
Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 59–71. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

THE EFFECT OF TEMPORARY LINKS IN RANDOMLY GENERATED NETWORKS OF
CONSTRAINTS

IONEL MUSCALAGIU∗, HORIA EMIL POPA †, AND NEGRU VIOREL‡

Abstract. Additional communication links between unconnected agents are used in asynchronous searching, in order to detect
obsolete information. A first way to remove obsolete information is to add new communication links, which allow a nogood owner
to determine whether this nogood is obsolete or not. The second solution consists in temporarily keeping the links. A new link
is maintained until a fixed number of messages have been exchanged through it. This article investigates different values for the
number of messages, values that are either statically or dynamically, during the run time, determined. In the case of processing
all the messages, we adapt a dynamical solution for determining the number of necessary messages for maintaining a connection.
The experiments show a better efficiency in comparison with the standard Asynchronous Backtracking. In this paper we examine
the effect of temporary links for the random binary constraints problem. Experiments with asynchronous search techniques are
conducted on randomly generated networks of constraints. Experimental results show that the dynamical solution for the temporary
links allows obtaining better results for the majority of classes of problems investigated.

Key words: Distributed constraint programming, asynchronous searching techniques, multiagent systems, messages.

AMS subject classifications. 68T20, 68T42, 68W15

1. Introduction. Constraint programming is a programming approach used to describe and solve large
classes of problems such as searching, combinatorial and planning problems. Lately, the AI community has shown
increasing interest in the distributed problems, which are solvable through modeling, done by constraints and
agents. The idea of sharing various parts of the problem among agents that act independently and collaborate
in order to find a solution by using messages has proved itself useful. It has also led to the formal problem
known as the Distributed Constraint Satisfaction Problem (DisCSP) [12], [13], [6]. DisCSPs are composed of
agents, each owning its local constraint network. Variables in different agents are connected by constraints.
Agents must assign values to their variables so that all constraints between agents are satisfied.

There are complete asynchronous searching techniques for solving the DisCSP, such as the ABT (Asyn-
chronous Backtracking), AWCS (Asynchronous Weak Commitment), ABTDO (Dynamic Ordering for Asyn-
chronous Backtracking) and DisDB (Distributed Dynamic Backtracking) [2, 5, 12, 13, 15, 6]. Starting from
the algorithm of Asynchronous Backtracking (ABT), there has recently been suggested, in [2] a unifying frame-
work, a starting kernel for some of the asynchronous techniques. From this kernel, several techniques have been
derived, known as the ABT family. They differ in the way they store nogoods, but they all use additional
communication links between unconnected agents to detect obsolete information. These techniques start from a
common core (called the ABT kernel) which can lead to some of the known techniques, including the algorithm
of Asynchronous Backtracking, by means of eliminating the obsolete information among agents.

Several solutions for the elimination of the old information among agents were suggested in [2], such as
adding temporary links. A first way to remove obsolete information is to add new communication links to allow
a nogood owner to determine whether this nogood is obsolete or not. These added links were suggested in the
original ABT algorithm.

A second solution (called by its authors ABTtemp, in [2]) consists in temporarily keeping those links between
the agents that cannot determine if an information is outdated or not. This algorithm adds new links between
the agents during the search, same as ABT. The difference is that new links are temporary. A new link is
maintained until a fixed number of messages have been exchanged through it. After that, it is removed.

Different values for the number of messages are investigated in [7]. These values are either statically
determined (before the run) or dynamically determined during runtime. A dynamical solution for determining
the number of necessary messages for maintaining a connection is suggested in [7]. The first experiments show a
better efficiency in comparison with the standard Yokoo version. The dynamic solution is based on determining
the outdated nogood message flow and using that information for determining the number of messages.

Starting from the dynamical solution for determining the necessary number of messages needed for keeping
a temporary link, in [8] is suggested a new hybrid method for eliminating the outdated information between

∗Faculty of Engineering of Hunedoara, ”Politehnica” University of Timisoara, Romania (ionel.muscalagiu@fih.upt.ro).
†Faculty of Mathematics and Informatics, West University of Timisoara, Romania (hpopa@info.uvt.ro)
‡Faculty of Mathematics and Informatics, West University of Timisoara, Romania (vnegru@info.uvt.ro).

59

60 I. Muscalagiu, H.E. Popa and V. Negru

the agents. This solution consists in transforming some of the temporary links into permanent links, based on
the information about the outdated message flow. Applying this method to the ABT kernel, we can obtain a
new hybrid technique, that takes what’s best from the two derived techniques: ABT and ABT temporary link.
A new dynamical solution for determining the number of necessary messages for maintaining a connection is
suggested in this paper in the context of processing all the messages.

In a previous research presented in [8], the evaluation of the effect of temporary links is done using a
particular problem: the problem of coloring a graph in the distributed versions.

The evaluation of the asynchronous search techniques depends on at least two factors: the types of problems
used at the evaluation and the units of measurement used. There are a few types of problems about the
evaluation in the DisCSP literature: the distributed problem of the m-coloring of a randomly generated graph
and the randomly generated (binary) CSP. These problems are characterized by the 4-tuple (n,m,p1,p2), where:
n is the number of variables; m is the uniform domain size; p1 is the portion of the n * (n - 1) /2 possible
constraints in the constraint graph; p2 is the portion of the m*m value pairs in each constraint that are rejected
by the constraint [11].

It must be mentioned that the randomly generated binary CSP are the most suitable for the evaluation,
because they allow different densities for the constraints graph and they have many direct applications in real
practice. Therefore, a complete evaluation supposes the selection of a varied class of problems - the more
randomly chosen sets of data or the choice of sets of data which allow varied densities for the constraints graph.
In this paper, extensive evaluation of the asynchronous search techniques with temporary links is conducted on
randomly generated networks of constraints.

In a previous research [8], the evaluation of the effect of temporary links is done using NetLogo environment.
NetLogo is a programmable modeling environment, which can be used for simulating certain natural and social
phenomena [14]. Also, the NetLogo is a programming environment with agents that allows the implementation
of the asynchronous techniques ([14], [16], [17]).

The evaluations from [8] were implemented using certain particularities, supplied by NetLogo, related
to the asynchronous run of the agents. The agents work with the specific command ”ask-concurrent”. A
command like this will allow launching the message treating routine, which is specific to each agent. Of course,
each agent works asynchronously with the messages, but at the end of a command’s execution there is a
synchronization of agents’ execution, synchronization that particularizes, in a way, the implementations being
used. The evaluations performed in [8] are realized in particular conditions, which don’t affect the generality of
the results.

In order to make such estimation, in this paper these techniques are implemented in NetLogo. The im-
plementation and evaluation is done using the extended model suggested in [9], model that is called DisCSP-
NetLogo. Implementation examples for the ABT family can be found on the website [17]. In [9] a general
implementation and evaluation model with synchronization and support for message management in Netlogo,
for the asynchronous techniques is proposed. This model will allow the use of the NetLogo environment as a
basic simulator for the study of asynchronous search techniques. This model can be used in the study of the
agents’ behavior in several situations, like the priority order of the agents, the behavior in the synchronous and
asynchronous case.

2. The Framework. This paragraph presents some notions related to the DisCSP modeling, ABT algo-
rithm [12], [13], [6] and ABT family, [2].

2.1. The Distributed Constraint Satisfaction Problem. The Distributed Constraint Satisfaction
Problem (DisCSP) has been formalized in [12], [13].

Definition 2.1. The model based on constraints CSP - Constraint Satisfaction Problem, existing for
centralized architectures, is defined by a triple (X, D, C), where: X={x1,...,xn} is a set of n variables; whose
values are taken from finite domains D= {D1, D2,...,Dn}; C is a set of constraints declaring those combinations
of values which are acceptable for variables.

The solution of a CSP implies to find an association of values for all the variables that satisfy all the
constraints.

Definition 2.2. A problem of satisfying the distributed constraints (DisCSP) is a CSP, in which the
variables and constraints are distributed among autonomous agents that communicate by exchanging messages.
Formally, DisCSP is defined by a 5-tuple (X, D, C, A, φ), where X, D and C are as before, A = {A1,...,Ap}
is a set of p agents, and φ : X −→ A is a function that maps each variable to its agent.

The effect of temporary links in randomly generated networks of constraints 61

In this article we will consider that each agent Ai has allocated a single variable xi, thus p = n. Also, we
assume the following communication model [12], [13]:

• agents communicate by sending messages. An agent can send messages to other agents iff the agent
knows the addresses of the agents.

• the delay in delivering a message is finite, although random. For transmission between any pair of
agents, messages are received in the order in which they were sent.

The Asynchronous Backtracking algorithm uses 3 types of messages:

• the ok message, which contains an assignment variable-value, is sent by an agent to the constraint-
evaluating-agent in order to see if the value is right.

• the nogood message, which contains a list (called nogood) with the assignments wherefore a looseness
was found, is sent in case the constraint-evaluating-agent finds an unfulfilled constraint.

• the add-link message, sent to announce the necessity to create a new direct link, caused by a nogood
appearance.

Definition 2.3. Two agents are connected if there is a constraint among the variables associated to them.
Agent Ai has a higher priority than agent Aj if Ai appears before Aj in the total ordering. Agent Ai is the
value-sending agent and agent Aj the constraint-evaluating agent.

Definition 2.4. The agent − view list belonging to an agent Ai is the set of the newest associations
received by the agent for the variables of the agents to whom it’s connected.

Definition 2.5. The nogood list is a set of associations for distinct variables for which an inconsistency
was found (an unsatisfied constraint).

The agent− view list together with the stored nogood values constitutes the working context of each agent,
depending on them the agent makes decisions.

Definition 2.6. A nogood list received by agent Ai is consistent for that agent, if it contains the same
associations as agent− view for all the variables of the parent agents Ak connected with Ai.

Definition 2.7. A nogood message is outdated if it contains a nogood list that isn’t consistent with the
receiver’s agent context.

ABT requires links to be directed. A constraint causes a directed link between the two constrained agents:
the value-sending agent, whence the link departs, and the constraint-evaluating agent, to which the link arrives.
When the value-sending agent makes an assignment, it informs the constraint-evaluating agent, which tries to
find a consistent value. If it cannot, it sends back a message to the value-sending agent to cause backtracking.
To make the network cycle free there is a total order among agents, which is followed by the directed links. In
this article the lexicographical order is used.

Each agent keeps its own agent view and nogood store. Considering a generic agent, its own agent view is
the set of values that are assigned to agents connected to it by incoming links. A nogood is a subset of agent
view. If a nogood exists, it means the agent cannot find a value from the domain consistent with the nogood.
When agent Ai finds its agent-view including a nogood, the values of the other agents must be changed. The
nogood store keeps nogoods as justifications of inconsistent values. Agents exchange assignments and nogoods.
When a random agent makes an assignment, it informs those agents connected to it by outgoing links. The
agent always accepts new assignments, updating its agent-view accordingly. When it receives a nogood, it
accepts it if the nogood is consistent with the agent’s own agent view, otherwise it is discarded as obsolete
(outdated nogood messages). An accepted nogood is added to the agent’s nogood store to justify the deletion
of the value it targets. When the agent cannot take any value consistent with its agent-view, because of the
original constraints or because of the received nogoods, new nogoods are generated as inconsistent subsets of
the agent-view, and are sent to the closest agent involved, causing backtracking. The process terminates when
achieving quiescence, meaning that a solution has been found, or when the empty nogood is generated, meaning
that the problem is unsolvable.

2.2. The ABT Family. Starting from the algorithm of Asynchronous Backtracking (ABT), in [2], several
derived techniques were suggested, based on this one and known as the ABT family. They differ in the way
that they store nogoods, but they all use additional communication links between unconnected agents to detect
obsolete information. These techniques are based on a common core (called ABT kernel) hence some of the
known techniques can be obtained, including the algorithm of Asynchronous Backtracking, by eliminating the
old information among the agents. In [2] the starting point is a simple procedure that includes the main
characteristics of the asynchronous search algorithms. Starting from this procedure, which forms the unifying

62 I. Muscalagiu, H.E. Popa and V. Negru

framework, one can reach the known algorithms or variants that are close to them: Asynchronous Backtracking
(ABT), Distributed Dynamic Backtracking (DisDB), Distributed Backtracking algorithm (DIBT) [2], [5], [12].

The ABT kernel algorithm requires, like ABT, that constraints are directed - from the value-sending agent
to the constraint-evaluating agent - forming a directed acyclic graph. Agents are ordered statically in agreement
with constraint orientation. Agent i has higher priority than agent j if i appears before j in the total ordering.
In this article we will consider the lexicographical order for the agents, order used also in the case of the
Asynchronous Backtracking algorithm. Considering a generic agent self, Γ−(self) is the set of agents constrained
with self appearing above it in the ordering, also called the set of the parents of self . Conversely, Γ+(self) is
the set of agents constrained with self appearing below it in the ordering, also called the set of the childrens of
self .

The ABT kernel algorithm is a new ABT-based algorithm that does not require to add communication
links between initially independent agents. The ABT kernel algorithm is sound but may not terminate (the
ABT kernel may store obsolete information). In [2] were suggested several solutions for the elimination of the
old information among agents, solutions that are summarized hereinafter.

A first approach to remove obsolete information is to add new communication links to allow a nogood owner
to determine whether this nogood is obsolete or not. These added links were suggested in the original ABT
algorithm.

A second way to remove obsolete information is to detect when a nogood could become obsolete. In that
case, the hypothetically obsolete nogood and the values of unrelated agents are forgotten. These two alternative
ways lead to the following four algorithms:

1. Adding links at preprocessing: ABTall. This algorithm adds all the potentially useful new links during
a preprocessing phase. New links are permanent.

2. Adding links during search: ABT . This algorithm adds new links between agents during search. A
link is requested by self when it receives a Back message containing unrelated agents above self in the
ordering. New links are permanent.

3. Adding temporary links: ABTtemp. This algorithm adds new links between agents during search, as
ABT. The difference is that new links are temporary. A new link is maintained until a fixed number of
messages have been exchanged through it.

4. No links: DisDB. No new links are added among the agents. To achieve completeness, this algorithm
has to remove obsolete information in finite time. To do so, when an agent backtracks, it forgets all
nogoods that hypothetically could become obsolete.

In [8], we proposed a new solution for combining the two methods for eliminating the outdated information,
solution that will lead to the fifth hybrid algorithm:

5. Adding temporary (dynamic) links: ABT with permanent and temporary links (ABTTPL). This new
algorithm adds new links during the search. A part of these links are temporary, they are kept until
a certain number of messages is exchanged (number determined dynamically during runtime). In ex-
change, some temporary links are transformed in permanent links, based on some information regarding
the maximal flow of outdated nogood values.

3. Asynchronous Backtracking with temporary and permanent links. ABT with permanent and
temporary links requests links dynamically, exactly like ABT. When a new link is set from agent i to j, it is
maintained for a fixed number k of Info messages going from Ai to Aj . After this number of messages has been
sent, the link is removed and agents Ai and Aj become disconnected. The number k of messages for a link is
known a priori by both agents.

Some solutions for determining the number k of messages exchanged by the agents with temporary links
are suggested and analyzed in [7]. The solutions presented are of two types:

1. statical solutions - for which the number of messages is fixed and doesn’t change during the run time;
2. dynamical solutions - for which the number of messages varies during the run time.

The suggested statical solutions are based on determining a value for k common for all the agents, which
is determined statically, at the beginning. The statical version supposes the construction of the induced graph
associated to the problem (in a preprocessing phase). To each DisCSP problem we can associate a constraint
graph, in which the nodes are agents/variables, and the edges are given by the existence of the constraints
between agents/variables. From this constraint graph we can obtain the induced graph, corresponding to the
existing order, by adding links between the parents of each node (the nodes from Γ−(self)), if those links don’t

The effect of temporary links in randomly generated networks of constraints 63

already exist. That graph is built as in [4]: agents (graph nodes) are processed from last to first, when an
agent (graph node) is processed, all its parents (related agents before it in the ordering) are connected by new
links if they were not connected before.

Based on this graph, we can determine a fixed number of messages k for all agents, as follows: the number
of messages will be equal to the greatest value of the numbers of neighbors of each agent in the induced graph.

The dynamic versions proposed in [7] and [8] are based on using the information regarding the outdated
nogood message flow. That information changes during the run time. As we know, when the agent receives a
nogood, it is accepted if it is consistent with its own agent view, otherwise it is discarded as obsolete (outdated
nogood messages). The outdated message flow also increases because the agents are not informed (because
of the nonexistence of the supplementary links). Thus, each agent uses a supplementary data structure, for
retaining the number of outdated nogood messages encountered at a given time. Those values are used for
the determination of the number of messages exchanged for each temporary link. Practically, that value is the
greatest number of nogood messages received at a given time.

Definition 3.1. For each agent we have a local list of counter variables for counting the number of outdated
messages received (named COldNogood). Let MaxNrOldNogood be the maximum value from the COldNogood

list.
So, we start with a fixed value for the number of messages, equal to the largest number of neighbors from

the induced graph. This initial value is updated during the run time, using the largest value of the number of
outdated messages, from all the agents.

The experiments presented in [7] and [8] show that the dynamical solution for determining the number of
messages is the most efficient.

The solution suggested in [8] consists in transforming some temporary links in permanent links. In fact,
the temporary links with those agents with which Ai has exchanged a maximal number of outdated nogood
messages are transformed in permanent links. For each agent is determined the agent Aj with which Ai had
exchanged the maximal number of outdated messages (item Aj COldNogood = MaxNrOldNogood), among
those with which it had temporary links. The temporary link that exists with that agent will be transformed
into a permanent link.

The agents exchange among themselves the values of MaxNrOldNogood in order to determine and use
the maximum one. That solution supposes that each agent knows the maximum number of outdated messages
received by each agent (MaxNrOldNogood). A solution is based on the transmission of MaxNrOldNogood of
each agent to the ones it is connected with, in the moment of the transmission of an info or nogood message.
The idea is presented in [8]. Each agent, in the moment of transmitting a message, attaches the value for the
maximum flux of outdated messages, value stored in MaxNrOldNogood. In exchange, at the receiving of a
message from an agent Ak that contains the maximum value of it, SenderMaxOldNogood will update the value
of the MaxNrOldNogood.

In figure 3.1 we show those changes required in the ABT technique (version derived from the core ABT
kernel), based on the method of determining temporary and permanent links. We obtain a new hybrid technique,
technique that uses whats best from both of the derived techniques: ABT and ABT temporary link. The lines
from the figure 3.1 marked with two digits are additional to the algorithm from [2] and the ones marked with
*** contain modifications to those from the cited algorithm.

The obtaining of the version with temporary and permanent links supposed many changes in the basic ABT
kernel algorithm.

First of all, each agent will use two extra sets Γ+
e (self) and Γ−

e (self), for the identification of the child
and parent agents that appear because of the temporary links. In procedure ABTkernel(), in lines 1.1. and
1.2. they are determined. Also, it is necessary to introduce two data structures CMessageT empLink and
COldNogood. The first structure will be used by an agent Ai to retain the number of info messages transmitted
for each temporary link. The second structure is used for counting the number of received outdated messages.

The new algorithm needed the introduction of a fourth message RemoveL, which notified a child agent
about the canceling of a temporary link between two agents. Practically, the child agent will cancel the Sender
agent from the list of its parents. The required changes appear in line 9.2. from procedure ABTkernel() and
procedure RemoveLink(), (a newly added routine).

Third after selecting a new value and announcing the child agents about the new selection, it is necessary
that the verification of temporary links determines how many of them remain actual. This thing is done in
procedure CheckAgentV iew(msg) line 3.1, by calling a new procedure named CheckRemoveLink(). That

64 I. Muscalagiu, H.E. Popa and V. Negru

routine verifies, for child agents from Γ+
e (self), if the maximum number of messages that are transmitted for

that link has been reached.

procedure ABTkernel()
1 myValue ←empty; end ← false;

1.1 Set Γ+
e (self)← ∅ ***

1.2 Set Γ−
e (self)← ∅ ***

2 CheckAgentView();
3 while (not end) do
4 msg←getMsg();
5 switch(msg.type)
6 Info : ProcessInfo(msg);
7 Back : ResolveConflict(msg);
8 Stop : end ← true;
9.1 AddL : SetLink(msg);
9.2 RemoveL: RemoveLink(msg); ***
end

procedure CheckAgentView(msg)
1 if not consistent(myValue;myAgentView) then
2 myValue← ChooseValue();
3 if (myValue) then

for each child∈ Γ+(self) do
sendMsg:Info(child;myValue);

3.1 CheckRemoveLink() ***
4 else Backtrack();
end

procedure ProcessInfo(msg)
1 Update(myAgentView; msg.Assig);
2 CheckAgentView();
end

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood;Γ−(self) ∪ {self}) then
2.1 CheckAddLink(msg)
3 add(msg:Nogood;myNogoodStore);
4 myValue ← empty; CheckAgentView();
5.1 else

if Coherent(msg.Nogood; self) then
SendMsg:Info(msg.sender; myValue);

5.2 Replace item Sender COldNogood with
item Sender COldNogood + 1 ***

end

procedure SetLink(msg)
1 add(msg.sender;Γ+(self));

2 add(msg.sender;Γ+
e (self)); ***

3 sendMsg:Info(msg.sender; myValue);
end

procedure CheckAddLink(msg)
1 for each (var ∈ lhs(msg.Nogood))
2 if not (var ∈ Γ−(self)) then
3 sendMsg:AddL(var,self);

4 add(var;Γ−(self)); add(var;Γ−
e (self)); ***

6 Update(myAgentView; var ← varValue);
end

procedure RemoveLink(msg) ***
1 remove(msg.sender;Γ−(self));

2 remove(msg.sender;Γ−
e (self));

end

procedure CheckRemoveLink() ***

1 for each child ∈ Γ+
e (self)

2 if (item child COldNogood = MaxNrOldNogood) then
replace item Child FlagList with 1;

3 if (item child CMessTemporaryLink ≥ MaxNrOldNogood
and item Child FlagList = 0) then

4 remove(child;Γ+(self));

5 remove(child;Γ+
e (self));

6 sendMsg:RemoveL(child,self);
7 Update(myAgentView; var child ← unknown);
end

procedure Backtrack()
1 newNogood←solve(myNogoodStore)
2 if (newNogood = empty) then
3 end ← true; sendMsg:Stop(system);
4 else
5 sendMsg:Back(newNogood, xj);

/*where xj has the lowest priority in V */
6 Update(myAgentView;rhs(newNogood)←unknown);
7 CheckAgentView();
end

function ChooseValue()
1 for each v∈D(self)not eliminated by myNogoodStore do
2 if consistent(v; myAgentView) then

return (v);
3 else

add(xj = valj) self 6= v;myNogoodStore);
/*v is inconsistent with xj ’s value */

4 return (empty);
end

procedure Update(myAgentView; newAssig)
1 add(newAssig;myAgentView);
2 for each ng ∈ myNogoodStore do
3 if not Coherent(lhs(ng);myAgentView) then

remove(ng;myNogoodStore);
end

function Coherent(nogood; agents)
1 for each var ∈nogood ∪ agents do
2 if nogood[var] 6= myAgentView[var] then

return false;
3 return true;
end

Fig. 3.1: The ABT algorithm with temporary and permanent links.

The effect of temporary links in randomly generated networks of constraints 65

4. Experimental results. The evaluation of the asynchronous search techniques depends on at least two
factors: the types of problems used for the evaluation and the metrics of measurement used. There are a few
types of problems used for evaluation in the DisCSP literature:

• the distributed problem of the m-coloring of a randomly generated graph, characterized by the number
of nodes/agents, k=3 colors and the m-number of connections between the nodes/agents. Two types
of problems are defined: sparse problems (having m=n x 2 connections) and dense problems (m=n x
2.7).

• The randomly generated (binary) CSPs are characterized by the 4-tuple (n,m,p1,p2), where: n is the
number of variables; m is the uniform domain size; p1 is the portion of the n * (n - 1) /2 possible
constraints in the constraint graph; p2 is the portion of the m*m value pairs in each constraint that
are disallowed by the constraint. That is, p1 may be thought of as the density of the constraint graph,
and p2 as the tightness of constraints.

4.1. The randomly generated DisCSP. A randomly generated DisCSP is an example of a homogeneous
unstructured problem [11]. These problems have a number of variables with a fixed domain. Variables belonging
to constraints are chosen randomly. Specifically, we implemented and generated in NetLogo both solvable and
unsolvable randomly generated DisCSPs. These problems had one variable per agent so all constraints are
between variables belonging to different agents (inter-agent constraints). Specifically, a tuple < n, d, p1, p2 >

was generated, where n is the number of variables, d is the domain size of all variables, p1 is the constraint
density and p2 is the constraint tightness.

We implement in NetLogo a random instance generator in two steps [17]:

S1: We select with repetition nr(C) = p1
n(n−1)

2 random constraints. Each random constraint is formed by
selecting without repetition 2 of n variables.
S2: For each constraint we uniformly select without repetition nr(v) = p2 · d

2 incompatible tuples of values, i.e.
each constraint relation contains exactly 1− p2 · d

2 compatible tuples of values.
Implementation examples for the random instance generator can be found on the website [17].
We used binary constraints with the constraint density controlling how many constraints were generated

and the constraint tightness determining the proportion of value combinations forbidden by each constraint.
For example, a constraint density of 0.4 would generate 40% of the possible constraints in the problem (i.e. (n*
(n-1)/2) * 0.4 where n is the number of variables) and a constraint tightness of 0.5 would prevent 50% of the
possible value combinations of variables involved in a constraint from satisfying the constraint. Such uniform
random constraints networks of n variables, k values in each domain, a constraints density of p1 and tightness
p2, are commonly used in experimental evaluations of DisCSP algorithms [2], [3], [6].

The experiments were conducted on networks with 15-20 agents (n = 15 or n=20) and 10 values (k = 10).
Three density parameters were used, p1 = 0.2, p1=0.4 and p1 = 0.5. In many cases a density of p1 = 0.2 or 0.3
was used to represent sparse constraint networks and a density of p1 = 0.4 or p1=0.5 used for medium networks.
The value of p2 was varied between 0.3 to 0.5. This creates problems that cover a wide range of difficulty, from
easy problem instances to instances that take several CPU minutes to solve. For every pair (p1,p2) in the
experiments we present the average over 100 randomly generated instances (for each version we carried out
a number of 100 trials, retaining the average of the measured values). Specifically, we tested the random
classes: < 20; 10; 0.2; 0.3 >, < 20; 10; 0.4; 0.7 >, < 20; 10; 0.2; 0.3 >,< 20; 10; 0.2; 0.5 >, < 20; 10; 0.5; 0.3 >,
< 20; 10; 0.5; 0.5 > (100 solvable and unsolvable instances).

Another experiment is done for networks with n=15 agents, p1=0.4 (medium constraint networks) where
the tightness value p2 varies between 0.1 and 0.9 to cover all ranges of problem difficulty. This aimed to test
all algorithms near the phase transition region where some problem instances are very difficult to solve [6], [11].

4.2. Evaluation of temporary links for the ABT family. In order to make such estimation, the
families of ABT techniques are implemented in NetLogo [14], [16], [17]. The implementation and evaluation
is done using the two models proposed in [9].

In order to make the evaluation of the asynchronous search techniques, the message flow was counted i.e. the
quantity of info (ok) and back (nogood) messages exchanged by the agents, the number of checked constraints
i.e. the local effort made by each agent, and the number of nonconcurrent constraints checks (defined in [6],
noted with ncccs) necessary for obtaining the solution.

Asynchronous techniques use some message processing routines. Those procedures process sequentially or
in packages the messages that are in the message queues. Typically, each agent extracts one or more messages

66 I. Muscalagiu, H.E. Popa and V. Negru

from its communication channel and calls the appropriate message processing routine. In this paper we analyze
two classes of implementations:

• A version in which the messages are read and processed sequentially, one by one [2] -noted with ABT1.
In this version, we eliminate the redundant and outdated messages of the info type;

• A version of the ABT family with complete processing of messages: each agent treats entirely the
existing messages in its message queue- noted with ABT2.

We will present in this paragraph a protocol for message management for the ABT technique [3], [10] in
the context of temporary links. This protocol establishes the order in which the messages are treated and the
moment in which is tried the association of a new value. Also, this protocol allows complete or partial processing
of the messages, by means of the use of the msize parameter, which stands for the number of messages read at
a given time from the message queue. The msize parameter can take values between 1 and the length of the
message queue. In the case that msize is 1, the sequential message processing solution is obtained.

The protocol presented here supposes the following:
P1. It is processed message by message:

• if it is of the info type, the local work context is updated (agent-view).
• the local counter MaxNrOldNogood is updated with SenderMaxOldNogood (received from another
agent).

• if the message is of the back type, it’s stored and verified if it is outdated. If it is outdated, an
ok message is returned to the sender to inform him of that. A part of the back messages are thus
rejected.

• if the message is of the addlink or removelink type then it’s treated normally
P2. The current agent value is saved.
P3. The work context is updated, updating the nogood values.
P4. The routine check-agent-view is called.
P5. The neighboring agents are notified if the agent has kept its old value.

Starting from this protocol we propose a message management routine. This version is presented in fig.
4.1. As we can see in fig. 4.1 each agent can process all the messages until the message queue is emptied, or
exactly as many messages as there are in the moment of the call, operation accomplished with the lines 1 and
1’.

The behaviors of several asynchronous techniques are investigated in two cases: the agents execute asyn-
chronously the processing of received messages (the real situation from practice) and the synchronous case where
the agents’ execution is synchronized.

Seven implementations are done corresponding to the version presented:
• Variants Yokoo based on the asynchronous model from [9]: ABT-Y1 (one message), ABT-Y2 (complete
processing of messages).

• Versions that determine statically the number of messages (named ABT-S1 and ABT-S2, corresponding
to the static solutions presented in the previous paragraph).

• Versions that determine dynamically the number of messages: ABT-TPL1 (one message), ABT-TPL21

(complete processing messages - the solution proposed in this article) and ABT-TPL22 (complete pro-
cessing message - solution proposed in [3]) . These versions are corresponding to the ABT algorithm
with temporary and permanent links presented in the previous paragraph.

Results appear in table 4.1, where we report the number of checked constraints (Constr.) the number of
nonconcurrent constraint checks (Ncccs) and the total number of messages exchanged(Tmess), averaged over
100 executions.

In figures 4.2 and 4.3 are presented the results of other experiments for n=15 agents and p1=0.4 (medium
constraint networks) where the tightness value p2 varies between 0.1 and 0.9 to cover all ranges of problem
difficulty. This aimed to test all algorithms near the phase transition region where some problem instances
are very difficult to solve [6], [11]. Figure 4.2 shows the computational effort, the number of nonconcurrent
constrain checks, for all three versions of ABT. Figure 4.3 presents the total number of messages sent by the
algorithms in the same run.

As known, the quantity of constraints checked evaluates the local effort done by each agent, but the number
of nonconcurrent constraint checks count computational effort of concurrently running agents only once during
each concurrent running instances citemeis1. Analyzing the results from table 4.1, one can notice that the

The effect of temporary links in randomly generated networks of constraints 67

to message-manage [msize]
set nrm 0

1 while [not empty? message-queue and nrm < msize] or
1’ while [not empty? message-queue] ***
[

set msg retrieve-message
if (first msg = ”stop”)
[stop]

if (first msg = ”info”)
[Update MyContext with msg
[Update MaxNrOldNogood with SenderMaxOldNogood] // if max COldNogood < SenderMaxOldNogood

if (first msg = ”back”)
[Update MaxNrOldNogood with SenderMaXOldNogood] // if max COldNogood < SenderMaxOldNogood
[ifelse (Not Is-obsolete msgNogood Sender)
[Store msg to BackSet] //builds the list containing the received back messages
[SendInfo msg]
// if it is outdated the sender agent is announced according to the Is-Obsolete procedure
]

if (first msg = ”addl”)
[SetLink msg]

if (first msg = ”removel”)
[RemoveLink msg]

set nrm nrm + 1
]
UpdateContextInfo
Check-agent-view
If Not empty(BackSet)
[ProcessMessageBackSet]

end

Fig. 4.1: The message-manage procedure for the message management in the case of the techniques from the
ABT family

Table 4.1: The results for ABT2 versions (n=20)

n = 20 agents
p1= 0.2 p1= 0.5

p2=0.3 p2=0.5 p2=0.3 p2=0.5

ABT-Y2

TMess 28 238100 89288 279378
Constr. 1353 4434588 2275457 3495841
Ncccs 499 1324866 357750 405249

ABT-S2

TMess 78 570448 110475 273908
Constr. 1380 14813543 3274523 3876091
Ncccs 504 3883867 421890 438485

ABT-TPL21

TMess 76 229272 79199 253178
Constr. 1373 4420864 1982961 3270209
Ncccs 500 1313842 322808 392978

ABT-TPL22

TMess 71 278654 91054 214715
Constr. 1422 5920563 2582961 4363385
Ncccs 533 1454423 362718 491903

dynamical solution of ABTTL reduces the local effort made by the agents. In case of problems with low
density, the two solutions require approximatively the same costs (messages and global effort). An explanation
is given by the fact that no temporary links appear, the only differences are caused by the delays in supplying
the messages. The more the difficulty of the problems and the density of the constraint graph grow (p2=0.5 or
p1=0.5), the more the costs of the dynamical solutions decrease. But, as the difficulty of the problems increases
(n=20 agents, p2=0.5), the static solution ABTS2 required much greater efforts compared to the dynamical
variant ABT-TPL21.

In the case of the message flow, the solutions with temporary links require a smaller flow of messages.
Unfortunately, with the increase of the number of agents and the difficulty of the problems (p2=0,5) the static
solutions for the temporary links require a much greater flow of messages. This thing is caused also because the
temporary links aren’t kept long enough to detect obsolete information.

68 I. Muscalagiu, H.E. Popa and V. Negru

Fig. 4.2: The number of nonconcurrent constraint check for the ABT techniques.

Fig. 4.3: Total number of messages sent for the ABT technique

As regarding the two dynamic solutions that use two different methods of treating the message in packages,
the variant proposed here surpasses the one proposed in [3]. There can be observed situations in which the
dynamical solution ABTS22 is surpassed by the Yokoo solution.

Regarding the effort done by the agents,for the harder problem instances, ABT-TPL21 outperforms ABTY
by a factor of 1.1. Unfortunately, for the difficult problems we can observe a network load for the all solutions.

A version in which the messages are read and processed sequentially, one by one [2] - noted with ABT1

is evaluated. This solution supposes a message treatment routine, which extracts sequentially each message,
identifies its type and calls the appropriate processing routines. In this routine, for message processing, we
eliminate the redundant and outdated messages of the info type.

In the case of the versions in which the messages are read and processed sequentially, one by one (noted
with ABT1) the results appear in table 4.2. These variants behaved similarly.

The results in the synchronous case where the agents’ execution is synchronized appears in table 4.3 In
other words, the agents perform a computing cycle in which they process a message from a message queue in the
synchronous case. After that, a synchronization is done waiting for the other agents to finalize the processing

The effect of temporary links in randomly generated networks of constraints 69

Table 4.2: The results for ABT1 versions - one message (n=20)

n = 20 agents
p1= 0.2 p1= 0.4
p2=0.3 p2=0.7

ABT-Y1

TMess 62 3290
Constr. 2303 145422
Ncccs 761 16362

ABT-S1

TMess 63 3392
Constr. 2330 153645
Ncccs 766 18049

ABT-TPL1

TMess 60 3220
Constr. 2209 143001
Ncccs 732 16174

of their messages. For this case we also count the number of cycles necessary obtaining the solution (Ncycles),
which is a measure that could approximate the global effort (similar to NCCCs).

Table 4.3: The results for ABT1 versions - one messages (the synchronous case)

n = 20 agents
p1= 0.2 p1= 0.4
p2=0.4 p2=0.7

ABT-Y1

TMess 55 2474
Constr. 2318 94958
Ncccs 633 24176
Ncycles 14 390

ABT-S1

TMess 58 2079
Constr. 2082 85439
Ncccs 701 22746

Nrcycles 14 370

ABT-TPL1

TMess 55 2258
Constr. 1949 89542
Ncccs 622 23312

Nrcycles 13 380

In this case, also we notice that the dynamical solution requires a lower flow of messages and also a lower
global effort.

A general remark is that the static solutions applied to easy problems (low density or p2<0.4) require
similar costs or even lower than all the other solutions. This thing is caused by the fact that the management
of temporary links determines an extra overhead.

Unfortunately, analyzing the sets of results for certain instances (during runtime) we remarked the existence
of problems for which the versions with temporary links (static versions) require very high costs. Although, we
should specify that the number of those cases was not very high, not influencing, in the end, the results.

4.3. Discussion. It is interesting to see how many such links can be added by ABT during the search for
a solution. The actual number will obviously depend on the instance to be solved, in [2] an estimate of the worst
case is made, as follows: When a wipe out occurs on an agent Ai, the agent i builds a nogood by resolution of
it’s nogood store, and sends the obtained nogood to the agent Aj with the lowest priority in this set. When
agent Aj receives the nogood, it checks the compatibility of the nogood with its own agent view. But, since
this nogood can contain variables (xk), unknown for agent Aj , agent Aj will ask the agents Ak to add a link
from k to j. In the worst-case, a wipe out occurring at agent Ai will generate a nogood involving the whole set
Γ−(i) of the agents linked to i, and preceding i in the agent ordering (the parents of node). More generally,
when traveling back to all the ascendent agents, a nogood can lead to the addition of links between each pair
of agents in Γ−(i), leading to a total number of links equal to |Γ−(i)| (|Γ−(i)| + 1) /2, see [2] for details.

The estimate presented previously was done in [2] for the worst case. In order to see, though, for the chosen
data sets, how many links appear, during the experiments was counted also the number of temporary links.
In figure 4.4 is presented the number of links for the chosen types of problems. An average was performed for
all the runs and classes of problems. Surprisingly, this average is far from the values of the worst case. For

70 I. Muscalagiu, H.E. Popa and V. Negru

problems in which p2 has small values (the constraint tightness) the number of temporary links is small, but
for large values of p2≥4 the number of temporary links is almost the same.

Fig. 4.4: The number of temporary links for ABT2 versions.

5. Conclusions. In this paper we examined the effect of temporary links for the random binary constraints
problem. Experiments with asynchronous search techniques are standardly conducted on randomly generated
networks of constraints. Experimental results illustrate that the dynamical solution for the temporary links has
a better efficiency in comparison with the Asynchronous Backtracking.

A new dynamical solution for determining the number of messages necessary for maintaining a connection is
proposed in this paper, the experiments show a better efficiency in comparison with the standard Asynchronous
Backtracking.

The new member presumes transforming some of the temporary links in permanent links, based on infor-
mation relative to the outdated message flux received by each agent.

From the experimental analysis we conclude that statical solutions proposed are not fitted for the case of
networks with many links because they require a greater message flux. On the other hand, we remark a smaller
general computing effort compared with the classical solution from [2], [12]. In conclusion it is recommended
the use of dynamical variants that use message management and the agents work asynchronously.

A last comparison between the cases of processing the messages sequential or in packages, we can notice
a neat differentiation between the dynamic solution and the classic or static solutions. The processing of all
messages allows the agent to receive much faster the maximums of the other agents, compared to the situation
in which it treats one message.

The scale-free graphs in complex networks, recently introduced by Barabasi and Albert [1], have become
a very popular interdisciplinary research topic. As a future research, we wish to analyze temporary links in
scale-free graphs, since there was little research in network structure for DisCSP.

REFERENCES

[1] A. L. Barabasi and A. L Albert, Emergence of scaling in random networks, Science, 286 (1999), pp. 509-512.
[2] C. Bessiere, I. Brito, A. Maestre and P. Meseguer,Asynchronous Backtracking without Adding Links: A New Member

in the ABT Family, Artificial Intelligence, 161:7-24, 2005.
[3] I. Brito, P. Meseguer, Synchronous, asynchronous and hybrid algorithm for DisCsp. In Workshop on Distributed Con-

straints Reasoning, Toronto, 2004.
[4] R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence, 34(1998),

pp. 1–38.
[5] Y. Hamadi, C. Bessiere and J. Quinqueton, Backtracking in distributed constraint networks. In Proceedings ECAI’98,

Brighton, UK, 1998, pp. 219–223.
[6] A. Meisels, Distributed Search by Constrained Agents: algorithms, performance, communication, Springer Verlag, London,

2008, pp. 105–120.

The effect of temporary links in randomly generated networks of constraints 71

[7] I. Muscalagiu, H.E. Popa and M. Panoiu, Determining the number of messages transmitted for the temporary links in the
case of ABT Family Techniques. Proceedings of the 7th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, Timisoara, Romania. IEEE Computer Society Press, 2005.

[8] I. Muscalagiu, H.E. Popa and M. Panoiu, Asynchronous Backtracking with temporary and fixed links: A New Hybrid
Member in the ABT Family. Journal of Computer Science INFOCOMP, Brazil, Vol. 5, nr. 2 (2006), pp. 29–37.

[9] I. Muscalagiu, H. Jiang, H.E. Popa, Implementation and evaluation model for the asynchronous techniques: from a
synchronously distributed system to a asynchronous distributed system. Proceedings of the 8th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, IEEE Computer Society Press, 2006, pp. 209–
216.

[10] H.E. Popa, I. Muscalagiu, D.M. Muscalagiu and V. Negru, Experimental analysis of the impact of the message man-
agement in the case of the ABT family. Proceedings of the 9th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, Timisoara, Romania. IEEE Computer Society Press, 2007.

[11] B. Smith Phase transition and the mushy region in constraint satisfaction problems. In Proceedings ECAI’94, Amsterdam,
The Netherlands, 1994, pp. 100–104.

[12] Yokoo, M., Durfee, E. H., Ishida, T., Kuwabara, K. The distributed constraint satisfaction problem: formalization and
algorithms. IEEE Transactions on Knowledge and Data Engineering 10(5), 1998, pp. 673–685.

[13] Yokoo, M., Hirayama, K.Algorithms for Distributed Constraint Satisfaction: A Review. Autonomous Agents and Multi-
Agent System, 3(2), 2000, pp. 198–212.

[14] U. Wilensky, NetLogo itself: NetLogo. Available: http://ccl.northwestern.edu/ netlogo/. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, 1999.

[15] R. Zivan and A. Meisels, Dynamic ordering for asynchronous backtracking on Discsps, Constraints, 11(2-3), 2006, pp. 179–
197.

[16] MAS NetLogo Models-a. Available: http://jmvidal.cse.sc.edu/netlogomas/.
[17] MAS NetLogo Models-c. Available: http://discsp-netlogo.fih.upt.ro/.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

