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AN ADAPTIVE AND SCALABLE REPLICATION PROTOCOL ON POWER SMART

GRIDS∗
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Abstract. Cloud based storage systems are known to provide high scalability and reliability overcoming the traditional
constraints of static distributed systems. The processing capacity over thousands of machines makes this approach especially
suitable for many environments. In particular, we focus on power networks. These systems are currently decentralizing their
architectures due to the growth of renewable sources and the increasing power demand which are obstacles to the traditional power
network radial distribution. This new decentralized architecture, which demands computing abilities for network monitoring and
improving customer services, is denoted as power smart grid. This paper proposes a new scalable dynamic storage architecture and
its associated replication protocol, with its correctness proof, aimed to store data with different consistency levels. In addition it is
able to perform some parallel data computations adapting itself to the physical and dynamic power smart grid layout.
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1. Introduction. Power networks are demanded to be highly reliable and available because they have
to supply all the infrastructures of a country at anytime and anywhere. This prevents power companies from
updating and improving their systems because most of the changes may seriously affect critical services they
are currently providing since novel devices might not be as tested as older ones. This leads to inefficient—due
to their centralized nature—schemes which are expensive and even harder to maintain and scale.

With the growth of renewable energies the power network centralized model is not only able to scale but also
cannot work properly; the aforementioned renewable energy sources behave different than traditional sources.
Moreover, current power networks are not able to remotely monitor power consumptions on the low voltage
(LV) network which prevents companies from building new business strategies fitted to the end user needs [8].
This situation urges a substantial change which consists of decentralizing the power network and building a
distributed system able to fulfill the current society requirements and technologies.

Recently, this new paradigm has also been referred to as power smart grid (intelligent grid). The goal of
a smart grid is to take advantage of the current digital technologies and build up an intelligent information
system over all devices within the power network: from suppliers to consumers. This might allow companies to
efficiently tune the power distribution and route energy where and when it is needed.

Smart grids have been a hot topic during the last few years and several approaches have been proposed:
the gridSmart project [1] proposes an upgrade of the Ohio electric grid by using digital communications and
automated functioning. This permits customers showing how smart grid technologies provide customers with
greater energy control. It can also improve electricity delivery and cut energy consumption to delay the need
to build more power plants. The Masdar Eco city [23] project proposes to build a energetically sustainable
city in Abu Dhabi. IBM and Malta’s government are powering a project [24] which consists in transforming
the distribution network to improve operational efficiency and customer service levels by changing the current
electricity meters to smart devices and connecting them to an information system enabling remote reading,
management, and monitoring throughout the entire distribution network.

The decentralization of a power network, actually the smart grid design, covers several disciplines such as
(1) electricity, there are multiple power sources using different technologies; (2) networking, there must exist a
secure communication between all the nodes which generate data on the system; (3) computer engineering, in
the sense that this data must be stored and computed.

The purpose of this paper is to focus on the computer engineering field and propose an architecture and its
storage protocol, able to efficiently store and ease the computation of any data generated by the power network
inspired by the flavors of cloud computing. This distributed storage architecture is slightly different than the
ones used on web services [27] or in pure cloud computing based storage architectures [34, 25] since smart grids
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demand a set of requirements that have not been explored yet. Hence, we also provide a rough correctness
verification of the distributed storage protocol.

The reminder of this paper is organized as follows: Section 2 describes the requirements that the distributed
storage system must fulfill within the power smart grid framework. Section 3 describes the proposed architecture
and explains how it has to be included within the smart grid. Section 4 reviews the system correctness in
absence of failures. Section 5 discusses our proposal and suggests other domains of application. Finally, Section
6 concludes the paper.

2. Smart Grids Storage Requirements. Smart grids, as opposite to classical power networks, have
become data driven applications since they own a management layer which takes decisions based on the current
status of the network. This issue forces designers to redefine the whole power network architecture and its
specifications, as now there is a need for storing and processing these datum besides supplying power. This
section reviews such requirements and states the basics of the architecture proposed in Section 3.

The strongest requirements of any device inside a smart grid are availability and reliability since denials of
service are not acceptable at any situation. Moreover, smart grids are demanded to perform many computations
from data collected by smart meters and intelligent electronic devices (e.g. circuit breakers, voltage regulators,
etc.). This, extends both requirements—availability and reliability—not only to the physical infrastructure,
targeted at supplying energy, but also to datum and their storage.

To fulfill these constraints, we propose a distributed storage architecture built on top of the power smart
network able to afford the dynamic behavior of smart grids (e.g. a solar panel may stop supplying energy or
an end-user consumer may switch from its local power generation device to the supplier generation network).
Actually, distributed storage systems are known to provide availability, reliability, and fault tolerance on many
scenarios [15, 17].

Distributed storage systems can be either static or dynamic. Static systems [17, 26] require to know the
identity of all nodes a priori in order to be able to distribute storage and computation. On the contrary, dynamic
systems [2, 34, 22, 25, 13] do not make any assumption about the system composition, which allow processes
joining and leaving at will. This kind of systems are designed to be fault tolerant, understood as the ability to
tolerate erratic behaviors from random nodes, and used to improve the scalability of static systems by relaxing
the data consistency restrictions [7].

Smart grids demand a trade-off between both scenarios because they behave as a dynamic system but they
may need some strong consistency [33] requirements that typical cloud based techniques are currently unable to
offer. Hence, our proposal is to build a hybrid system which takes advantage of both distributed storage system
schemes, static and dynamic.

Far from just storing data, there are also several applications (also referred to as smart functions) that
must run over the smart grid, such as power flow monitoring, under/over voltage monitoring, load shedding,
or fault analysis. Each application has its own particular requirements so the proposed architecture must be
flexible enough to support such variety of functions. Thus, the distributed storage architecture must provide
the following:

1. Reliability. The proposed architecture must be fully tested since major changes on it may imply eventual
denial of services.

2. Availability. The architecture must ensure that there always be available data despite its level of
consistency.

3. Fault tolerance and recovery. The system must be able to reconfigure its internal characteristics in
order to keep supplying and storing data in case of failure.

4. Dynamic consistency. Smart grids run several functions that might require different levels of consistency.
For example, on one hand, data needed to perform a load shedding requires strong consistency [33] since
it performs critical operations with the current values of the network. On the other hand, data needed
to perform power monitoring might require a weaker level of consistency since this function tolerates
some kind of delay.

5. Minimum message exchange. It is important to keep a low network overhead in order to guarantee that
there were no bottlenecks, and data will flow over the network in an efficient way.

6. Simplicity. This is the key to build a system easy to maintain and adaptable to other domains of
application.

The next section proposes the distributed storage architecture and places it inside the smart grid.
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Fig. 3.1: Proposed distributed storage system.

3. System Architecture. Our proposal is inspired on the Primary Copy replication technique [35] used
in transactional environments, where all updates are handled by a single node (also referred to as primary) and
it propagates them to their replicas (also referred to as subscribers). However, our approach is considerably
different from the classical primary copy protocol in terms of (1) primary updates, (2) subscriber updates, and
(3) scalability.

Our architecture supports several primary nodes; actually each node can be considered as a primary which
means that now updates’ load is balanced between several devices. Each primary node treats the rest of devices
in the smart grid as subscribers. In addition, an epidemic updates based protocol is proposed in order to
replicate data across subscribers. As shown below, in order to overcome the classical scalability constraints of
transactional systems our architecture breaks up with the relational scheme and deals with datum as key-value
pairs.

This section details thoroughly these three key points and fits the replication protocol on top of the power
smart grid infrastructure. Hence, it does not depend on any low layer hardware nor software specification.

As depicted in Fig. 3.1 a smart grid is seen as a set of intelligent electronic device clusters linked by a
telecommunications network (i.e. power line communication, wireless network, wide area networks, etc.). A
cluster is composed of up to ten devices (drawn as rounded circles in Fig. 3.1) placed on the same geographical
area. Each device has limited storage and computing capabilities since it might not be able to solve the whole
required smart functions on its own. We also consider that smart meters are attached to these devices and rely
on them to report their measurements to the rest of the power smart grid through the computation unit.

Each device in the cluster is labeled as Xij where X corresponds to the device role in the cluster (Primary,
Pseudo-Primary or Secondary); i is the cluster identifier, and j is the device identifier. In the same way, we
find very useful to define the ancestor of a clusterm as the node Xij (that obviously belongs to clusteri (m 6= i))
which is updating an arbitrary pseudo-primary k of this cluster (PPmk). Fig. 3.1 shows an example where we
have that region 2 is formed by devices P2k | k = [1, 3] where P21 is the primary of this region; P22 is a common
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device; P23 is the pseudo-primary, (that’s why it is named PP23); and, its ancestor is P11. Respectively, S61 is
the only device on region 6 and its ancestor is PP33.

Regarding data consistency, we define the replication depth r as the amount of different clusters that data
are allowed to cross when they are being replicated. This value might be dynamically tuned according to the
computation latency or the system performance.

Next, we describe the proposed architecture and explain how we solve the replication, consistency, and fault
tolerance issues.

3.1. Architecture Overview. Although the number of smart sensors may substantially increase as time
goes by, the number of devices that control them should not grow in the same way. The proposed architecture
focuses on the devices instead of the smart meters which is an attempt to avoid scalability issues from the latter
ones by hiding their dynamism. However, the system must be robust against possible node failures which forces
designers to implement some techniques commonly used in dynamic systems [15, 13, 2].

In order to provide a high available system able to ease the smart functions distributed computation, we
propose an architecture inspired on the Primary Copy [17, 35, 30] (also referred to as Primary Backup) scheme.

We distinguish two different types of smart clusters: (1) storage clusters which do not generate data (regions
5, 6, 7, and 8 in Fig. 3.1) and (2) active clusters that generate data (regions 1, 2, 3, and 4 in Fig. 3.1).

Any device belonging to an active cluster may simultaneously adopt different roles according to the current
situation: (1) primary master, (2) primary slave, (3) pseudo-primary, and (4) secondary. When a device is
propagating data from their directly attached smart meters, it will act as a primary master and will treat the
rest of devices in its cluster as their primary slaves (in Fig. 3.1, P11, marked with a dashed blue circle, is the
primary master and P12, P13 are their primary slaves). When a device receives data from another cluster it will
be acting as a repeater (pseudo-primary) (in Fig. 3.1 PP23, PP33, and PP43 are the pseudo-primaries of P11).
Moreover, if a device receives updates from other clusters but it does not propagate them, it will be acting as
a secondary (in Fig. 3.1, S51, S61, S71, S81 behave as secondary devices).

Note that blue lines in Fig. 3.1 just illustrate the particular case of P11 broadcasting data. In fact, the
proposed architecture must be understood as if all nodes where generating data. Hence all nodes may act as
primary, pseudo-primary, and secondary devices at a time.

Smart grids need to compute many smart functions [10] indeed. Our architecture is flexible enough and
able to adapt itself to the data freshness requirements [30, 4] imposed by each smart function. This way of
propagating updates along the replication tree structure allows the system to find the most appropriate version
for computing a function while circumventing all traditional problems of scalability and availability in these
approaches [26, 4, 19, 35]; this will be described in a more detailed manner in Section 3.2. Hence, the primary
master of a region (i.e., P11) must decide when to passively replicate its data to the pseudo-primaries of the
neighboring regions (P21, P31, P41). At the same time, each pseudo-primary has to take the same decision
with its data and their pseudo-primaries or secondaries. These decisions must be taken according to (1) the
function periodicity (i.e., flow monitoring will require faster updates than asset management), (2) link status
and congestion, and (3) cluster status (i.e., a general master might decide to asynchronously replicate its data
when it detects that there are very few alive nodes on its cluster).

Actually, once the primary master has sent its data to a pseudo-primary node of another cluster, a recursive
process starts where each pseudo-primary looks for another pseudo-primary in another neighboring cluster to
propagate its data. This process finishes when there are no more clusters or there is a cluster which has no more
neighbors (i.e., S51, S61, S71, and S81). The decision process must be aware of not falling in cluster loops and
ensure that in each cluster there is only one pseudo-primary node that contains data from the primary master.

Each time the computation unit of the smart grid needs to calculate the result of a given smart function,
it first attempts to use data from its nearest neighboring cluster. If data contained on that cluster has a
consistency level k greater than l, where l is the freshness level required by the function, it will use that cluster
to perform computation. Otherwise, it will get redirected to its ancestor node with a freshness index k− 1 and
repeat the operation.

The following subsections detail how our architecture deals with replication, consistency and fault tolerance
issues.

3.2. Replication. Distributed systems replicate data to provide scalability, availability, and fault toler-
ance. However, replication increases the number of messages in the sense that all replicas have to be synchronized
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Definitions:

1. i , Current cluster ID
2. j , Current device ID

3. d , Smart meter ID
4. c , Required consistency level

5. r , Replication depth

I. UponSmart meteri j(d) generatesdatai j(d)

1. broadcast(clusteri , j, datai j(d), d)

II. Broadcast delivery(k, datakl(d), d)

1. store data (datakl(d),k)
2. if l = i then
⋆ r := GetRD(datakl(d), d)
⋆ if r > 0 then
♦ list := < i, j >
♦ multicast(neighborsi j , list, datakl(d), r−1)

III. Multicast delivery(list, datakl(d), r)

1. store data (datakl(d), last item(list))

2. if r > 0 then
⋆ destination := (neighborsi j ∩ list)\

(neighborsi j ∪ list)
⋆ list := list ∩ < i, j >
⋆ multicast(destination, list, datakl(d), r−1)

IV. Data request(datakl(d), c) from source

1. if ∄ datakl(d) then
⋆ unicast(source, nil, −1)

2. else ifc ≥ GetConsistency(datakl (d)) then
⋆ unicast(ancestor(datakl (d)), datakl(d), c)

3. else

⋆ unicast(source, datakl(d), c)

Fig. 3.2: Replication protocol at smart deviceij

which can potentially reduce the system throughput. To avoid this situation several techniques are proposed in
the literature [31, 15, 11, 2].

Regarding the time when updates get propagated to the replicas there exist two major strategies: eager and
lazy replication. On one hand, eager replication [5] consists of writing data to all replicas before finishing the
write operation (similar to 2PC in databases). This solution provides strong consistency [33] but has limited
scalability. On the other hand, lazy replication [21, 35] consists of writing to all replicas after exhausting the
write operation. This technique achieves higher scalability but has more difficulties to maintain consistency—i.e.
replicas may diverge.

Regarding the amount of replicas that update data, there exist two major strategies: active and passive
replication. Active replication [3] broadcasts updates to all replicas at a time. Again, this technique provides
strong consistency since all replicas are easily synchronized but has low scalability. Passive replication [29]
processes updates on a single site called primary which propagates its updates to another site called backup.
At the same time, this backup site can also propagate its state to another backup site until achieving the
desired replication depth. This solution provides higher scalability but has some troubles on maintaining strong
consistency since all replicas might be unsynchronized.

The final consideration regarding to scalability is the number of messages exchanged [36]; this is a critical
factor too since the greater the number of messages exchanged per operation are the more network stalls we
have. We can consider that there can be a linear interaction where the number of messages exchanged depends
on the kind of operation; or, otherwise, constant interaction where a fixed number of messages is exchanged per
operation. The former features poor scalability while the latter one can increase the scalability though we have
to take into account that they have to be kept to a minimum (ideally one message and, at most, two).

In our system we have taken these previous considerations and propose a hybrid solution. We have consid-
ered to mix passive and active replication; however, we consider the propagation of changes to a small subset of
replicas and the replicas belonging to this subset are responsible for propagating the changes to another disjoint
small subset of replicas and so on up to the replication depth specified by the system for a certain variable.
As depicted in Fig. 3.2, our proposal is a hybrid solution between all these techniques and benefits from the
strengths of each solution:

1. When a device (primary master, P11 in Fig. 3.1) receives data from its smart meters it eagerly replicates
them by broadcasting (step I in Fig. 3.2) these data to all devices within its cluster (primary slaves,
i.e., P12 and P13 in Fig. 3.1). Therefore, it is performing an active replication (step II.1 in Fig. 3.2).

2. If the replication depth r associated to these kind of data is greater than 0, the primary master has
also to lazily replicate these data to other clusters (1) avoiding replication loops and (2) multicasting
relevant meta-data.
In order to avoid replication loops (i.e., the same cluster has different versions of the same object), the
device must build a list with the ancestors of data it is currently processing and remove all devices of
its neighbor list that are in the ancestor list. Recall that each primary, or pseudo-primary, device has
only one pseudo-primary per region.
Regarding the neighbor discovery, we assume that given a neighboring cluster B from cluster A, all the
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nodes in cluster A will choose the same pseudo-primary from cluster B. If this pseudo-primary fails,
the next pseudo-primary chosen will be the one with the lowest identifier in cluster B. For example, in
Fig. 3.1, if P33 fails, P32 and P33 will also chose S61 and S71 as their pseudo-primaries.
Upon the neighbor list has been pruned (and updated), the device multicasts (1) the ancestors list,
(2) the stored datakl(d) and (3) a decremented value of replication depth to its neighbors (i.e., PP23,
PP33 and PP43 in Fig. 3.1) as shown in step II.2 in Fig. 3.2.

3. This is repeated while the replication depth is greater than 0 as shown in step III in Fig. 3.2. Note that
we are actually performing active replication within devices of primaries’ area and passive replication
within devices of different clusters.
The first time data from smart meterd achieves the latest pseudo-primary (r has reached the 0 value), or
secondary (i.e. S51, S61, S71, S81 in Fig. 3.1) this device will send to the computation unit its identifier.
This ensures that the computation unit will eventually know where to find the furthest replica of data
associated to smart meterd. Recall that the nearest device that contains these data is its primary,
which is also known by the computation unit in advance.

4. When a device receives a data query from the computation unit, it first checks if the consistency level
of its stored data is enough to perform computation. If it is greater than the one required c, it will give
back its stored data, otherwise it will forward this query to its ancestor as shown in step IV in Fig.
3.2. This solution is inspired in the passive replication technique and eases distributed computation as
discussed in Section 5.

Therefore, this replication protocol performs both (1) active and eager replication in the primary-master’s
cluster and (2) passive lazily replication in other clusters inspired in the fundamentals of a primary-copy scheme.
This improves the scalability issues of classical architectures [17, 19] since we have restricted an controlled the
amount of replicas that receive the changes at a time and implement different regions (set of clusters) with
different consistency levels. This last feature is very interesting; some computations do not need to be exclusively
forwarded to the primary replica, it can be delegated to other replicas and, thus, the system achieves a better
performance. This can be best seen with two examples, if we want to check the consumption of a subscriber for
billing purposes then we will need to go to the primary (strong consistency). The other example can consist in
checking the power consumption of a certain urban area to detect the variation and decide whether to derive
or not more power to that area (this is specially useful in summer with air conditioning systems) and the
consistency is not so critical.

Finally, we define the replication chain as the closed set of devices which exchange versions of the same
data item. For example, in Fig. 3.1 there are four replication chains concerning data generated by smart meters
attached to P11: {P11, PP23, S51}, {P11, PP33, S61}, {P11, PP33, S71}, and {P11, PP43, S81}.

The following section describes how consistency is kept under this replication protocol.

3.3. Consistency. Research on consistency protocols has been conducted for many years and several
approaches have been proposed by the community. First attempts [5] on keeping consistency in distributed
systems consisted of building serializable plans by avoiding read and write operations performed concurrently
over the same data item. This technique ensures that data will be always seen by anyone immediately after
its update; which is also known as strong consistency [33]. Later, as the performance requirements increased,
researchers relaxed the consistency guarantees by defining the weak consistency [33] with the aim of improving
scalability and availability. These techniques [33] accept a limited period of time (also referred to as inconsistency
window) where updates are available only to a subset of sites in the system. When the inconsistency window
expires, they ensure that data is consistent.

Generally, this leads us to two major alternatives when defining the consistency properties of a system:
(1) strong consistency and (2) weak consistency. Strong consistency provides us with high consistent systems
but with poor scalability and availability since all replicas must be synchronized. In the other hand, weak
consistency provides higher scalability and availability but limited consistency features.

Regarding our proposal, we take advantage of both strong and weak consistency strategies and propose a
hybrid solution inspired by cloud-based storage and data stream warehouses [15, 11, 16].

Cloud computing-based storage techniques [34, 25], on its effort to achieve high scalability and availability,
typically implement a specific form of weak consistency: eventual consistency [33]. This technique states that
once data is updated, all replicas will eventually get that value if no more updates are applied.

Smart grids’ behavior has many similarities with stream warehouses [16] since there is a continuous stream
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of data (generated by smart meters) which has to be stored. In order to overcome the classical update and query
consistency issues given on such scenarios [16], our architecture guarantees that there will never exist multiple
attempts to write (or read) the same data item into the same place. Note that two or more replication chains of
the same data item never converge to the same cluster. Nevertheless, we find very useful to use multi-version [6]
techniques used in stream warehouses to maintain a notion of consistency between different data stored in each
device and enhance the global system performance.

Although IEC 61850 standard [20] defines the data model that a smart grid should store and our architecture
deals with this model by hiding data structures inside devices, we have to take care about data periodicity.
Each smart meter generates data at different intervals, i.e., voltage measurements might be generated with a
higher frequency than heat measurements. Hence, each data measurement is stored with the time stamp k it
was originally acquired, similar to the version technique used in stream warehouses [16, 6].

Actually, there exists a close relationship between this time stamp k in which data are generated and
the consistency of these data. Roughly speaking we can assure that the greater the k, the more recent data
measurement is but its consistency is potentially weaker. Recall that here we understand consistency as the
property which states that all the members in the replication chain own the same data item with time stamp
k (also referred to as version).

In fact, when our architecture is required to store stream data measurements [16, 33], the most recent data
versions will be always located closer to their sources; whereas oldest versions might have already reached the
furthest devices in the replication chain. However, if a given measurement is not so frequently taken, then the
most recent version will be found anywhere in its associated replication chain.

In some use cases, the computation unit can still work with older versions (weakly consistent) to perform
the calculations required. Hence, when it wants to obtain a specific data item, it can include a k value to state
that the computation should be done with values that equal to (or greater than) k. To this end, queries will be
traveling along the replication chain associated to each data measurement to find the proper version up to its
master (in the case that the required k version is not found).

In the master’s cluster we implement strong consistency between all replicas (P11, P12 and P13 in Fig. 3.1).
This improves the fault tolerance of the system since another device (primary-slave) of the cluster could easily
take over from a primary-master’s fault. Moreover, this keeps us safe from the typical single point of failure
problem. Actually, all data stored in any device belonging to the master’s cluster has the highest k level of
consistency, since no newest data have been generated.

Once data are strongly consistent in the master’s cluster, devices start propagating them with a time stamp
k to their pseudo-primaries (as shown in Fig. 3.2, P11 will broadcast to PP23, PP33 and PP43). Recall that
decisions of when data must be propagated are taken according to the smart functions and system status. There-
fore, we are currently implementing an eventually consistent system between the pseudo-primaries. It is more
likely that data stored in these pseudo-primaries will provide weak consistency since new data measurements
will come from smart meters with a time stamp strictly greater than k.

To sum up, from the consistency point of view, we have shown how our hybrid architecture uses both
strong and weak (actually k-weak) consistency techniques. Next we describe how our architecture deals with
fault tolerance.

3.4. Fault Tolerance. Fault tolerance is understood as the ability of the system to recover from a sponta-
neous site fault. Distributed systems are prone to different types of site failures [12]. Researchers have to adapt
their techniques according to the domain of use and the intrinsic characteristics of the distributed system. This
section explores (1) which kind of failures smart grids are prone and (2) how our proposal acts against them.

Since smart grids are hardly dependent on the communication network, we can assume that this channel
will be reliable enough and focus our efforts on the distributed storage architecture. Therefore, our goal is to
implement such a policy that in case of a node failure, the global system could still behave properly. In this
case, we assume that any site may fail according to the crash model [12].

If a server started behaving in an arbitrary manner (also referred to as byzantine model), it would be either
because it is returning or propagating an arbitrary or older (though valid) version of a variable. We control this
by adding a digest to the value stored, similar to what it has been proposed in [9, 28]. Whenever we found a
mismatch between them we would force the replica to shut down.

Regarding our proposal, there may exist two different failure cases. The first one corresponds to the failure
of a primary (i.e., P11 in Fig. 3.1) and the second one to the failure of a pseudo-primary (i.e., PP23 in Fig.
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3.1). In the former, we inherit the advantages of the active replication techniques and are able to recover easily:
when the primary master fails (e.g., P11 in Fig. 3.1), any other primary-slave can immediately take over the
situation. Recall that due to eager replication, they are completely sharing the state of the primary master.

In the latter failure scenario, any of the nodes of the cluster where the failure takes place can become the
new pseudo-primary and continue with data transmission and replication. Unfortunately, due to the fact that
pseudo-primaries perform passive and lazy replication, the takeover process is not as fast as in the primary’s
cluster. As soon as the ancestor, belonging to cluster A, of the failed node, belonging to cluster B, detects
its unresponsiveness, it will select a new pseudo-primary from cluster B. If no more pseudo-primaries (or
secondaries) are available (i.e., cluster 7 in Fig. 3.1) it will send a message to the computation unit informing
that it is the last device of the replication chain. Otherwise, thanks to the neighbor discovery function, it can
easily find its successor in the replication tree and continue with the replication of the data in the system.

The challenge here is that the takeover solution in a pseudo-primary implies that the previous versions of
a given data item are lost. We have to define a state transfer protocol so that every cluster contains the most
complete and up-to-date information. Otherwise, there might exist certain network clusters where we cannot
achieve the desired degree of consistency due to the fact that these new pseudo-primaries do not completely
store the state. In Section 5, we will deal with this data transfer that can range from a full state transfer to
nothing sent. In all this range, we are going to see the advantages and disadvantages of each solution.

However, this is not enough since most of these processes do not completely stop forever after their failure.
This system has certain dynamism, in the sense that components can be repaired. Hence, there can be a role
re-assignment and the need of recovery tasks for previously crashed nodes.

The following subsection proposes an analytical study of the scale out factor of our protocol in order to
provide with some arguments to warrant the viability of our approach.

3.5. Proof of concept. As one of the major goals of our proposal is achieving high scalability, we use the
analytical model and notation from [31] which estimates the scale out factor in a replicated database system
when there is an increase of the number of sites and replicas. Thus, we briefly describe the adaption to our
system model used to proceed with the computation of the scale out factor.

The scale out factor determines how the performance of the global system is increased or decreased by using
replication. As shown in Equation 3.1, this is computed as the sum of work executed at each replica divided by
the processing capacity of a non-replicated database.

Scale Out =
1

C

n
∑

i=1

m
∑

j=1

C · Uij ·ACCij [31]. (3.1)

From the previous equation, we have that C is the processing capacity of a non-replicated database, n is
the number of replicas in our smart grid, m is the number of stored objects, Uij defines the location of object j
at site i and ACCij defines the accessibility of object j at site i. Hence, if the object j is at site i, then Uij = 1
which defines the replication schema. Actually, ACCij defines the access rate to object j at site i.

However, Equation 3.1 assumes that read and update operations launched against the replicated distributed
system are uniformly spread across all replicas. Hence, this equation is not directly applicable to our proposal
because our solution has an in-built load balancing mechanism which redirects operations to replicas according
to the required consistency level k. Thus, we show how we have adapted the analytical description of the
replicated system to fit in our system characteristics.

Recall that the term (C · UijACCij) is equivalent to (Cr · ACCRij + Cu · ACCUij) where Cr is the read
processing capacity, Cu is the update processing capacity, ACCRij is the read accessibility and ACCUij is the
update accessibility. So, replacing this expression in Equation 3.1 we obtain Equation 3.2 which is now useful
in our replication protocol.

Scale Out =
1

C

n
∑

i=1

m
∑

j=1

Cr ·ACCRij + Cu · ACCUij . (3.2)

Actually, Equation 3.1 can be considered a generalization of 3.2. We now evaluate the different replication
strategies for a system from 10 to 80 sites, 10 objects, 80% of read operations and 20% of write operations to
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Table 3.1: Scale out evaluation

Sites Full Replication Partial Replication Smart Grid

0 0 0 0
10 10 9,8 9,82
20 15,7 16,9 18,15
40 25 28,2 30,7
80 40 48,2 53

all objects. The distribution of objects and the operations on objects are evenly distributed. We also assume
that all sites have the same processing capacity (i.e. all smart meters have similar specifications and storage
capabilities).

We have compared the scale out factor obtained in our proposed protocol against the replication strategies
proposed in [31]: (1) full replication—all sites contain the same data—and (2) partial replication —a reduced
set of sites contains a given data. In the case of the latter, we have chosen to replicate each data item in n/2
sites in order to obtain comparative results. The scale out evaluation of these protocols is shown in Table 3.1.

Ideally, the scale out factor should be equal to the number of sites of the system which meant that all
incoming updates are being processed without saturation. We can see that with a full replication scheme the
scale out is quite poor: 40 with 80 sites. When the number of sites increases, the system cannot scale anymore
as the full replication policy forces that all updates have to be sent to all replicas which takes a considerable
amount of time.

In contrast, with the partial replication (limited to half of the replicas) the system scales slightly better
because the cost of propagating the replicas is not so high (scale out of 48, 2 with 80 sites). Finally, our cloud
based replication protocol scales out is even better (53 at 80 sites). In this case the replicas that have the
most recent data version have a higher Cu and lower ACCRij because most read operations are executed in
replicas that do not have necessary the last version of the data. For these reasons, we show that the scale out is
better than traditional full replication and partial database replication protocols. This proof of concept makes
us believe that this is a good approach in power smart grids.

This subsection finishes the description of our proposal. In the following section, we roughly verify the
correctness properties of this system if all nodes behave properly and faults never occur.

4. Correctness Guarantees. This section provides arguments for correctness of the global distributed
system in a failure free environment. Distributed algorithms are said to be formally correct when their liveness
and safety properties are satisfied and shown to be correct. Regarding the liveness property, it can be best seen
as something good will eventually happen; while, the safety property can be stated as nothing bad will happen.

Our proposal needs to propagate the measures from a given smart meter from zone to zone up to its
replication level; hence, changes need to get propagated and applied in the same order in all pseudo-primaries.
Both asserts constitute the liveness and safety properties of our system.

Next, we point out some guarantees of the system extracted from the previous sections in order to have
enough arguments to warrant the correctness properties.

Guarantee 1. Any primary (or pseudo-primary) will never send the same data item to more than one device
per neighboring cluster.
This is guaranteed since data ancestors are excluded from the device’s neighbor list as shown in step
III.2 in Fig. 3.2.

Guarantee 2. The computation unit knows which is the last pseudo-primary (or secondary) of the replica-
tion chain.
As described in section 3.2, when a device notices that a new data item has gone through all its
replication depth (r = 0), it will send a message to the computation unit identifying itself.

Guarantee 3. Any device belonging to a master cluster has always the latest version of data generated by
any smart meter within that cluster.
This is satisfied since data is eagerly replicated to all devices of the master cluster as shown in steps
I.1 and II.1 in Fig. 3.2.

From this guarantees, we can state the safety and liveness properties of our system. As the system behaves
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different depending if it is replicating data (also referred to as write) or executing a query from the computation
unit (also referred to as read), both properties (safety and liveness) must be analyzed in two facets: read and
write.

4.1. Safety Properties. The safety properties of our architecture are stated by the following claims:
Claim 1. Safety on write. Safety on write operations is guaranteed since there will never occur a situation

where the same data is being written from two or more different sources.
This is guaranteed since (1) there is only one smart meterd generating datad, (2) point to point com-
munication channels do not disorder messages, and (3) the neighbor function will never find more than
one device per cluster as stated in Guarantee 1.

Claim 2. Safety on read. There will always exist a consistent version of the requested data item queried
by the computation unit.
This is assured provided that the replication protocol (Fig. 3.2) guarantees consistent writes throughout
the whole replication chain.

4.2. Liveness Properties. The liveness properties of our architecture are stated by the following claims:
Claim 3. Liveness on write. Liveness on data updates is trivially assured by Guarantee 1.

Data generated on the smart meter will follow the replication chain and being consistently written at
each device until the replication depth reaches a value of 0 or there are no more neighbors.

Claim 4. Liveness on read. Liveness on data reads is guaranteed provided that Claim 2 is accomplished.
The computation unit will always send queries to the last device of the replication chain. If data
contained in it have not the required consistency level k, the device will redirect the query to its
ancestor. This will happen in a recursive way until the required level k is found. If any device can
reach the required level k the primary will give back with its latest version which is strongly consistent
as provided by Guarantee 3.

Finally, in the following section we discuss some limitations of our approach.

5. Discussion. As shown in the previous sections, our proposal takes benefit from many techniques used
in distributed systems. However, to the best of our knowledge, these techniques have never been put together
nor tested. Hence, there are several aspects that have been intentionally left out and need to be discussed:

Master cluster reduction. Not all the members of the master region have to participate on active
replication. Along this work, we have assumed that all nodes of a given primary cluster participate in the
active replication of all data. In fact, this is not necessary at all: although the number of nodes belonging to
a zone can be in the range of tens, we think that we can speed up the replication process by selecting a set of
representatives for each subset of smart meters. It is well known that active replication does not scale well [35]
and with the proper selection of representatives the rest can become secondaries of each representative.

Enhancing the takeover process. A pseudo-primary (PP ) could do active replication within its associ-
ated cluster. This role is not an exclusive one in the cluster, it can be also responsible for several smart meters
and, thus, collaborate in the active replication protocol.

Failure detection. In Section 3.4 we have stated that the ancestor detects the failure of its successor in the
replication hierarchy; this can be achieved by implementing a timeout plicy. However, the update propagation
frequency may vary since data to be transmitted is very different (i.e., monthly power consumption is less
frequent than voltage monitoring at a given point in the network).

Hence, it makes sense to think that inside the cluster of a given pseudo-primary (or secondary) the active
replication among their nodes would detect the failure of the pseudo-primary (or another device). If so, they
can agree with selecting a new pseudo primary in that cluster and notify the ancestor about this fact. Again,
we have to reconstruct the new hierarchy tree in order to add the new pseudo-primary. However, this would
overload the pseudo-primaries’ clusters and might worsen the global performance of the system.

State transfer in presence of faults. It is said, that when a pseudo-primary fails we need to transfer its
data (missing data) to the new pseudo-primary as its copy is lost once it fails. We can have several alternatives
to mitigate this effect as this system is derived from a data driven application.

On one hand, we can perform an active replication of each pseudo-primary in its cluster zone. As mentioned
in the previous point, this approach might not be feasible since we increase the load of the system as we go
deep in the replication structure of the system, which potentially may flood the whole network; leading with a
not desirable situation. Note that this solution does not need to transfer any state information from anywhere
in case of fault.
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On the other hand, we have the alternative to transfer the full state to the new successor from the ancestor
(recall that it belongs to another cluster and this could be costly); however, this alternative has several draw-
backs. The first one is that it might affect the availability of the system since transferring the whole data may
affect the transmission of new data to the successors. The second one is that the volume to transfer might be
so big that it could not catch up with the current state of the system [32].

There may exist an hybrid solution: we could perform a partial state transfer of data. This implies that the
replication algorithm has to ensure that each pseudo primary has a set of secondaries in its associated cluster
where the updates get also propagated asynchronously. Therefore, when a given pseudo-primary fails, it is only
needed to transfer a much less amount of data to the new pseudo-primary than in the case of full state transfer.
Nevertheless, this has to be tested and checked in order to find out the proper number of pseudo-primary slaves
and the amount of data transferred per round.

Distributed computing. Our proposed architecture allows to perform distributed computation on the
read steps. Thanks to the fact that required data travel across the replication chain (depending on the required
consistency level k) each node might be able perform a piece of the computation required.

Actually, as suggested in [14] for cloud computing environments, with our architecture it would be possible
to implement something similar to MapReduce; where the node owning the required data version run the
map tasks and the rest of nodes in the replication chain continuously run the reduce tasks. Such distributed
computation not only might reduce the size of the traveling data but also improve the computation throughput
of the smart grid.

However, we have not considered this feature in this work but it can be seen as a chance to improve the
intelligence and power of the system.

Dynamic replication depth tuning. We believe that if we were able to dynamically adjust this value
our system might adapt better to their requirements. In fact, we have not specifically stated how the replication
depth is set, neither augmented or decreased. It can be adjusted by the system administrator but it can also
be dynamically adjusted as a function of the demands coming from the computation unit. Moreover, it can
be tuned autonomously in case of disaster or rapid evaluation of certain functions (e.g. accounting). Further,
there might exist certain information that would need to be replicated in all nodes as it is rarely modified.

To this end, we are thinking about a cognitive system [18] based on supervised learning in order to (1)
evaluate the whole system status and (2) predict the optimal value of the replication depth for each data item.
Actually, we are implementing a learning classifier system (e.g., XCS or UCS) [37] able to adapt itself to the
system dynamism due its online nature.

6. Conclusions and Future Work. This paper presents a novelty approach to take advantage of smart
electric grids. We have defined a way to distribute and store information across the network so that the
computation needed for certain smart functions can be greatly reduced. We have detailed the replication
protocol based on epidemic updates and proofed its correctness. This work aims to provide some insight into
the world of smart grids from a data perspective. For the sake of simplicity during the presentation of our
system, we have outlined simple scenarios about the replication policy or fault-tolerance issues that need to be
treated in detail in further works.

In addition, future work should be targeted at (1) implementing the architecture in a real-world scenario
to obtain numerical values of its performance, and (2) defining the cognitive system behavior in order to tune
and optimize the replication protocol according to real data access and update patterns.
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