cr � c′r for cr, c
′
r ∈ R ,

∀r. (r � r) ,
∀r1, r2, r3. (r1 � r2 ∧ r2 � r3 ⇒ r1 � r3) ,
∀r1, r2. (r1 � r2 ∧ r2 � r1 ⇒ r1 = r2) ,

where U , R and P are finite sets of constants denoting users, roles, and permissions, respectively, A is a finite
set of actions, u is a variable of type User , r and its subscripted versions are variables of type Role, p is a
variable of type Permission , Uua ⊆ U , Rua ⊆ R, Rpa ⊆ R, and Ppa ⊆ P ; (d) p = xcd is a predicate symbol of
type User × Action abbreviating executed ; and (e) each τi is of the form

∃u. (ξ(u, xcd) ∧ ∀x, y.(xcd ′(x, y) ⇔ ((x = uj ∧ y = p) ∨ xcd(x, y)))),

where u is a tuple of existentially quantified variables of type User , uj is the variable at position j in u, and
ξ(u, xcd) is a quantifier-free formula (called the guard of the transition) where no function symbol of arity
greater than 0 may occur (the part of τi specifying xcd ′ is called the update).

To explain how a RBAC4BPEL system can be specified by the formulae above let us consider again the
example described in Section 2. To constrain the sets of users, roles, and permissions to contain exactly the
elements specified in Fig. 2.2, it is sufficient to use the following sets of formulae:

Enum({u1, u2, u3, u4},User) ,
Enum({manager ,finAdmin,finClerk , poAdmin , poClerk},Role) ,
Enum({p1, p2, p3, p4, p5},Permission) .
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It is also easy to see that the formulae

∀u, r. (ua(u, r) ⇔





(u = u1 ∧ r = manager ) ∨ (u = u2 ∧ r = finAdmin)∨
(u = u3 ∧ r = finClerk) ∨ (u = u4 ∧ r = poAdmin)∨
(u = u5 ∧ r = poClerk )





and

∀r, p. (pa(r, p) ⇔

(

(r = finClerk ∧ p = p4) ∨ (r = finAdmin ∧ p = p5)∨
(r = poClerk ∧ p = p3) ∨ (r = poAdmin ∧ p = p1)

)

are satisfied by the interpretations of ua and pa in Fig. 2.2 and that manager � finAdmin, manager � poAdmin ,
finAdmin � finClerk , and poAdmin � poClerk with the three formulae above for reflexivity, transitivity and
antisymmetry make the interpretation of � the partial order considered in Fig. 2.2. The state variable xcd allows
us to formalize component (vii) of the RBAC4BPEL system about the authorization constraints. The idea is
to use xcd to store the pair user u and action a when u has performed a so that the authorization constraints
can be formally expressed by a transition involving suitable pre-conditions on these variables. We illustrate
the details on the first authorization constraint considered in Section 4.2, i.e., 〈U, (apprPO , signGRN ), 6=〉. The
corresponding transition can be formalized as follows:

∃x1, x2. (xcd(x1, apprPO) ∧ x1 6= x2 ∧ ∀x, y. (xcd ′(x, y) ⇔ ((x = x2 ∧ y = signGRN ) ∨ xcd(x, y))) .

The guard of the transition prescribes that the user x2 is not the same user x1 that has previously performed the
action apprPO and the update stores in xcd the new pair (x2, signGRN ). The following two constraints at the
end of Section 4.2, namely 〈U, (apprPO , ctrSignGRN ), 6=〉 and 〈U, (signGRN , ctrSignGRN ), 6=〉, are formalized
in a similar way. The encoding of the last constraint, i.e., 〈R, (crtPay , apprPay),≺〉, is more complex and
requires also the use of the user-role relation ua to represent the constraint on the role hierarchy:

∃x1, x2, r1, r2. (xcd(x1, crtPay) ∧ ua(x1, r1) ∧ ua(x2, r2) ∧ r2 � r1 ∧ r1 6= r2 ∧

∀x, y. (xcd ′(x, y) ⇔ ((x = x2 ∧ y = apprPay) ∨ xcd(x, y))) .

The reader should now be convinced that every RBAC4BPEL specification can be translated into a
RBAC4BPEL system.

We show that the three sufficient conditions to mechanize the solution of the goal reachability problem (see
Section 3.2) are satisfied by RBAC4BPEL systems when using forward reachability. First, the class of formulae
is closed under post-image computation.

Fact 2. Post(K, τi) is equivalent to

(∃u.(K(xcd) ∧ xcd(uj , t) ∧ ξ(u, xcd))) ∨ (∃u.(K[λx, y.(¬(x = uj ∧ y = t) ∧ xcd(x, y))]∧

ξ[u, λx, y.(¬(x = uj ∧ y = t) ∧ xcd(x, y))])) ,

where K[λx, y.(¬(x = uj ∧ y = t) ∧ xcd(x, y))] is the formula obtained from K by substituting each occurrence
of xcd′ with the λ-expression in the square brackets and then performing the β-reduction and similarly for
ξ[u, λx, y.(¬(x = uj ∧ y = t) ∧ xcd(x, y))]. �

As anticipated above when introducing the definition of post-image for two-level transition systems, we
can eliminate the second-order quantifier over the predicate symbol xcd . Now, recall that a formula is in the
Bernays-Schönfinkel-Ramsey (BSR) class if it has the form ∃z∀w. φ(z, w), for φ a quantifier-free formula and
z ∩ w = ∅ (see, e.g., [17]). As a corollary of Fact 2, it is immediate to see that if K is a BSR formula, then
also Post(τi, K) is equivalent, by trivial logical manipulations, to a formula in the BSR class. Since In(xcd) is
a formula in the BSR class, then all the formulae in the sequence FR0,FR1, ... will also be BSR formulae. The
second requirement is also fulfilled since the satisfiability of the BSR class is well-known to be decidable [17]
and the formulae used to axiomatize the structures underlying the RBAC4BPEL transition systems are also in
BSR. Third, it is possible to pre-compute a bound on the length of the sequence FR0,FR1, ...,FRℓ of formulae,
although the existential prefix grows after each computation of the post-image when considering the formulae
describing the set of forward reachable states. This is so because we consider only a finite and known set of
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users so that the length of the existentially quantified prefix is bounded by nk
u × n, where k is the maximal

length of the existential prefixes of the transitions in the RBAC4BPEL system, nu is the number of users, and
n is the number of transitions.

Property 1. Let 〈p, In(p), {τi(p, p′) | i = 1, ..., n}〉 be a RBAC4BPEL system, k be the maximal length of
the existential prefixes of τ1, ..., τn, and nu be the cardinality of the set of users. Then, its symbolic execution
tree is ℓ-complete for every ℓ such that ℓ ≥ nk

u × n. �

The key idea of the proof is the observation that xcd is interpreted as a subset of the Cartesian product
between the set of users and the set of actions whose cardinalities are bounded.

4.3. Combining VASs and RBAC4BPEL systems. We are now ready to fully specify applications
that feature both the WF and the PM level. To do this, we consider VAS+RBAC4BPEL systems, two-level
transition systems of the form

〈x, p, InV (x) ∧ InR(p), {τV
i (x, x′) ∧ τR

i (p, p′) | i = 1, ..., n}〉,

where x = x1, ..., xn for some n ≥ 1; p = xcd , InV (x) is the initial condition of a VAS; InR(p) is the initial

condition of a RBAC4BPEL system; τV
i (x, x′) is a transition of a VAS; and τR

i (p, p′) is a transition formula of a

RBAC4BPEL system for i = 1, ..., n. Note that for some transition, the guard ξ of τR
i (p, p′) may be tautological

since the operation involves no access-control policy restriction (e.g., the flow split and flow join of the Petri
net in Fig. 2.1). It is natural to associate a VAS and an RBAC4BPEL system to a VAS+RBAC4BPEL system
by projection, i.e., the associated VAS is 〈x, InV (x), {τV

i (x, x′) | i = 1, ..., n}〉 and the associated RBAC4BPEL
system is 〈p, InR(p), {τR

i (p, p′) | i = 1, ..., n}〉. The structure underlying the VAS+RBAC4BPEL system is such
that its reduct to the signature of the VAS is identical to the structure underlying the associated VAS, and
its reduct to the signature of the RBAC4BPEL system is identical to the structure underlying the associated
RBAC4BPEL system.

We now show how it is possible to modularly compute the post-image of a VAS+RBAC4BPEL system by
combining the post-images of the associated VAS and RBAC4BPEL system.

Fact 3. Let K(x, xcd) := KV (x) ∧ KR(xcd). Then, Post(K, τi) is equivalent to

KV [xj + 1, xk − 1, xl] ∧
∧

i∈P

xi ≥ 0 ∧ ((∃u.(KR(xcd) ∧ xcd(uj , t) ∧ ξ(u, xcd)))∨

(∃u.(KR[λx, y.(¬(x = uj ∧ y = t) ∧ xcd(x, y))]∧

ξ[u, λx, y.(¬(x = uj ∧ y = t) ∧ xcd(x, y))]))) ,

where the same notational conventions of Facts 1 and 2 have been adopted. In other words, the post-image of
a VAS+RBAC4BPEL system is obtained as the conjunction of the post-images of the associated VAS, denoted
with PostV (K, τi) := Post(KV , τV

i ), and the associated RBAC4BPEL system, denoted with PostR(K, τi) :=
Post(KR, τR

i ). Thus, we abbreviate the above formula as PostV (K, τi) ∧ PostR(K, τi). �

The proof of this fact is obtained by simple manipulations minimizing the scope of applicability of ∃x and
∃xcd , respectively, and then realizing that the proofs of Facts 1 and 2 can be re-used verbatim. Because of the
modularity of post-image computation, it is possible to modularly define the set of forward reachable states and
the symbolic execution trees for VAS+RBAC4BPEL systems in the obvious way. By modularity, we can easily
show the following property.

Property 2. Let PN := 〈P, T, F 〉 be a an acyclic WF net, 〈x, InV (x), {τV
i (x, x′) | i = 1, ..., n}〉 be

its associated VAS, and 〈p, InR(p), {τR
i (p, p′) | i = 1, ..., n}〉 be the RBAC4BPEL system with nu users and

k be the maximal length of the existential prefixes of τR
1 , ..., τR

n . Then, the symbolic reachability tree of the
VAS+RBAC4BPEL system whose associated VAS and RBAC systems are those specified above is ℓ-complete
for every ℓ ≥ min(maxπ∈Π{len(π|T )}, nk

u × |T |). �

The key observation in the proof of this property is that in order to take a transition, the preconditions
of the associated VAS and of the associated RBAC4BPEL system must be satisfied. Because of the modular-
ity of the post-image, the duality between the set of forward reachable states and the formulae labeling the
symbolic execution tree can be lifted to VAS+RBAC4BPEL. We are now ready to state the decidability of the
VAS+RBAC4BPEL system; see [9, extended version] for the proof.

Theorem 4.2. Let PN := 〈P, T, F 〉 be a an acyclic WF net and let 〈x, InV (x), {τV
i (x, x′) | i = 1, ..., n}〉 be

its associated VAS. Further, let 〈p, InR(p), {τR
i (p, p′) | i = 1, ..., n}〉 be a RBAC4BPEL system with a bounded
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Fig. 4.1. High level architecture view of WSSMT. All components of the architecture are described in Section 5.

number of users. Then, the symbolic reachability problem of the VAS+RBAC4BPEL system (whose associated
VAS and RBAC4BPEL systems are those specified above) is decidable. �

To illustrate the kind of formulae arising in the application of Theorem 4.2, we consider the example
specified in Fig. 2.1. In this case, we can restrict to consider three paths (projected over the transitions)
in the WF net: crtPO , apprPO , flow split , signGRN , ctrSignGRN , crtPay , flow join , apprPay ; crtPO ,
apprPO , flow split , signGRN , crtPay , ctrSignGRN , flow join , apprPay ; and crtPO , apprPO , flow split ,
crtPay , signGRN , ctrSignGRN , flow join , apprPay ; each one of length eight. It is easy to see that only
the first path is to be considered as the other two produce states that are equivalent since it does not matter
at what time crtPay is executed with respect to signGRN and ctrSignGRN (it is possible to mechanize also
this check but we leave out the details for lack of space). So, for example, it is possible to check the so-called
soundness of workflows [22], i.e., to check whether it is possible to terminate without “garbage” left. In terms of
a WF net, this means that no tokens are left in places other than the special final place o of the net. This can be
checked by computing the post-images of the initial state of the VAS+RBAC4BPEL system of our motivating
example along the lines of Facts 1, 2, and 3 and put this in conjunction with the formula characterizing the
“no-garbage” condition, i.e.,

x10 ≥ 1 ∧
9

∧

i=1

xi = 0 .

Thanks to the closure under post-image computation of the VAS and the RBAC4BPEL systems, as well as the
modularity of the post-image computation for the VAS+RBAC 4BPEL system, the resulting proof obligation
is decidable as it can be put in the form ϕV ∧ϕR where ϕV is a formula of LA (whose satisfiability is decidable)
and ϕR is a BSR formula (whose satisfiability is again decidable), and thus the satisfiability of their conjunction
is also decidable.

5. WSSMT: mechanizing the analysis of security-sensitive services. There are two ways to mech-
anize the symbolic execution technique introduced in Section 3.2: the implementation of an ad hoc tool or the
re-use of existing tools via a suitable front-end. Since the verification problems are reduced to satisfiability
problems modulo theories, it is highly desirable to exploit the cornucopia of well-engineered and scalable Au-
tomated Theorem Proving (ATP) systems such as resolution-based provers and Satisfiability Modulo Theories
(SMT) solvers. We chose the second option and implemented a tool called WSSMT, which is an acronym of
“Web Service (validation by) Satisfiability Modulo Theories”. A detailed description of the tool and its im-
plementation can be found in [5, 31], here we only sketch its main functionalities and architecture, which is
depicted in Fig. 4.1.

The main goal of WSSMT is to help users write specifications of security-sensitive services structured along
the previously identified directions: WF/PM levels and static/dynamic parts. Once the algebraic structure
of the WF and PM levels have been identified (e.g., Linear Arithmetic in the case of a VAS) by means of
suitable first-order theories (see, e.g., [7] for a discussion of how to use theories to describe the state space of
two-level transition systems) and a two-level transition system is specified to describe the possible actions of the
system, the front-end will enable the user to create and manipulate a symbolic execution tree, which compactly
represents several possible symbolic executions of the service under consideration. Indeed, to create such a tree,
whose nodes are labeled with state formulae and edges with (instances of) transitions, the front-end must create
the appropriate proof obligations (as explained in Section 3) and then invoke an available ATP system, chosen
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Fig. 5.1. Symbolic Execution tab.

by the user among those available in the back-end. Once the ATP has established the satisfiability of the proof
obligation, the front-end updates the symbolic execution tree or complains about the impossibility of executing
the chosen transition. The client-server architecture of WSSMT follows these observations as shown in Fig. 4.1.

The front-end is organized in several tabs corresponding to the various ingredients of our specification and
verification framework: Theories, States, Transitions, and Symbolic Execution. The first two tabs describe the
static part of the specification and are structured in such a way to specify the WF and PM levels independently.
The Transitions tab allows the user to enter transitions as specified in Section 4.3. The Symbolic Execution
tab, depicted in Fig. 5.1, is split in two parts: on the left, the user can enter the symbolic step to be checked
for executability, while the right part shows the symbolic execution tree that represents one or more possible
scenarios of execution. More precisely, the left part shows the state formula from which the symbolic execution
step is taken (labeled Source) and allows the user to enter the formula to which the execution step should lead
(labeled Destination) together with a transition chosen from the list of available transitions (combo labeled
Transition), whose identifiers have been instantiated as explained in the combo labeled Instance selection. To
send the resulting proof obligation to a back-end ATP system, the user should press the button Process.

To ease portability and modularity, WSSMT has been implemented in Java 1.5 as an Eclipse 3.5 plug-in
by exploiting the SWT and JFace libraries [13, 27] for the creation of multi-platform graphical user interfaces.
The concrete input language of state and transition formulae, as well as of axioms of the theories in WSSMT,
is the DFG syntax [29]. It has been chosen because it supports many-sorted FOL, it is easy to extend, and
several tools are available for its parsing and translation.

Currently, WSSMT has been used with SPASS [24], a state-of-the-art resolution-based prover, and the
SMT solver Z3 [30]. The former was chosen because it has the same input language as the front-end so that
it is trivial to generate the proof obligations to support symbolic execution. However, it would be easy to
integrate any ATP system whose input language is the TPTP format [26] as there exists a translator from the
DFG syntax to the TPTP format in the distribution of SPASS. This is left to future work. Z3 was chosen
because it is one of the best SMT solvers (according to the last competition for such tools [23] at the state of
writing) and complements the reasoning capabilities of SPASS by providing support for ubiquitous theories as
decidable fragments of arithmetics (while SPASS only supports reasoning in pure FOL). It was easy to create
a translator from the DFG syntax to the SMT-LIB input language [18], which is one of the input languages of
Z3. Furthermore, integration of further SMT solvers can be done seamlessly as the SMT-LIB language is their
common input language. The evaluation of the advantages of having several SMT solvers available as back-ends
in WSSMT is also left to future work.

The ATP systems are invoked via calls to the operating system provided by Java and their results are
parsed by the front-end in order to update the symbolic execution tree accordingly (along the lines explained in
Section 3). Our experience in using WSSMT for the analysis of some specifications of security-sensitive services
can be found in the next section, along with remarks about the performances of the ATP systems to discharge
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<process name="LOP"/>

<sequence>
<invoke> inputCustData </invoke>
<flow>

<invoke> prepareContract </invoke>
<sequence>

<invoke> intRating </invoke>
<if>

<condition> ∼lowRisk </condition>
<invoke> extRating </invoke>

</if>

</sequence>
</flow>

<invoke> approve </invoke>
<if>
<condition> ∼productOK </condition>

<invoke> sign </invoke>
</if>

</sequence>
</process>

nop

nop sign

approve

extRating

endFlow

beginFlow

prepareContract

inputCustData

intRating

∼ lowRisk

∼ productOK

p5

p1

p10

lowRisk

productOK
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Fig. 6.1. The LOP process: BPEL (left) and corresponding Petri net (right). Legend: see the legend in Fig. 2.1 and, in
addition, consider that places filled in red (resp., green) specify Boolean variables whose value is false (resp., true).

typical proof obligations.

6. Case studies. In this section, we report on the application of WSSMT to the specification and analysis
of two industrial case studies considered in the FP7 European project AVANTSSAR (more details about these
and other case studies can be found in [4]): the first one is called the Loan Origination Process and concerns
a banking service in the e-business applications area (Section 6.1), whereas the second one is called the Digital
Contract Signing and is a protocol in the e-government area (Section 6.2).

6.1. Loan Origination Process. The Loan Origination Process (LOP) is a bank’s loan application
process, which has been used as an example in many works (see, e.g., [2, 4, 11, 21]). We adapt the variant
proposed in [2, 7], whose workflow is presented as a BPEL process and whose policy level is described by RBAC
policies with delegation. Fig. 6.1 shows the BPEL description (left) and the corresponding Petri net translation
(right) of the LOP. The Petri net has been obtained along the same lines as the one for PO.

Roughly, the LOP is composed of seven activities: the customer starts the process by providing its own
data (inputCustData) and then the contract is prepared (prepareContract) and the customer’s rating evaluation
is run concurrently. The evaluation activity is performed by first performing an internal evaluation (intRating):
if the risk associated with the loan is low, then the internal rating is sufficient (nop); otherwise, a credit
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reporting agency is asked for an external rating (extRating). Afterwards, the bank approves the result of the
loan evaluation (approve) and decides whether to sign the loan (sign) or not, entering again in the task (nop).

6.1.1. WF level. Similarly to the PO of Fig. 2.1, the order of the execution of the various activities of
the LOP should satisfy some constraints to complete successfully. The inputCustData must be executed at the
beginning of the process, then the flow splits in two so that parallel execution of two sets of tasks is possible.
intRating and prepareContract are concurrent activities and while prepareContract is the only task in the right
branch (see Fig.6.1), intRating in the left branch leads to a fork composed by extRating or nop. The choice
to follow one of these branches will depend on the value of a Boolean variable (external to the flow) lowRisk.
At this point the two parallel strings can synchronize by executing the task endF low. Then, the task approve
leads again to split the flow and the choice to follow the task sign or nop will be done depending on another
external Boolean variable productOK. At this point, no more transitions are enabled and the execution of the
workflow is terminated.

We can map the BPEL description to a WF net and this to a transition system as described in Section 4.
In the following, for the sake of brevity, we sketch how to translate some of the markings of the Petri net and
a few transitions.

Formally, we represent the set of places (pi) using a map to the set of non-negative integers. To formalize
the Initial (resp., Final) state of the flow where there is just one token in place p1 and (resp., p10) all other
places are empty, is sufficient to write the following two formulae:

Initial := p1 = 1 ∧
10
∧

i=2

pi = 0 and Final := p10 = 1 ∧
9

∧

i=1

pi = 0 .

Let us analyze inputCustData: the guard of the transition requires that there is one token in place p1, its update
consumes the token in p1 and produces a token in p2 while leaving all other places as they are. This can be
formally represented by the following formula:

inputCustData := p1 = 1 ∧ p′1 = p1 − 1 ∧ p′2 = p2 + 1 ∧
10
∧

i=3

(p′i = pi) .

All the other transitions are formalized along the same lines.

6.1.2. PM level. Each task can be executed by an agent who is entitled to perform it. For example, the
task inputCustData can be executed by an employee of the bank who has the role of preprocessor , while the
task sign can be performed by the director of the bank. Indeed, the employees have certificates that can be
used to play certain roles that are organized hierarchically, i.e., a certain role inherits all the rights owned by
roles that are lower in the hierarchy. In this way, for example, the director of the bank has all the rights of one
of its employees, so that the director can, in principle, process the loan application of a customer.

We also consider delegation of tasks. For example, for certain loan applications (e.g., for loans below a
certain amount), the director of the bank can delegate one of his supervisors to sign the loan contract after
its approval. To manage these issues we use the RBAC model, whose main motivation is to map security
management to an organization’s structure (such as the bank in the LOP). The underlying idea is that each
user’s role may be based on the user’s job responsibilities in the organization. The key ingredients of an RBAC
model are the same as the ones introduced in Section 4.2.

Similarly to the case of RBAC4BPEL, to formalize RBAC we have introduced three sort symbols Id,Role,
and Task for the sets U, R, and T , respectively. To formalize the PM level of the LOP, we assume that the
three sort symbols are endowed with the following enumerated data-type theories:

TId := Enum({davide ,maria,marco, pierPaolo , pierSilvio}, Id),

TRole := Enum({preprocessor , postprocessor , supervisor ,manager , director}, Role),

TTask := Enum({inputCustData, prepareContract , intRating, extRating, approve , sign}, T ask).

Note that constant symbols of sort Task have exactly the same names of transition labels of the Petri net in
Fig. 6.1 (right).

Since a user can be associated to several roles, s/he must choose to activate a role (with the appropriate
rights) to execute a task. Formally, we introduce a dynamic predicate symbol activated : Id × Role such that
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activated(i, r) holds whenever the user i has chosen to become active in role r (if this is possible according to
the relation ua). We modeled activation and deactivation of roles with the following two transitions: the first
formalizes the fact that an agent is active in a certain role if it was not already playing the given role and it
can be assigned to it

∃i.





ua(i, ρ) ∧ ¬activated(i, ρ)∧

∀j, r.(activated ′(j, r) ⇔

(

if (j = i ∧ r = ρ)
then true else activated(j, r)

)

)



 ∧ υ

and, dually, the second formula models deactivation from a role

∃i.





activated(i, ρ)∧

∀j, r.(activated ′(j, r) ⇔

(

if (j = i ∧ r = ρ)
then false else activated(j, r)

)

)



 ∧ υ ,

where, for both activation and deactivation, ρ ∈ Λ, Λ := {preprocessor , postprocessor , supervisor ,manager ,
director}, and υ := ∀i, r. (ua ′(i, r) ⇔ ua(i, r)) ∧ ∀i, t. (pa ′(i, t) ⇔ pa(i, t)).

The RBAC model has been widely adopted to organize policy access for large organizations (see, e.g., [21]).
However, even when a task is typically handled by an employee with a certain role, it may be the case that, under
certain conditions, the employee wishes to delegate its right to execute a task to another employee belonging
to a role down in the hierarchy. So, delegation is a key for the flexibility and scalability of service-oriented
applications. In the LOP, roles can be delegated according to the following rules:

1. if the loan has been approved internally, then a manager can delegate a supervisor to approve a loan,
2. if the loan has been approved internally, then a manager can delegate a supervisor to sign the loan,
3. if the loan does not require an external rating, then the director can delegate a manager to sign the

loan,
4. if the loan does not require an external rating, then a supervisor can delegate a postprocessor to perform

an external rating of a loan.

To formalize this, we add the dynamic predicate delegated : Id × Role × Task to the PM level state, and the
two Boolean variables intRatingOK and highV alue to the WF level state. If the user i is delegated to execute
task t by a user who has role r, then delegated(i, r, t) holds; intRatingOK is the result of the internal (to the
bank) evaluation of the loan application (since the logic determining the value of this variable is not modeled,
the value of intRatingOK will not be modified by any transition); and highV alue is set to true if the amount
of the loan is greater than a certain threshold established by the bank (since the precise value of the threshold
is unimportant for our model, the value of highV alue will not be modified by any transition). By using this
and the previously introduced dynamic predicates, the transitions formalizing the role delegation rules above



16 M. Barletta, A. Calvi, S. Ranise, L. Viganò and L. Zanetti

can be written as follows:

1. ∃i1, i2.













intRatingOK ∧ ua(i1,manager )∧
ua(i2, supervisor) ∧ pa(manager , approve)∧
∀i, r, t. delegated ′(i, r, t) ⇔
(

if (i = i2 ∧ r = manager ∧ t = approve)
then true else delegated(i, r, t)

)

∧ υ













2. ∃i1, i2.













intRatingOK ∧ ua(i1,manager )∧
ua(i2, supervisor) ∧ pa(manager , sign)∧
∀i, r, t. delegated ′(i, r, t) ⇔

(

if (i = i2 ∧ r = manager ∧ t = sign)
then true else delegated(i, r, t)

)

∧ υ













3. ∃i1, i2.













¬highValue ∧ ua(i1, director )∧
ua(i2,manager) ∧ pa(director , sign)∧
∀i, r, t. delegated ′(i, r, t) ⇔

(

if (i = i2 ∧ r = director ∧ t = sign)
then true else delegated(i, r, t)

)

∧ υ













4. ∃i1, i2.













¬highValue ∧ ua(i1, supervisor )∧
ua(i2, postprocessor) ∧ pa(supervisor , extRating)∧
∀i, r, t. delegated ′(i, r, t) ⇔
(

if (i = i2 ∧ r = supervisor ∧ t = extRating)
then true else delegated(i, r, t)

)

∧ υ













,

where υ := ∀i, r. (ua ′(i, r) ⇔ ua(i, r)) ∧ ∀i, r.(activated ′(i, r) ⇔ activated(i, r)) ∧ ∀i, t. (pa ′(i, t) ⇔ pa(i, t)).
At this point, we are able to characterize when an agent i playing role r is granted the right to execute task

t: either i is delegated to execute task t by a user in role r or user i is assigned to role r, i is active in that role,
and there exists a role ρ such that r � ρ and ρ has the permission to perform task t. To formalize this, we add
the predicate granted : Id × Role × Tas as well as the axioms

∀i, r, t. granted(i, r, t) ⇔

(

delegated(i, r, t) ∨
(ua(i, r) ∧ activated(i, r) ∧ (r � ρ ∧ pa(ρ, t)))

)

for each ρ ∈ Λ. The predicate granted is the key to constrain the transitions describing the workflow of the
application in Fig. 6.1. Formally, this is done by incorporating suitable applications of the predicate granted in
the guards of the transitions. Before giving the transition system characterizing the interplay between the WF
and the PM levels, we introduce a further dynamic predicate symbol executed : Id ×Task to keep track of the
fact that user i has performed a task t, i.e., executed(i, t). As it will be clear below, this enables us to specify
certain crucial security properties of the Loan Origination Process.

Symbolic execution and debugging. We now show how the capability of automatically checking executability
of scenarios can be useful for debugging a specification. In particular, we show that the specification of the
LOP given above violates a crucial security property, namely SoD: “for each agent i, there exists a task in the
workflow that is never executed by i”. This property is violated if we can find a sequence of transitions leading
the LOP from the initial to the final state and the following formula

∀i.∃t.





((t 6= extRating ∧ t 6= sign) ⇒ ¬executed(i, t)) ∧
(lowRisk ⇒ ¬executed(i, extRating)) ∧
(productOK ⇒ ¬executed(i, sign))



 (6.1)

expressing SoD for the workflow of the LOP, is unsatisfiable. To this end, we can show that the sequence
of tasks: inputCustData, beginFlow , prepareContract , intRating, nop, endFlow , approve , and sign , starting
from a certain initial state, lead the transition system to a final state by generating a trace that violates (6.1)
because each task can be executed by just one user. The scenario is taken from [2] and can be easily checked by
using WSSMT (all proof obligations are discharged almost immediately). For a full description of the symbolic
execution of the scenario showing that user pierSilvio can execute all tasks specified above, thereby violating
SoD, the reader is once more pointed to [7].
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6.2. Digital Contract Signing. The Digital Contract Signing (DCS) case study concerns a protocol for
secure digital contract signing between two signers, which are assumed to have secure access to a trusted third
party, called the Business Portal (BP) so as to digitally sign a contract. To achieve this goal, each signer
communicates the contract’s conditions to BP , which creates a digital version of the contract, stores it, and
coordinates the two signers so as to obtain their digitally signed copies of the contract, which will be stored
for future reference. The BP relies on two trusted services: the Security Server (SServ) and the Public Key
Infrastructure (PKI ). The SServ provides operations for creating a unique record in a secure database (only BP
can access the SServ and thus modify the database), updating fields of existing records (i.e., to add signatures
provided by signers), and sealing the signed contract in the record. The PKI is invoked in order to double check
signatures against a Certificate Revocation List (CRL) so to be sure that during the execution of the protocol
one signer has not misbehaved (though we have formalized this aspect of the DCS case study with a high level
of abstraction). The DCS protocol is successful when both signers provide two correctly signed copies of the
same contract and the BP can permanently store the signed copies of the contract.

Instead of manually translating the BPEL files to Petri nets and then derive the associated VASs, as we
were able to do for the PO and the LOP, we used the freely available tool BPEL2oWFN [15]. Since DCS
consists of four BPEL processes (one corresponding to a signer, one for BP , one for SServ , and one for PKI ),
we used BPEL2oWFN to compose the instances of the BPEL processes for the execution of the protocol, and
we used it also to compute the corresponding Petri net. We have then processed this to derive the VAS in the
input syntax of WSSMT.

To have an idea of the dimension of the problem, we sketch in Fig. 6.2 the Petri net generated by
BPEL2oWFN consisting of 51 places (orange places represent data exchange between instances of different
BPEL processes) and 26 transitions, while we omit the specification of the BPEL processes because it would
take too much space.

Once obtained an abstraction of the WF level, we have manually added the PM level in order to specify
the access control rules for each of the four principals involved in the protocol. As for the PO process, we have
used RBAC4BPEL: the formalization that we used is along the same lines as those in Section 4.2. For example,
we have two relations: one associating users with roles and one associating roles with permissions (in our case,
transitions since we consider only the right to execute an action). As before, by taking the join of the two
relations, we can compute the access control relation so as to grant or deny the right to execute a transition to
a certain user. Since it is well-known how to symbolically represent relations and the join operation in FOL, it
was not difficult for us to create a suitable theory for the PM level and augmenting the guards and the updates
of the transitions in order to integrate the constraints of the access control rules. Along the same lines, we
have added SoD (e.g., the user signing the contract should not be the same as the one checking the validity of
the signature on the contract)—as for the LOP process—and BoD (e.g., the users signing the contract should
be same that have agreed on the conditions of the contract) authorization constraints. Further details can be
found in [9].

Given the abstract specification of the DCS, we have used WSSMT to perform the symbolic steps cor-
responding to the typical scenario of execution described in [4]. Since we used a VAS for the WF level, we
discharged the resulting proof obligations by invoking the Z3 SMT solver, which provides native support for
arithmetics (whereas the resolution prover SPASS does not). Each proof obligation was discharged in few
seconds on a standard laptop and augmented our confidence in the correctness of the specification.

However, the specification we created was quite abstract as it ignored the content of the messages exchanged
among the various principals. This was so because we used the tool BPEL2oWFN to generate the specification
of the WF level. In fact, such a tool creates a coarse abstraction of BPEL processes where it is only taken
into account if messages are sent and or received. We decided to manually refine the specification by adding
FIFO queues containing messages with sender, receiver, and payload. To encode this in first-order theories,
several methods are possible (see, e.g., [14]). Once obtained the refined specification, we replayed the symbolic
execution corresponding to the typical scenario previously considered by using again Z3 as the back-end ATP
system. Again, all the proof obligations were discharged in less that a minute on a standard laptop. Finally,
we have also verified some simple inductive invariant properties encoding the fact that the number of tokens in
the Petri net remains constant.

7. Conclusions. To conclude the paper, let us briefly summarize our contributions. We have described
automated formal analysis techniques for the validation of a class of web services specified in BPEL and
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Fig. 6.2. The Petri net representation of the WF level of the DCS case study. Legend: see Fig. 6.1 and, in addition, consider
that orange places specify data exchange between instances of different BPEL processes.
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RBAC4BPEL. We also discussed our experience in using our prototype tool WSSMT on two industrial case
studies, a loan origination process and a digital contract signing service, which have provided proof of concept
of the flexibility of our specification and analysis framework, which allowed us to precisely capture the interplay
between the workflow and the access-control level of the service. Throughout the paper, we have referred to
related work and already mentioned several interesting directions for future work. In particular, besides for
considering other case studies, we plan to extend our decidability results to WF nets containing restricted forms
of loops and extensions of RBAC4BPEL with delegation, as well as to consider in more detail the interplay of
the WF and PM levels with the data flow of the services under validation.
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[6] M. Barletta, S. Ranise, and L. Viganò. Verifying the Interplay of Authorization Policies and Workflow in Service-Oriented
Architectures. In IEEE CSE’09, 12th IEEE International Conference on Computational Science and Engineering, pages
289–296. IEEE Computer Society, 2009.
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