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ADAPTIVE MULTI-GRID METHODS FOR PARALLEL CFD APPLICATIONS∗
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Abstract. Computational fluid dynamic (CFD) computations are memory and time intensive and need to be executed in
parallel for larger computational domains. In order to produce physical accurate solutions, adaptive grid setups have to be chosen
as the memory and computing time would otherwise be too high, and results would not be obtained in a reasonable amount of time.
This paper describes the usage of a multi-grid based approach for solving the pressure Poisson equation, arising during every time
step of the Navier-Stokes equations. It will then highlight an analysis of errors introduced due to an adaptive setup of the domain,
and show performance measurements for uniform and adaptive grid setups. Last but not least, a CFD benchmark example based
on the von Kármán vortex street will be presented, and the results will be discussed.
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1. Introduction. Computational fluid dynamics (CDF) simulations are time intensive and require a lot
of computational resources. Hence, every optimisation or algorithmic speed-up has huge benefits for expensive
long running scenarios in terms of energy efficiency and CPU costs. Moreover, design parameters regarding
domain setup or solver settings also prove to have a high impact on run times.

Uniform grids exhibit huge advantages due to very easy computations via stencil-based operations, they
require no additional grid management, and are very easy to implement (cf. [5]). Thus, it is very cost efficient
using structured uniform grids for computations. One disadvantage of such an approach is the required equidis-
tant discretisation of the entire domain, which is not always necessary depending on the geometry settings.
For an engineering based air-flow simulation of an indoor airspace for example, regions have to be computed
very fine around obstacles but do not necessarily need to have the same resolution at regions far away from
these obstacles. Thus, a geometry based, adaptively refined grid has huge advantages in terms of reducing
unnecessary refinements.

Adaptive grids are already quite well studied in literature. There exist several possibilities of generating
adaptive grid refinements. One possibility is the stepwise approximation with regular grids, such as the approach
described in this paper or from Manhart and Wengle [13]. Another possibility which will not be regarded for
this code would be the overlapping of two different grids of different resolution, so called Chimera grids, as
studied by Hadžić [11]. Furthermore, boundary adapted non-orthogonal grids could be used. All methods
have advantages and disadvantages listed in detail in [5]. The authors chose to use the approximation with
hierarchical block-structured grids, as they fit quite well to the used data structure.

The main CFD implementation is based on an incompressible Newtonian fluid flow simulation governed
by the Navier-Stokes equations. The spatial discretisation is realised by a finite-volume scheme and for the
temporal discretisation currently an explicit forward Euler method enhanced by the Adams-Bashforth method
of 2nd order is applied. Further details are given in section 6.

A Poisson equation for the pressure term has to be solved in every step of the fluid solver, hence this step
needs to be analysed in detail in order to speed up the solution process. This paper will describe a multi-grid
based approach for solving the pressure Poisson equation which is deeply integrated in the data structure itself,
and takes advantage of the internal exchange functions and similar concepts of the two approaches. Further
details can be found in section 4.

The paper quickly outlines the applied hierarchical data structure for block-structured, orthogonal Cartesian
grids and presents additions to compute with an adaptively refined grid structure. For a fair parallel efficiency,
a load distribution has to be performed in order to balance the computational effort to the various machines. A
detailed analysis concerning errors generated by an adaptive refinement is presented and a performance overview
is given. Last but not least, an adaptively refined von Kármán vortex street is computed as test example, which
is according to Hirsch [12] a simple geometry which generates a quite complex flow.
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This paper is based on the conference publication [8], and was extended by including a section on the multi-
grid based solver concept, as well as further performance measurements and an enhanced error evaluation.

2. Data Structure Layout. The data structure is based on block-structured, non-overlapping, regular,
orthogonal Cartesian grids organised in a hierarchical management grid as depicted in figure 2.1. Two main
components form up the system: the management grids on the one hand and the data grids on the other hand.
The management grids are ordered according to a hierarchical organisation structure in a tree-like fashion
starting from a root grid (also called top grid, cf. figure 2.1 on the right hand side). They contain logical
information such as parentage or children links. One management grid can have up to 73 management grid
children, although the refinement in each dimension can be selected separately.

A special case is the so called octree data structure, if the child refinement is set to 2 in every direction, giving
23 management grid children per parent grid. Furthermore, the refinement of the root (rtx, r

t
y, r

t
z) can be chosen

differently than that of any subsequently refined grid (rsx, r
s
y , r

s
z), in order to allow for a useful discretisation of

e. g. a channel. A refinement of ri = 1 can be chosen in order to impose a non-refinement in a given axis i,
which can be useful for a pseudo-2D computation. The refinement levels impose certain limits on the accuracy
of the solution in an adaptive area, and thus, studies about accuracy will be carried out in section 5 of this
paper in order to quantify this approximation.

each cell is linked to one 

data grid of size bxubyubz 

surrounded by halo 

Fig. 2.1. Logical data structure layout in tree form (on right-hand side) and in overlayed grid form (on left-hand side). Each
logical grid holds a pointer to a data grid containing the actual data surrounded by a halo of ghost cells (mid of picture). (Picture
based on [9])

The second main part of the data layout is formed by the data grids depicted in the middle of figure 2.1.
Each management grid is linked to exactly one data grid, which will hold the actual computational data of all
internal fields, such as velocities, pressure, temperature, etc. The size of a data grid is fixed to (bx, by, bz) for
all grids, with the restriction, that bi has to be dividable without remainder by rti and rsi for all i in order to
avoid non-conforming grid boundaries.

This data structure setup enables a strict separation of computation and communication phases. From the
user’s point of view, a new kernel can be implemented on a regular Cartesian grid. Everything else which has to
do with adaptivity, interpolation, or data exchange is outsourced to communication functions which are called
by one single call from within the kernel. Thus, an expert in his area of research can easily implement a new
computational kernel without being an expert in parallel computing or computer science.

On the other hand, the data exchange has to be treated with extreme care, as race conditions during
the update procedure could occur and generate undefined data states. Hence, the communication has to be
separated into three different steps which have to be properly synchronised: in a first step, data is aggregated
to the parent cells by interpolating child values. The parent grid can only proceed, if updates from all its
children have arrived. As the data is send upwards in the scheme depicted in figure 2.1, this stage is called
bottom-up communication stage. In a next step, neighbour cells on the same level can exchange values without
any synchronisation needs, as no race condition can occur here. This step is called horizontal communication.



Adaptive Multi-Grid Methods for Parallel CFD Applications 35

As last step, all the ghost cells of the grids have to be filled which have not been touched in the previous
horizontal communication phase. Therefore, data stored in the current ghost cells of the parent grids are used to
interpolate values in the ghost cells of the child grids. Further information about the communication procedures
or the grid setup can be found in [6, 9].

It should be mentioned that unlike in similar concepts, the intermediate grids are not discarded during
the refinement process. Hence, all grids are kept in memory, even if refined children are available. The actual
computation however, will be carried out only on the ‘leaf’ (i. e. non-refined) grids. This concept has some
considerable advantages. For one, the applied solver for the Poisson problem introduced in section 4 is using
the parent grids for its internal solving procedures.

A second advantage is that if a very fast computational response is necessary, such as in the case of a
computational steering approach (cf. [19]), e. g., a maximal computation depth can be imposed, where higher
refinements will be disregarded, and a coarser but faster computation can be performed on the exact same data
structure.

As third advantage, a visualising technique for reducing the amount of transferred data can be applied
easily, such as described in [16], called sliding-window approach. Here, a certain window of interest as well as
a maximal bandwidth can be fixed. A special server-sided collector decides which data on which level will be
sent to a client-sided visualisation application. Thus, interactive data visualisation can be managed at run-time
with constant bandwidth requirements for data exchange.

3. Parallel Data Distribution and Load Balancing. For a parallel computation, a good data distri-
bution is inevitable in order to minimise communication over the network. The following section will describe
how such a distribution can be achieved by using space-filling curves.

3.1. Neighbourhood Server Concept. For a load distribution or redistribution, two different strategies
can be applied: a global view or a local view strategy. In the local view strategy, a diffusion process as proposed
by Cybenko [4] can be applied. No information about the global system is necessary, and work is only distributed
to the direct neighbours. This process has to be repeated a certain amount of steps, until an overall balanced
distribution has been reached. On the other hand, a global view can do the distribution in one single step by
having global knowledge of the problem. Unfortunately, the process having the global view typically becomes
a bottle neck with an increasing amount of processes in the system.

Nevertheless, due to its better characteristics the authors chose to implement a global view concept. A
dedicated server, the so called ‘neighbourhood server’, keeps track of all management grids without having any
actual data of the grids themselves. Using this concept, rebalancing and grid migrations are easily possible
without a lot of overhead. Possible bottle-neck simulations are avoided by having multiple servers running
concurrently and serving different processes. Details of the synchronisation procedures can be found in [7].

3.2. Load Balancing using Space-Filling Curves. The neighbourhood server contains all management
grids and can compute the best possible data distribution according to a certain given strategy. Possible
distribution strategies should ensure a good data locality, i. e. keeping neighbouring grids as close as possible,
and thus, minimising communication efforts. Space-filling curves deliver a good distribution for such purposes
(cf. [1]).

Of all the possible space filling curves (SFC), such as Hilbert, Lebesgue, Sierpiński, or Peano, among many
others, the authors chose to use the Lebesgue curve depicted in Figure 3.1. The main reason for this choice is
the very simple computation of the position of a given cell in the grid. The geometric construction of the curve
can be seen in Figure 3.1(a). On the left-hand side, the geometric primitive is shown. Each part in the grid
can then be refined further by applying again the construction primitive (due to the form of the primitive, the
curve is also referred to as ‘z-order curve’).

The hierarchical tree is traversed in a depth first approach, respecting on every level the geometric primitive
of the construction, thus delivering the figure on the right-hand-side of figure 3.1(a). Contrary to other work
(e. g. [20]), the parent grids are not omitted, but also pushed to the linearised list. Thus, the list of grids on the
right-hand-side would have a size of 29, even if only 22 of them are currently visible. This linearised list is split
into (nearly) equal parts and distributed by means of grid migration to different computing processes.

Although, the Hilbert curve would conserve the locality better than the Lebesgue curve, it is easier to
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(a) geometric construction of a Lebesgue
curve on an adaptive grid
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enumeration according to Morton’s
index.

Fig. 3.1. Load balancing strategy by applying Lebesgue’s curve and Morton’s indexing.

compute the position in the grid using Morton’s index [15], which can be generated easily by bit-interleaving.
As example, an 8 × 8 grid is depicted in Figure 3.1(b). By writing the desired coordinates in binary form and
padding them to the largest multiple of two, one can generate the Morton index by interleaving each bit from
y with each bit from x. Conversion from binary into decimal form delivers then Morton’s index. As example,
x = 5, y = 3 is written in binary form x = 101, y = 011. By bit-interleaving, one obtains 011011 which reads
in decimal 27 and corresponds to the Morton index of x, y. The same procedure works in 3D by using x, y, and
z coordinates.

4. Multi-Grid Like Solver Concept. As mentioned in the previous section, the solver concept is based
on a multi-grid like approach for the pressure Poisson equation. The basics, describing the mathematical
properties, convergence studies, etc can be found in [2, 18, 10]. Putting it into a nutshell, a multi-grid based
approach can be described as follows:

Let’s suppose the Poisson equation A · u = f should be solved on a given grid discretisation Ωh with a
spacing of h. First, a smoothing using a 2/3 damped Jacobi relaxation method is applied α1 times, obtaining
an approximation to the solution vh on this grid. The residual rh = fh −Ah · vh is computed and restricted
to a coarser grid using a restriction operator I2hh to serve as right-hand side f2h. On the coarser grid Ω2h, the
residual equation A2h · e2h = f2h is relaxed to obtain an approximation to the error e2h. Again, the residual
r2h = f2h −A2h · e2h is computed and restricted to an even coarser level using a restriction operator I4h2h.

This procedure is repeated until the coarsest level L has been reached, where the residual equation system
ALh ·eLh = fLh is small enough to be solved directly. After eLh is known, the error correction is prolongated to
the finer grids and added to the approximation of the solution v. Assuming the error correction e4h is known,
then the approximation on level 2h can be obtained by e2h = e2h+I2h4h ·e4h, where I2h4h describes the prolongation
operator. The error is then relaxed α2 times using the 2/3 damped Jacobi smoother, before the prolongation
to level h is performed. In the end, the error correction eh is added to the approximation of the solution vh.
This procedure is called a v-cycle and is the simplest form of a multi-grid approach. This v-cycle has to be
repeated until the norm of the residual is below a given tolerance, at which point the system is solved to the
given accuracy.

While analysing the standard multi-grid approach, similarities can be seen between prolongation and re-
striction in the v-cycle, and the data exchange mechanisms introduced in the data structure itself. Therefore,
it is obvious to combine the two approaches reusing parts already existing in order to construct a multi-grid
like solver which is ‘fused’ into the structure itself. The method is based on matrix-free cell-centred multi-grids,
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meaning that no matrix A is explicitly assembled, but a stencil operator is used for iterating over the grid points
in memory. As the data grid uses a collocated data arrangement, where all values are stored in the cell centre,
the data for the multi-grid also needs to be interpreted as cell-centred. As consequence, coarsened points do
not coincide with finer points.

The amount of levels and thus, implicitly the amount of grid coarsening is dictated by the data structure
itself and by the approximation of the geometry which should be solved.

Figure 4.1 shows performance measurements on ‘Shaheen’, a 16-rack Blue Gene/P system having a total of
65536 compute cores at King Abdullah University of Science and Technology (KAUST) in the Kingdom of Saudi-
Arabia1. Figure 4.1(a) shows the pure data exchange times for exchanging all ghost layers of 9 independent
variables for different problem sizes using up to 32768 processes. The curves show, that the communication
time is decreasing while using more processes. Figure 4.1(b) shows strong scaling results for two different
problem sizes for a 3D Laplace problem discretised uniformly up to a given depth. It can be seen, that a certain
saturation is reached for a higher amount of processes. This happens earlier for the 16 million unknowns and
starts later for the 134 million unknowns due to increased communication overhead and less work per process.

The standard multi-grid algorithm uses a certain amount of smoothing steps α1 for the residual equation
and α2 for the error correction. These values are usually in a range of approximately 2–3. The multi-grid like
concept needs more smoothing steps in order to converge to the correct solution, especially when obstacles are
present in the domain.

Following the ideas of [14], boundary conditions need to be handled on coarse grids in order to reproduce
the effect they exhibit on the fine grids. Therefore, they need to be restricted in some way onto coarser grids.
Dirichlet conditions have the highest priority, i. e. if one of the child cells has a Dirichlet boundary condition,
the coarse cell will be marked as having a Dirichlet boundary condition. Neumann boundary conditions have
a very low priority, and will only be restricted as Neumann conditions on the coarse grid if all child cells had
Neumann boundary conditions. Otherwise, the coarse cell will be marked as fluid cell. As consequence, huge
Dirichlet regions will appear in the coarsest grid representation, which can only be handled by a higher amount
of smoothing towards the boundary regions.

Figure 4.2 shows a plot of the error convergence for different smoothing strategies until a maximal error
of 10−9 was reached. While applying α1 = α2 = 10 on every level, 153 cycles were needed to converge (curve
‘constant 10’). A next approach is to adaptively change α over different levels. On fine grids, α should be small,
as exchanging data is costly. On coarser grids however, α can be increased as less data has to be exchanged,
which produces less communication overhead. Hence, the plots named ‘adaptive’ use such a concept. ‘Adaptive
2’ starts with 2 smoothing steps on the finest level. In the next coarser level, 4 steps are used, then 8 and so
on. This curve shows an even worse convergence than the constant 10. ‘Adaptive 4’ uses 4 smoothing steps to
start on the finest level, then 8 on the next coarser, then 16 and so on. This curve shows exceptionally good
convergence and needs only 27 cycles to converge to an error of 10−9 whereas ‘adaptive 2’ needed 477 cycles.
This study shows that attention has to be paid to the choice of settings for the solver, as small changes could
generate a huge performance impact.

5. Performance and Accuracy Measurements of the Adaptive Data Structure. In order to
evaluate the performance as well as the accuracy of the used data structures and its solvers, a Poisson equation
will be solved for a simple test geometry. The use of the Poisson equation is realistic, as this equation has to
be solved in every time step of a CFD simulation for evaluating the pressure-correction in order to obtain a
divergence free velocity field of an incompressible fluid flow after each time step, and thus, ensuring the validity
of the continuity equation.

5.1. Test Case Setup. The 3D test case geometry is composed out of a 1× 1× 1m block. The top-level
as well as the subsequent refinement levels are set to bisection (rti = rsi = 2 ∀i). The block size of the data
grids is set to bi = 12 in every direction. Dirichlet boundary conditions are imposed on all 6 walls. The west
and east wall in x-direction are set to 1.0 whereas all other walls are set to 0.0. The right-hand-side f of the
Poisson equation ∆p = f is set to 0, thus describing actually a pure Laplace equation.

1KAUST Supercomputing Lab: https://www.hpc.kaust.edu.sa
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Figure 5.1 shows a 2D cut through the 3D test problem case (red means p = 1.0, blue means p = 0.0). In
the case of a uniform refinement, all grids were refined up to a certain depth. The amount of grid cells in the
complete system can be computed for this example by

dmax
∑

d=0

(

2d · s
)3

=

dmax
∑

d=0

(

2d · 12
)3

.

In this case, the total amount of grid cells can be given as follows: depth 4 has approximately 8 million cells,
depth 5 has 64.7 million cells, and depth 6 has 517.7 million cells. The cut shown in Figure 5.1(a) is depicted
for depth 4 in order to better illustrate the grid refinement. The solution on level 6 is regarded as sufficiently
fine and, thus, used as a reference solution.

According to the setting of the boundary conditions, the highest gradients are expected near the walls, thus
in the case of an adaptive grid the refinement is increased closer to the boundaries by refining the bisected parts.
Figure 5.1(c) shows a grid with a uniform refinement up to level 2 and two consecutive refinements towards the
west and east walls. Figure 5.1(b) shows the results computed on that adaptive grid. Hence, such a grid is from
now on called adaptive 2+2 or a2+ 2. Close to the west and east walls, the two setups have the same grid size,
and are thus comparable.

5.2. Distribution Performance. In order to check the distribution for a real 3D problem, the distribu-
tion and communication patterns were analysed using the integrated performance monitoring tool IPM2. The
measurements were performed on ‘Shaheen’. Furthermore, some computations were done on the one-rack Blue
Gene/P having in total 4096 compute cores at Universitatea de Vest din Timişoara (UVT) in Romania3.

Figure 5.2 shows two distribution patterns for parallel computations using 512 processes performed on
Shaheen. The communication pattern of the u4 refinement is depicted in Figure 5.2(a), the a2 + 2 refinement
is shown in Figure 5.2(b).

2Integrated Performance Monitoring (IPM): http://ipm-hpc.sourceforge.net
3Universitatea de Vest din Timişoara HPC Center: http://hpc.uvt.ro
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(a) Uniform Grid Distribution setup at

depth 4 (u4)

(b) Adaptive Grid Distribution setup at

depth 4 (a2 + 2)

(c) Adaptive Grid Distribution setup at depth 4 (a2+2) (grid only)

and the cutline (in red) introduced in subsection 5.3

Fig. 5.1. 2D cut through a 3D test problem for testing the adaptive code and distribution.
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Black markers depict a communication between the ranks on the x- and y-axis. In both patterns, the
communication with the neighbourhood server residing on rank 511 is obvious and marked completely black,
as each process gets its neighbouring information once from the server which will be cached until a change
occurs. Otherwise, the main communication is focussed on a diagonal, indicating that only processes close to
each other communicate with each other. Independent of the underlying network topology of the respective
hardware, this shows that the average number of communication partners per process is small. In case of a
non-locality preserving grid distribution, a much higher amount of communication partners could be seen in
the communication diagram and would consequently slow down the communication in the system.

It can be observed, that the adaptive grid setup is not differing a lot from the uniform setup, which shows
that the data distribution using the selected space filling curve is working as expected by preserving the locality
of the data.

5.3. Accuracy Measurements. A first glance at the colour distribution of Figure 5.1 gives already a
good hint, that the computations are not that far off and in the same order. To better quantify the error made
by the adaptive approach, further treatment is necessary. In Figure 5.3, a quantification of the error is given.

Figure 5.3(a) shows the value for the pressure in the complete domain for different simulation setups. The
plot is shown over a cutline going in x-direction through the domain while maintaining y and z at 1/2. Thus,
x = 0 represents the west wall and x = 1 represents the east wall having each Dirichlet boundary conditions of
p = 1. On the other walls in the 3D domain, the boundary conditions are set to p = 0. As solver, the multi-grid
like solver from section 4 is used on the adaptive data structure. To be able to draw 1D results along a cutline,
a trilinear interpolation is applied, for interpolating the values along the cutline out of the cell-centred values
stored in the model.

In Figure 5.3(a) the general behaviour of the solution is similar. For better quantification, the relative error
is plotted in Figure 5.3(b). As reference solution, a linear interpolation of the finest computation of a uniform
distribution at depth 6 was used. The relative error is computed by the formula

erel =
p− pref,u6

pref,u6

· 100 [%] .

First of all, uniform grids at different levels were compared, namely level 4 and 5. The results show that the
error is larger towards the boundaries than in the middle of the domain. This is due to the fact, that the larger
cells cannot capture the higher gradients closer to the wall as good as the refined grids can. In the middle of
the domain, where the gradients are small however, the approximation is quite good. Level 4 is worse than level
5, but nevertheless, the computational time and memory consumption are much better. On Sandstorm, the
department for Computation in Engineering’s own cluster, with four nodes consisting each of two Intel Xeon
E5-2690 processors with 8 cores each and a total of 768 GB of main memory, one node using 16 processes needed
6.8 seconds to compute the 8 million cells on level 4 and 98.5 seconds to compute the 64.7 million cells on level
5.

Furthermore, the error from the adaptive refinement with respect to the reference solution can be seen in
Figure 5.3(b). Obviously the coarsest grid (a2 + 2) has the largest error. Towards the boundary, a2 + 2 shows
the same error as u4 which is not remarkable, as the grids cells have the same size. Towards the middle, the
error increases, as the grid is not fine enough to capture effects noticeable on the reference grids. A maximum
error of approximately 0.6% can be observed for the a2 + 2 curve, which is with respect to all factors such as
runtime and memory reduction quite acceptable.

Moreover, it can be noticed that the uniform grids never overestimate the solution of the reference grids,
i. e. that the solution never ‘crosses’ through the reference solution. This is not the case with the adaptive
refinement. Here, some solutions cross ‘through’ the reference solution (i. e. crossing the x-axis).

5.4. Scaling and Performance Measurements. Scaling and performance measurements for uniform
grids using up to 32768 processes were already presented in section 4. The following section will provide a few
comparative measurements to assess the performance impacts of the adaptive distribution. The measurements
were performed on the UVT Blue Gene/P for the same 3D test case described above. The only difference is,
that the block size of the data grids was set to bi = 4 instead of 12. Experience suggested that the Blue Gene/P
has a much better performance with its PowerPC processors for these chosen settings.



Adaptive Multi-Grid Methods for Parallel CFD Applications 43

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

p
re

ss
u
re

x-coordinate

u4
u5
u6

a2+2
a3+2
a3+3

(a) Pressure distribution along the cutline

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
la

ti
v
e 

er
ro

r 
[%

]

x-coordinate

u4 - u6
u5 - u6

a2+2 - u6
a3+2 - u6
a3+3 - u6

(b) Relative error in % along the cutline

Fig. 5.3. Data along the cutline in x-direction through the domain at y = z = 0.5. The geometric position of the cutline is
also displayed in Figure 5.1(c).
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Fig. 5.4. Scaling and performance measurements on the UVT Blue Gene/P. A bisection to the given depth was chosen. The
3D test case from section 5 was used with a different data grid size of 4×4×4.
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Figure 5.4(a) shows scaling results for the pure exchange time in seconds of all the necessary variables for
the fluid code (3 velocity values, a pressure value, a temperature value, etc). Figure 5.4(b) shows the wall time
in seconds until a solution of the Poisson equation converged to an error below 10−9.

The x-axis displays the amount of grids per process, in order to better compare the resulting times of the
adaptive and uniform distributions. Computations were performed using up to 1024 processes. Table 5.1 shows
the amount of grids in the different configurations.

Table 5.1
Amount of grids for different configurations used in the performance measurements

configuration # grids

adapt 2+4 21833
adapt 2+5 87369
unif 5 37449
unif 6 299593

It can be seen, that the performance of the exchange as well as the solution of the Poisson equation using
the multi-grid-like approach is behaving well if less than 600 grids per process are used. On the other hand,
a very similar behaviour of the adaptively refined grids can be observed. Hence, it can be concluded, that
the adaptive refinements have no negative impact on the overall performance of the code. Contrary, a similar
performance can be obtained with less computing power for simulating a domain with nearly the same accuracy
but far less grids.

6. Adaptive CFD Example. The implemented CFD code for simulating an incompressible Newtonian
fluid flow is currently based on the fractional step method proposed by Chorin [3]. In this approach, an explicit
time stepping scheme is used. First, intermediate velocities are computed by omitting the pressure part in the
Navier-Stokes equations. Then, using these intermediate velocities, the divergence of the momentum equation
is computed leading to a Poisson equation for the pressure. After solving the Poisson equation, the obtained
pressure correction is used to correct the intermediate velocity field leading to the velocities at the next time
step.

As engineering example of a non-steady-state fluid flow application, the von Kármán vortex street was
computed according to the settings of the 2D-2 benchmark of Schäfer and Turek [17]. It is basically a channel
flow with a cylinder as obstacle in the channel. After a certain simulation time, vortices start to shed from the
disturbances downstream of the cylinder and will be transported out of the region.

Figure 6.1 shows the results of computations for different refinement levels using a Reynolds number of 100.
For the a3 + 2 setting, the area consists of 405 adaptively organised grids in a hierarchy going up to depth 5
with an increased refinement around the area where the cylinder is located and the shedding of the vortices
starts. a3 + 3 has a more refined resolution around the cylinder using 597 grids. In case the area would be
uniformly refined up to level 5, the domain would contain 1365 grids and 5461 grids for level 6 respectively.

Using a normal desktop computer, a speed up of approximately 7.8 could be achieved by using the a3 + 3
version versus the fully refined u6 version (having around 9.1 times more grids), which corresponds also quite
nice to the results of the scaling of the solution of the Poisson equation shown in Figure 5.4.

For the 2D-2 benchmark, the adaptive code delivered a Strouhal number (St = D · f/Ū , where D is the
diameter of the obstacle, f is the frequency of the vortex shedding and Ū is the mean input velocity as defined
in [17]) of 0.290 which correlates very good with the experimental results of St = 0.287± 0.003. Furthermore,
the pressure difference ∆P between the front and the back of the cylinder delivered values between 2.40 and
2.48 depending on the state of the shedding which also corresponds quite well to the benchmark’s Table 4
in [17]. These results confirm that the fully adaptive CFD computation as it is currently implemented delivers
reasonable physical results.

Although the above presented benchmark is 2D only, the adaptive CFD code is capable of 3D computations.
Figure 6.2 shows a fully 3D computation of the 3D-2Z benchmark at Re=20. The adaptive grid refinement has
the same settings as the corresponding 2D benchmark.



46 J. Frisch, R.-P. Mundani and E. Rank

(a) a3 + 2 refinement

(b) a3 + 3 refinement

Fig. 6.1. Adaptively refined von Kármán vortex street according to the Schäfer-Turek benchmark 2D-2 at Re=100 (represented
by LIC (line integral convolution) overlaid with the grid refinement. The colour code represents the velocity magnitude. The current
time of the two computations is different).

7. Conclusion and Outlook. In this paper, the authors presented a detailed study about an adaptive
layout for a parallel distributed data structure capable of computing fluid flow simulations, as well as the main
idea of a multi-grid based solver approach. The accuracy of the adaptive data structure as well as the introduced
error was analysed and the influence on distribution and performance was evaluated. It could be shown, that
introducing an adaptive layout does not have a negative influence on either performance or distribution, and
the error is acceptable if compared to the massive gain in CPU time and memory consumption.

The solution process of the Poisson equation for the pressure correction could be considerably improved by
applying a multi-grid-like solver on an adaptive domain. Future work includes further optimisation of the CFD
code in order to increase the performance of long time consuming transient computations. Furthermore, the
explicit time stepping scheme should be replaced at some point by an implicit scheme which allows larger time
steps in the domain. Moreover, run-time adaptivity according to fluid criteria, such as maximal gradients of
velocities, can be tackled and incorporated, which will improve the quality of the solution enormously.
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