
Scalable Computing:
Practice and Experience

Scientific International Journal
for Parallel and Distributed Computing

ISSN: 1895-1767

~~~~
~~t

Volume 15(4) December 2014



Editor-in-Chief

Dana Petcu
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
petcu@info.uvt.ro

Managinig and
TEXnical Editor

Marc Eduard Fr̂ıncu
University of Southern California
3740 McClintock Avenue, EEB 300A
Los Angeles, California 90089-2562,
USA
frincu@usc.edu

Book Review Editor

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen
School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia
DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Bogdan Czejdo, Fayetteville State University,
bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Janusz S. Kowalik, Gdańsk University, j.kowalik@comcast.net

Thomas Ludwig, Ruprecht-Karls-Universität Heidelberg,
t.ludwig@computer.org

Svetozar D. Margenov, IPP BAS, Sofia,
margenov@parallel.bas.bg

Marcin Paprzycki, Systems Research Institute of the Polish
Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Lalit Patnaik, Indian Institute of Science, lalit@diat.ac.in

Boleslaw Karl Szymanski, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org



Scalable Computing: Practice and Experience

Volume 15, Number 4, December 2014

TABLE OF CONTENTS

Special issue on Enabling Technologies for Collaborations:

Introduction to the Special Issue iii

Engineering and Implementing Software Architectural Patterns Based
on Feedback Loops 291

Dhaminda B. Abeywickrama, Nicklas Hoch and Franco Zambonelli

Simulation Data Sharing to Foster Teamwork Collaboration 309
Claudio Gargiulo, Delfina Malandrino, Donato Pirozzi and Vittorio
Scarano

Investigation on the Optimal Properties of Semi Active Control Devices
with Continuous Control for Equipment Isolation 331

Michela Basili and Maurizio De Angelis

Regular Papers:

Optimizing Cloud Resources Allocation for an Internet of Things
Architecture 345

Bogdan Manaţe, Teodor-Florin Fortiş and Viorel Negru

c⃝ SCPE, Timişoara 2014





Scalable Computing: Practice and Experience
Volume 15, Number 4, pp. iii–iv. http://www.scpe.org

DOI 10.12694/scpe.v15i4.1051
ISSN 1895-1767
c⃝ 2014 SCPE

INTRODUCTION TO THE SPECIAL ISSUE ON ENABLING TECHNOLOGIES FOR
COLLABORATIONS

Dear SCPE readers,

Collaboration is an important aspect in almost all fields of human life, and today the need for supporting
collaboration is increased by the fact that we are always connected by means of different kinds of devices. In
particular in the enterprise world, this need has emerged and satisfying it can lead to relevant benefits for
companies. In the last years, enabling technologies have evolved to meet new and challenging requirements.
The aim of this special issue is to provide a selection of the state of the art, emerging trends, new technologies
and best practices in the field of technologies that enable collaboration. The idea was born at the 2014 IEEE
WETICE Conference on Enabling Technology: Infrastructure for Collaborative Enterprises, but the call was
open to any submission.

This special issue features three articles that concern technologies that enable collaboration.
The first one, ”Engineering And Implementing Software Architectural Patterns Based On Feedback Loops”

by Dhaminda B. Abeywickrama, Nicklas Hoch and Franco Zambonelli, focuses on collaboration in decentralized
system of autonomous service components. The paper proposes an Eclipse plug-in called SimSOTA, which
supports the design and the implementation of self-adaptive systems. Different phases of the development are
covered in a model-driven fashion based on self-adaptive architectural patterns.

The second one, ”Simulation Data Sharing to Foster Teamwork Collaboration” by Claudio Gargiulo, Delfina
Malandrino, Donato Pirozzi and Vittorio Scarano, addresses the collaboration among engineers involved in
Computational Fluid Dynamics (CFD) simulations. A Web-based system is presented, called Floasys, which
was developed starting from the experience in a big automotive company.

The third paper, ”Investigation On The Optimal Properties Of Semi Active Control Devices With Con-
tinuous Control For Equipment Isolation” by Michela Basili and Maurizio De Angelis, faces the collaboration
among devices, composing a single equipment. A control algorithm, derived from the Lyapunov method and
adapted to the addressed problem is presented, which is able to achieve the optimal isolation properties of semi
active variable stiffness devices with continuous control across the whole frequency spectrum.

It is interesting to remark that all the accepted papers present a strong connection with real requirements,
but meet them by solid models or theory. We also hope that these papers can solicit new research directions in
the field.

We would like to thank the editorial board of SCPE for the chance of arranging this special issue, and all
the reviewers for their hard work.

Giacomo Cabri, Federico Bergenti, Marco Aiello, Sumitra Reddy and Ramana Reddy

iii





Scalable Computing: Practice and Experience
Volume 15, Number 4, pp. 291–307. http://www.scpe.org

DOI 10.12694/scpe.v15i4.1052
ISSN 1895-1767
c⃝ 2014 SCPE

ENGINEERING AND IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS
BASED ON FEEDBACK LOOPS

DHAMINDA B. ABEYWICKRAMA∗, NICKLAS HOCH †, AND FRANCO ZAMBONELLI‡

Abstract. A highly decentralized system of autonomous service components consists of multiple and interacting feedback
loops which can be organized into a variety of architectural patterns. The highly complex nature of these loops make engineering
and implementation of these patterns a very challenging task. In this paper, we present SimSOTA—an integrated Eclipse plug-in to
architect, engineer and implement self-adaptive systems based on our feedback loop-based approach. SimSOTA adopts model-driven
development to model and simulate complex self-adaptive architectural patterns, and to automate the generation of Java-based
implementation code. The approach is validated using a case study in cooperative electric vehicles.

Key words: architectural patterns, autonomic systems, software engineering, self-adaptive systems, simulation, model-driven
development, Eclipse plug-ins

AMS subject classifications. 68N99

1. Introduction. Software systems are becoming increasingly complex and decentralized, and called to
function in highly dynamic, open-ended environments. Thus, developing, deploying and managing these systems
with the required level of reliability and availability have been very challenging. As a consequence, new software
engineering methods and tools are required to make these systems autonomic [10], i.e. capable of automatically
tuning their behaviour and structure in response to the dynamics of the operational environment in a self-aware
and self-adaptive way.

In the context of the ASCENS project (Autonomic Service Component Ensemble, www.ascens-ist.eu),
various models and mechanisms have been studied to integrate autonomic features in large-scale service systems,
both at the level of service components and service ensembles. In particular, the SOTA (“State Of The Affairs”)
model has been defined [2] as a general goal-oriented framework for analysing the self-awareness and self-
adaptation requirements of adaptive systems and for supporting the design of autonomic service ensembles.

To achieve such autonomic capability, feedback loops are required inside the system. The SOTA framework
accordingly defines a catalogue of self-adaptive patterns, defining the many possible ways according to which
feedback loops can be organized [6, 13]. However, a highly decentralized autonomic system may consist of a large
number of service components, and multiple autonomic managers that close multiple and interacting feedback
loops. Therefore, in addition to the catalogue, a framework such as SOTA should also provide solid engineering
tools to actually support the process of designing and implementing autonomic systems that integrate such
patterns. Several works like [8, 11, 12, 14, 15, 16] have addressed the need to make feedback loops explicit or
first-class entities. However, little attention has been given to providing solid tool support for their engineering
and implementation.

In this paper, we present SimSOTA—an integrated Eclipse plug-in we have developed to architect, engineer
and implement self-adaptive systems based on our feedback loop-based approach. The SimSOTA integrated
plug-in contains several plug-ins grouped together (i.e. a simulation plug-in and plug-ins for transformation).
Our model-driven engineering approach integrates both decentralized and centralized feedback loop techniques
in order to exploit their benefits. The SimSOTA plug-in facilitates (1) the modelling, simulating and validating
of self-adaptive systems based on the SOTA feedback loop-based approach; and (2) the automatic generation of
pattern implementation code in Java using transformations. We validate and assess our approach and plug-in
using a case study in cooperative electric vehicles (e-mobility) [9].

In our previous work [4, 5], we presented early results of SimSOTA as a simulation plug-in for modelling and
simulating patterns. However, the initial plug-in did not facilitate any application-independent instantiation of
models or implementation of complex feedback loops, as supported by the current integrated Eclipse plug-in

∗Fraunhofer FOKUS, Berlin, Germany (dhaminda.abeywickrama@gmail.com).
†Corporate Research Group, Volkswagen, Wolfsburg, Germany (nicklas.hoch@volkswagen.de).
‡Dipartimento di Scienze e Metodi dell’Ingegneria, Universit degli studi di Modena e Reggio Emilia, Italy

(franco.zambonelli@unimore.it).

291



292 D. B. ABEYWICKRAMA, N. HOCH AND F. ZAMBONELLI

Fig. 2.1. The trajectory of an entity in the SOTA space [2].

of SimSOTA. The current paper extends [1] with more results of patterns engineered and implemented. This
paper is extended with the help of a detailed case study in e-mobility showing the feasibility of the approach
in complex scenarios. An additional pattern called the Parallel AMs SC pattern is introduced. The SOTA
patterns profile created to represent our feedback loop-based approach is also introduced here. Another key
addition is a detailed discussion of our approach against other key works.

The rest of the paper is organized as follows. In Section 2, we present the SOTA conceptual model and
patterns catalogue, and the motivation to provide tool support. Section 3 describes the domain independent
models created to facilitate the engineering process of the patterns. The case study used to derive platform-
specific models is explained in Section 4. In Section 5, the domain-specific models created for the case study
at both platform-independent and platform-specific levels are discussed. Section 6 provides a discussion of our
approach and related work. Section 7 concludes this paper.

2. SOTA Patterns Catalogue and Tool Support. The SOTA model defined in the context of the
ASCENS project considers that the actual execution of service components (SCs) and ensembles (SCEs) can be
assimilated to that of a dynamical system: during its execution, it traces a trajectory in a virtual n-dimensional
state space whose dimensions represent the relevant parameters of the execution, and where the goal Gpost of
system execution is reaching a given “state of the affair”, i.e. a specific area in the state space, starting from a
given initial area Gpre (the precondition for activating the goal), and possibly following a bounded trajectory
U . Figure 2.1 represents these concepts graphically. Accordingly to such perspective, a system is considered
self-aware if it can autonomously recognize its current position and direction of movement in the state space,
and self-adaptation means that the system is able to dynamically direct its trajectory within U and towards
Gpost despite the fact that the dynamics of the operational environment tend to move it away from it. For a
more formal description of these notions of SOTA refer to [2].

The SOTA modelling approach is key to understanding and modelling self-awareness and adaptation, and for
checking the correctness of the specification [2, 3]. However, when a designer considers the actual architectural
design of the system, it is important to identify which architectural schemes need to be chosen for the individual
SCs and SCEs. To this end, To achieve such autonomic capability, feedback loops are required inside the system.
That is, components and ensemble should somehow integrate control systems (in the form of so called “autonomic
managers”) to detect the current trajectory of the executing system, and when needed correct it so that specific
regions of the space can be reached which correspond to specific application goals. The SOTA framework
accordingly defines a catalogue of self-adaptive patterns, defining the many possible ways according to which
feedback loops can be organized [6, 13], and supporting designers in their choices.

The SimSOTA tool completes the SOTA framework by supporting the actual process of designing and
implementing such patterns, i.e. properly structured systems of SCs, SCEs, and their associated autonomic



ENGINEERING& IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS BASED ON FEEDBACK LOOPS293

managers. More in particular, SimSOTA (developed using IBM Rational Software Architect Simulation Tool-
kit 8.0) is an Eclipse plug-in aimed at providing an integrated environment for the architect to engineer and
implement SOTA patterns in their respective domains. It contains several plug-ins grouped together, i.e. a
simulation plug-in and plug-ins for transformation.

A key goal of SimSOTA simulation plug-in is to facilitate the engineering (modelling, simulating and
validating) of complex self-adaptive systems based on feedback loops. It aims to provide a set of pattern
templates (custom profile applied) for all the key SOTA patterns. This is to facilitate general-purpose and
application-independent instantiation of models for complex systems based on feedback loops. The SimSOTA
plug-in can also be used to simulate and animate the patterns to better understand their complex and dynamic
model behaviour. Also, the feedback loop models and their interplay can be validated to detect errors early and
to check whether the specified behaviour works as intended.

On the other hand, the transformation plug-ins of SimSOTA are aimed at facilitating the automatic genera-
tion of implementation code in Java for the patterns. SimSOTA applies model transformations to automate the
application of UML-based architectural design patterns and generate infrastructure code for the patterns using
Java semantics. Here, model transformation techniques are applied as a bridge to enforce correct separation of
concerns between two design abstractions, i.e. UML-based patterns and their Java implementations. Two main
benefits of applying transformations here are improving the quality and productivity of patterns development,
and easing system maintenance and evolution for the patterns engineer.

3. Domain-Independent Pattern Models. The models and code developed using the SimSOTA tool
can be at the domain-independent or domain-specific levels. This section discusses the domain-independent pat-
tern template models created to facilitate the model-driven engineering process of the patterns at the platform-
independent UML and platform-specific Java levels. This is discussed using three key SOTA patterns of the
catalogue, i.e. Autonomic SC pattern, Parallel AMs SC pattern and Centralized SCE pattern.

3.1. Notion of Feedback Loop used in SOTA. The notion of feedback loops explored in our patterns
extends the well-established IBM’s MAPE-K adaptation model [10] with multiple, interacting loops (see [4] for
more details). MAPE-K (i.e. monitor, analyse, plan, execute over a knowledge base) is a reference model intro-
duced by IBM for autonomic control loops [10]. Advanced software systems that are often highly decentralized
require the modelling of multiple interacting control loops. Multiple feedback loops can coordinate and support
adaptation using two basic mechanisms: inter-loop and intra-loop coordination [15]. Intra-loop coordination is
provided by multiple sub-loops within a single feedback loop, which allows the various phases of MAPE-K in
a loop to coordinate with one another. In contrast, inter-loop coordination supports the coordination of adap-
tation across multiple control loops. These inter-loops can interact using three basic mechanisms: hierarchy,
stigmergy and direct interaction [4, 14].

Both decentralized and centralized feedback loop approaches have been suggested to facilitate autonomic
behaviour in adaptive systems [4, 19]. We integrate these approaches in order to exploit the benefits of both.
Although centralized approaches allow global behaviour control, they contain a single point of failure and suffer
from scalability issues. Conversely, decentralized approaches do not require any a priori knowledge, nor do they
contain a single point of failure.

We have developed a UML activity-based custom profile (SOTA patterns profile) to model the different
elements of the SOTA feedback loop notion applied in the patterns. A custom UML profile introduces a
set of stereotypes that extends the existing meta-model of UML to a specific area of application. The SOTA

patterns profile extends and customizes the UML meta-model for activity diagrams described in the UML
2.4.1 infrastructure and superstructure specifications. It contains several stereotypes which are used by the
transformation plug-ins when generating implementation code for the patterns.

SOTA identifies and classifies patterns based on the above described dimensions, and defines a taxonomy
that is helpful for the engineering of multiple and possibly interacting feedback loops, in particular for choosing
among a variety of feedback loop compositions.

3.2. UML Template Models for the Patterns. We provide a set of UML pattern templates for all the
key SOTA patterns (e.g. Primitive SC, Proactive SC, Autonomic SC, Parallel AMs SC, Multilevel AMs

SC, Centralized SCE, P2P AMs SCE, Cognitive Stigmergy SCE, Hierarchy of AMs SCE patterns). The



294 D. B. ABEYWICKRAMA, N. HOCH AND F. ZAMBONELLI

Managed Element SC1

EffectorsSensors SOTA
Goals

UML Action
Language, 

Guard conditions
Goal Pre &

Postconditions

Monitor

Plan

Execute

Analyze

SOTA 
Dimension S

Feedback
Loop #1

symptom >

request for
change >

change
plan >

Intra-loop
coordination

1

requires > AM1
requires >

Knowledge
Legend

composition

feedback loop for
AM

Fig. 3.1. Autonomic SC pattern: Conceptual model.

main goal behind this is to facilitate general-purpose and application-independent instantiation of models for
complex systems based on feedback loops. More specifically, it [1]:

(i) provides the engineer a starting structure for pattern modelling activities in support of capturing
details related to patterns modelling. The templates are used to specify any architecturally significant structures
that need to be included in the activity-based pattern models created using the templates.

(ii) presents useful guidance and textual advice to the engineer on applying the profile and deriving
platform-specific models in a consistent manner. It can provide instructions to the engineer on how to fill and
complete the model using elements within the template, and using features of the tool environment.

For a high-level and conceptual description of the key SOTA patterns of the catalogue refer to [13]. At the
SC level, these patterns use a decentralized feedback loop approach while at the SCE level, they primarily use
a centralized feedback loop approach. Thus, our work applies both decentralized and centralized feedback loop
techniques in order to exploit their benefits. Although these template models are not Eclipse plug-ins, they are
distributed in plug-ins. Here, we present UML template models created for three key SOTA architectural pat-
terns at the SC (Autonomic SC pattern, Parallel AMs SC pattern) and SCE (Centralized SCE pattern)
levels. The pattern templates have been modelled using UML 2.2 activity models (cf. Figs. 3.2, 3.4 and 3.6).
The corresponding conceptual models of these patterns are provided in cf. Figs. 3.1, 3.3 and 3.5.

3.2.1. Autonomic SC Pattern. The Autonomic SC pattern is characterized by the presence of an
explicit, external feedback loop to direct the behaviour of the managed element (cf. Figs. 3.1 and 3.2). The
managed element has sensors, effectors and a representation of SOTA goals. The SOTA utilities are enforced
in the managers. An autonomic manager (AM) handles the adaptation of the managed element.

In general, an SC and its manager model the following feedback loop behaviour [1]. The sensors in the
SC capture event sensor data. This is then collected by the monitor phase of the manager, which filters and
accumulates the event data. The event data is stored in the knowledge base component of the loop, which also
stores predicate rules for the SOTA utilities. Then, the analyse phase of the loop gathers the event signals and
utilities from the knowledge base component of the loop and interprets against the patterns. The result of this
interpretation (event symptoms) is stored in the knowledge base component of the loop. The plan phase of
the loop obtains event symptoms and interprets them. If the awareness level is not satisfied then it triggers
and devises a plan to execute awareness change. To achieve this, the execute phase of the loop notifies the SC
effector which adapts the required awareness level inside the SC accordingly.



ENGINEERING& IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS BASED ON FEEDBACK LOOPS295

Fig. 3.2. Autonomic SC pattern (continued): UML pattern template model.



296 D. B. ABEYWICKRAMA, N. HOCH AND F. ZAMBONELLI

Managed Element SC1

EffectorsSensors SOTA
Goals

UML Action
Language, 

Guard conditions
Goal Pre &

Postconditions

Monitor

Plan

Execute

Analyze

SOTA 
Dimension S

Feedback
Loop #1

symptom >

request for
change >

change
plan >

Intra-loop
coordination

1

Monitor

Plan

Execute

Analyze

SOTA 
Dimension S

Feedback
Loop #2

symptom >

request for
change >

change
plan >

Intra-loop
coordination

2

requires >

requires > AM1
requires >

Inter-loop coordination: 
stigmergy/hierarchy/
direct interaction

AM2

Knowledge

Knowledge

Legend

composition

feedback loop for
AM

Fig. 3.3. Parallel AMs pattern: Conceptual model.

3.2.2. Parallel AMs SC Pattern. The Parallel AMs SC pattern is an extension of the Autonomic

SC pattern [13]. Here, several AMs can be associated with the managed element, each closing a feedback loop
devoted to controlling a specific adaptation aspect of the system (cf. Figs. 3.3 and 3.4). Adding different
levels of AMs increases the autonomicity, and these extra AMs work in parallel to manage the adaptation of the
managed element. For instance, let us consider that we have two feedback loops with an AM in each loop to
handle adaptation in two SOTA dimensions. These loops can interact with each other using hierarchy, stigmergy
or direct interaction, and here we can identify an inter-loop coordination where MAPE-K computations of the
loops coordinate with each other. Also, an intra-loop can be identified between the Analyse and Knowledge
components of an AM to allow the coordination of adaptation between these two phases.

3.2.3. Centralized SCE Pattern. The Centralized SCE pattern is characterized by a global feedback
loop, which manages a higher-level adaptation of behaviour of multiple autonomic components (cf. Figs. 3.5
and 3.6) [1]. The adaptation in the Centralized SCE pattern is handled by a super AM which is a high-level
AM. Like an AM, a super AM has the MAPE-K adaptation model. This is while the single SCs are able to
self-adapt their individual behaviour using their own external feedback loops. The feedback loops in this pattern
can interact using hierarchy, stigmergy or direct interaction.

3.3. Java Templates for the Patterns. We provide a set of domain-independent templates in Java for
the key SOTA patterns [1]. These domain-independent templates can be used as examples by the developer
when implementing the patterns in their domains. An alternative solution can be to provide a reusable library
for the key SOTA patterns. However, it is impractical to generalize programming patterns such that they could
be reused across different complex systems based on feedback loops.

We have used the Fork/Join framework of Java SE 7 to implement the SOTA patterns that have autonomic
SCs as the constituent SCs. The implementation of SOTA patterns that have other types of SCs as constituent
SCs (e.g. primitive SCs and proactive SCs) is currently work in progress. In SOTA, goals represent the
eventual state of the affairs that a system or component has to achieve [2]. On the other hand, utilities are
constraints on the trajectory or execution path that a system should try to respect while achieving the goals.



ENGINEERING& IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS BASED ON FEEDBACK LOOPS297

F
ig
.
3
.4
.
P
a
ra
llel

A
M
s
pa

ttern
(co

n
tin

u
ed
):

U
M
L

pa
ttern

tem
p
la
te

m
od

el.



298 D. B. ABEYWICKRAMA, N. HOCH AND F. ZAMBONELLI

Legend

composition

feedback loop for
AM 
feedback loop for
Super AM

Global
Feedback

Loop

Super AM1

Monitor

Plan

Execute

Analyze
symptom >

request for
change >

change
plan >

Intra-loop
coordination

Managed Element SC2
(black box component)

Knowledge

Managed Element SC1
(black box component)

AM1 AM2

requires >

requires >

(black box component) (black box component)

Fig. 3.5. Centralized SCE pattern: Conceptual model.

In the SOTA patterns that have autonomic SCs as the constituent SCs, the goals are performed by the SCs
while utilities are handled by their respective autonomic managers. This design principle maps and corresponds
well to the Fork/Join Framework of the Java SE 7, which has introduced the notion of parallelism. Using the
Fork/Join framework, an SC delegates its awareness and adaptation handling activities (utilities) to its AMs.
Utilities are enforced parallel to the execution of an entity in the SOTA space.

Each Java template (e.g. cf. Figs. 3.7 and 3.8) maps well to their corresponding UML design templates
discussed previously. In all the templates, in general, an AM or a super AM has methods to handle the mon-
itor, analyse, plan and execute phases of the feedback loops (e.g., monitor(), analyse(), plan(), execute()
methods in cf. Fig. 3.7). HashMaps have been created to deal with the knowledge base elements of the loops
(e.g. a HashMap called am1EventSignals to store event signals in the Knowledge base). On the other hand, in
the SCs, the preconditions and the postconditions of the SOTA goals have been implemented as predicate rules.
Also, an SC has methods to handle the behaviour of its sensors and effectors. As for the interactions, the AMs
can implement behaviour for intra-loops, for example, the analyse method handling the analyse phase of the
loop queries and stores data in the HashMaps, simulating an intra-loop behaviour. Meanwhile, the behaviour
for inter-loops (i.e. stigmergy, hierarchy and direct interaction) have been implemented as method calls. Stig-
mergy has been implemented implicitly where two AMs communicate with each other through the SC they are
connected with (e.g. Parallel AMs SC pattern).

For example, the Java template for the Parallel AMs SC pattern (cf. Fig. 3.7) has two AM classes
associated with a single SC class, each closing a feedback loop controlling a specific adaptation aspect of the
system. On the other hand, the template provided for the Centralized SCE pattern (cf. Fig. 3.8) has two
SC classes and a super AM class. Out of these patterns, the Autonomic SC and Parallel AMs SC patterns
exhibit a decentralized feedback loop approach, while the Centralized SCE pattern demonstrates a centralized
feedback loop approach.

4. Case Study Scenario. This section describes the e-mobility case study problem used to derive
platform-specific models in the pattern engineering and implementation process. The case study problem
addresses the SOTA model’s self-awareness and self-adaptation mechanisms.

The case study scenario concerns individual planning and mobility for a single user and a privately owned
vehicle. Let us consider a situation where a user intends to travel to an appointment at a particular destination
(cf. Fig. 4.1, top) [9]. First, the user drives the electric vehicle (e-vehicle) to the car park, then parks the car
and walks to the meeting location. During the walking and meeting times, the e-vehicle can be recharged. Here,
the main SCs are the user or driver, the e-vehicle, and the parking lots and charging stations (infrastructure). A
main SCE in this scenarios is the temporal orchestration of the user, the e-vehicle, a parking lot and a charging



ENGINEERING& IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS BASED ON FEEDBACK LOOPS299

Fig. 3.6. Centralized SCE pattern (continued): UML pattern template model.

station assigned at trip start (User-E-Vehicle-Assigned-Infrastructure SCE, cf. Fig. 4.1).

The e-mobility case study problem is well suited to be solved using appropriate self-awareness and self-
adaptation mechanisms (e.g. the SOTA model) for the following reasons [4]:

(i) The case study problem involves a significant number of SCs. Therefore, relying only on centralized
solutions becomes non-feasible and providing for decentralized solutions to handle localized decision making is



300 D. B. ABEYWICKRAMA, N. HOCH AND F. ZAMBONELLI

Fig. 3.7. Java pattern template models: Parallel AMs SC pattern.

important.
(ii) This problem deals with several awareness dimensions that need to be handled by the complex SCs,

e.g. e-vehicle SC: time, energy, location; user SC: user preferences (climate comfort, driving style), time, cost;
parking lots and charging stations SCs: availability.

(iii) Each SC has access only to partial information or partial view of the environment (e.g. during the
trip, the e-vehicle is not aware of the availability of its assigned parking lot). Therefore, the individual SCs
need strategies to adapt at run-time as more information becomes available to them.

(iv) Each SC and SCE is involved in significant levels of uncertainty or contingency situations (system
or environmental changes) requiring self-adaptive actions. These can be (1) e-vehicle SC: the unavailability of
a parking lot; the planned event deadline is missed (the e-vehicle could not reach the destination at the time
required or with the energy planned); the user overrides the plan; (2) user SC: the shifting of an appointment;



ENGINEERING& IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS BASED ON FEEDBACK LOOPS301

Fig. 3.8. Java pattern template models (continued): Centralized SCE pattern.

and (3) parking lot and charging station SCs: the e-vehicle does not arrive at the booked time or it leaves earlier
or later; charging is not initiated at the foreseen time and draws unforeseen amounts of power.



302 D. B. ABEYWICKRAMA, N. HOCH AND F. ZAMBONELLI

User-E-Vehicle-Assigned-Infrastructure SCE

Sensors

Effectors

User SC
E-Vehicle SC

AM -- State of Charge

Sensors

Effectors
SOTA
Goals

AM -- Driving Styles

Super AM -- Routing

SOTA
Goals

AM -- Climate Comfort

Super AM -- User Prefs.

Temporal sequence of mobility events

User SC
E-Vehicle SC

t
Charge

Walk Appointment Walk

Charge Park

Drive Drive

Legend

Feedback loop for AM 
Feedback loop for Super AM
SCE (Ensemble)  

 

n, m, 1 Multiplicities of the associated SCs

1 1
1

1

1

1

1

MAPE-K

MAPE-K

MAPE-K

MAPE-K

MAPE-K

Sensors

Effectors

SOTA
Goals

AM -- Availability

Assigned
Charging St.SC

Sensors

Effectors
SOTA
Goals

AM -- Availability

Assigned
Parking Lot SC

Super AM -- Availability of
Assigned Infrastructure

1

1 1

1 1

1

MAPE-K MAPE-K

MAPE-K

1

1

Fig. 4.1. SOTA patterns applied to the e-mobility scenario.

4.1. Case Study Scenario and Automation with SOTA. In the SOTA model, the SCs are conceptu-
ally modelled as entities moving and executing in the space, and these entities can have goals and utilities that
describe how such goals can be achieved at an individual or a global level. Each SC and SCE of the mobility
scenario can be described using the SOTA goals and utilities, the awareness being monitored for each managed
element, and the self-adaptive behaviour using SOTA feedback loops as a response to any contingencies that
may occur.

For example, let us consider the e-vehicle SC, which is the central SC within the mobility scenario. It
interfaces with both the user and the infrastructure SCs during driving, and with the infrastructure SCs only
during parking or walking. The goal of the e-vehicle is to reach the destination with the planned energy and
at the planned time. A utility can be the constraint that the battery charge should not reach low until the e-
vehicle reaches its destination. The monitored awareness dimensions are, among others, the state of the battery
charge, temperature (for climate comfort requirements of the user), acceleration and velocity (for driving style
requirements), and current location of the vehicle.

As shown in cf. Fig. 4.1, in order to handle the adaptation of a managed element, we can provide separate
AMs (Autonomic SC pattern - Sect. 3.2.1) for each SOTA awareness dimension. The e-vehicle SC has three



ENGINEERING& IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS BASED ON FEEDBACK LOOPS303

AMs defined to handle the adaptation of the battery state of charge, climate comfort and driving style require-
ments of the user. Such separate AMs here provides an instance of the Parallel AMs SC pattern described
in Sect. 3.2.2. Also, any self-adaptive behaviour on routing needs to be handled at the SCE level, as these
actions are applicable to both the user and the e-vehicle SCs. Thus, a super AM has been defined to handle
the adaptation of routing (Centralized SCE pattern). The parking lot SCs and charging station SCs need
to be aware of their availability. To handle possible contingency situations, two separate AMs (Autonomic SC

pattern) can be defined to manage the availability of the two assigned infrastructure SCs, and a super AM can
be provided to handle the adaptation of both SCs (Centralized SCE pattern).

As seen here, it is clear that there are a number of SCs, SCEs, AMs and super AMs closing multiple,
interacting feedback loops. These feedback loops, which SOTA uses as mechanisms to express self-awareness
and self-adaptation, can be organized using several architectural patterns. Therefore, a key goal of our work
is to provide engineering and implementation support to the software engineer in order to easily grasp this
complex setup.

5. Domain-Specific Pattern Models. The domain-specific pattern models created at the platform-
independent UML and platform-specific Java levels for the case study scenario are discussed in this section.
Model transformations have been employed as a bridge to enforce correct separation of concerns between these
two design abstraction levels.

5.1. Platform-Independent Pattern Models. We have used the simulation plug-in component of the
integrated SimSOTA tool to instantiate the UML pattern template models for the e-mobility case study. UML
2.2 activity models have been used as the primary notation to model the behaviour of feedback loops. In a
feedback loop, the actions are not necessarily performed sequentially. An iterative process allows the revision
of certain decisions if required, and therefore activity diagrams are effective to design the feedback loops. The
plug-in also facilitates the simulation of feedback loops in other UML 2.2 diagrams, such as composite structure
and sequence diagram models [4].

We now briefly describe the domain specific, platform-independent models realized using SimSOTA to
simulate a number of feedback loop structures in the User-E-Vehicle-Assigned-Infrastructure SCE of the e-
mobility scenario (cf. Fig. 4.1). Note that due to space considerations, the activity model provided in cf. Fig. 5.1
is a subset of the User-E-Vehicle-Assigned-Infrastructure SCE. Here, we particularly describe the instantiation
of three key SOTA patterns - Autonomic SC pattern, Parallel AMs SC pattern, and Centralized SCE

pattern.
There are several managed elements or SCs: the e-vehicle (SC EVehicle; cf. Fig. 5.1, top-center), the user

(SC User) and the assigned parking lot (SC ParkingLotAssigned). Each managed element (e.g. e-vehicle SC)
has an activity-based UML model to represent SOTA goals (e.g. reach destination) which can be characterized
in terms of a precondition (e.g. whether the assigned parking lot is available) and a postcondition (e.g. actual
reaching of the destination within the state of battery charge and time). The preconditions and postconditions
of the SOTA goals are modelled using UML Action Language and guard conditions. The utilities for the e-
vehicle SC are constraints on the state of the battery charge, climate comfort, driving style (acceleration and
velocity), and routing requirements until the e-vehicle reaches its destination. The utilities are modelled in the
managers.

5.1.1. Decentralized and Centralized Feedback Loops and Interactions. The SimSOTA simulation
plug-in integrates both decentralized and centralized feedback control loop techniques to handle the adaptation
of the managed elements. In this example, the decentralized feedback loop behaviour is provided by the
Autonomic SC pattern and Parallel AMs SC pattern. Here, the SC EVehicle and the AM on battery charge
(AM EV SoC) form an instance of the Autonomic SC pattern. The Sensor components in SC EVehicle form
concurrent activities for measuring the battery charge, temperature (for climate comfort), location (for routing),
acceleration and velocity (for driving style) inside the e-vehicle, respectively (cf. Fig. 5.1, top-center). These
concurrent activities close several decentralized feedback loops in the AMs which interact using stigmergy
and act on its shared subsystem. On the other hand, the SC EVehicle and the two AMs on battery charge
(AM EV SoC) and climate comfort (AM EV ClimateComfort) form an instance of the Parallel AMs SC pattern

(cf. Fig. 5.1).



304 D. B. ABEYWICKRAMA, N. HOCH AND F. ZAMBONELLI

F
ig
.
5
.1
.
P
a
ttern

s
sim

u
la
ted

a
s
a
n
a
ctivity

m
od

el
fo
r
a
n
e-m

o
bility

scen
a
rio

.



ENGINEERING& IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS BASED ON FEEDBACK LOOPS305

The super AM defined for managing the adaptation of routing (SAM EVUser Routing; cf. Fig. 5.1, bottom-
center) closes a separate, centralized (global) feedback loop. The super AM deals with both the user and
the e-vehicle SCs. This instantiates the Centralized SCE pattern. The SAM EVUser Routing deals with
contingency situations if the e-vehicle misses its deadline. Refer to [4] for more details on the domain-specific,
platform-independent models (and interactions) derived in the example.

5.2. Transformations. Model transformations have been used in the current study to automate the gen-
eration of Java-based implementation code for the complex patterns [1]. We have initially applied model-to-text
Java Emitter Template (JET) transformation to transform the UML activity model-based SOTA patterns into
textual Java. JET is an open-source technology developed by IBM and are typically used in the implementa-
tion of a code generator [7]. Here, the transformation contains XPath expressions to navigate the UML activity
models created for the patterns and extract model information dynamically to the transformation. However, as
JET’s support for UML models has several limitations, we have used a more effective method to transform the
UML activity diagram-based SOTA patterns into textual Java.

This multi-stage transformation chain describes an effective pipeline of model-to-model and model-to-text
JET transformations. In this solution, first a model-to-model mapping transformation was created which
extracts relevant information from the UML activity model elements and stereotypes, and then a code generator
specific EMF intermediate model was built which contains only information required for the back-end model-
to-text JET transformation. The front-end model-to-model transformation automatically invokes the back-end
JET transformation.

5.3. Platform-Specific Pattern Models. The transformations generated Java files for the SOTA pat-
terns in e-mobility can be elaborated by the engineer to derive a complete implementation for the patterns. For
this, the engineer can use as examples the set of domain-independent Java templates discussed in Sect. 3.3. In
this study, we have instantiated these templates to implement the behaviour of the SCs and managers involved
in the e-mobility case study scenario. To this end, we have implemented several self-adaptation scenarios. For
example, (1) the e-vehicle’s energy level is inadequate to follow the plan. This is managed by the AM class
defined for state of charge on the vehicle SC class; (2) the e-vehicle’s climate comfort level is not satisfied, which
is handled by the AM class specified to handle climate comfort for the vehicle; (3) the driving style requirements
(velocity, acceleration) are not satisfied by the e-vehicle for the user. This is managed by the AM class defined
for driving style; (4) the e-vehicle has missed (or is going to miss) a deadline of a planned event. This is managed
by the super AM class defined for routing; (5) the user preferences are not satisfied. This is handled by the
super AM for user preferences; (6) the e-vehicle does not arrive at the booked time. This is handled by the AM
for parking lot availability; (7) the e-vehicle leaves earlier/later than booked time. This is handled by the AM
class defined for parking lot availability.

In this manner, we have implemented and validated the SOTA patterns in the e-mobility case study. This
shows that the patterns can be simulated and implemented effectively and that they can be effectively applied
to a case study.

5.3.1. SimSOTA Installation and Usage. The distribution scheme that will be adopted for SimSOTA
relies on the Eclipse platform feature export. The entire SimSOTA tool can then be downloaded using the
standard Eclipse update site mechanism. An update site is a mechanism for finding and installing features. In
order to export the plug-ins in the SimSOTA tool, first, a feature project that references the plug-ins will be
created. Second, an update site will be created to distribute the feature created. Finally, the Eclipse Update
Manager can be used to scan update sites for the newly created feature for SimSOTA and install it. The
installed plug-ins can be executed in the IBM Rational Software Architect simulation environment. At this
moment, however, a packaged version of SimSOTA is not publicly available, due to its dependencies on the
non-free IBM Rational Software Architect simulation environment.

6. Discussion and Related Work. Our approach and SimSOTA plug-in offers several benefits in the
domain of self-adaptive architectural patterns engineering and implementation. SimSOTA is an integrated
eclipse plug-in with several plug-ins grouped together, i.e. a simulation plug-in and transformation plug-ins.
The idea is to provide an integrated environment for the architect to engineer and implement SOTA patterns in
their respective domains. A key goal of SimSOTA simulation plug-in is to facilitate the engineering (modelling,



306 D. B. ABEYWICKRAMA, N. HOCH AND F. ZAMBONELLI

simulating and validating) of complex self-adaptive systems based on feedback loops. This is to facilitate
general-purpose and application-independent instantiation of models for complex systems based on feedback
loops. To achieve this, as described in the paper, we have provided a set of pattern templates (UML and Java)
for all the key SOTA patterns in the catalogue. The SimSOTA plug-in can also be used to simulate and animate
the patterns to better understand their complex and dynamic model behaviour. Also, the feedback loop models
and their interplay can be validated to detect errors early and to check whether the specified behaviour works
as intended. The transformation plug-ins of the integrated SimSOTA tool facilitate the automatic generation of
implementation code in Java for the patterns. The use of transformations is beneficial here as it acts as a bridge
to enforce correct separation of concerns between two design abstractions, i.e. UML-based patterns and their
Java implementations. Other benefits include improving the quality and productivity of patterns development,
and easing system maintenance and evolution for the patterns engineer.

Furthermore, our model-driven engineering approach integrates both decentralized and centralized feedback
loop techniques in order to exploit their benefits. Centralized approaches allow global behaviour control, but they
contain a single point of failure and suffer from scalability issues. Meanwhile, decentralized approaches do not
require any a priori knowledge, nor do they contain a single point of failure. The integration of these approaches
was evident with the use of a collection of architectural patterns at both SC (decentralized - e.g. Autonomic

SC pattern and Parallel AMs SC pattern) and SCE (centralized - e.g. Centralized SCE pattern) levels.

There are several works in the literature that are related to the current research as presented next. Several
authors (e.g. [12, 8, 15, 14, 16, 11, 20]) have emphasized the need to make feedback loops first-class entities
in self-adaptive systems. Muller, Pezze and Shaw [12] discuss an approach to increase the visibility of control
loops to support their continuous evolution. They highlight the need for multiple control loops in an adaptive
ultra large-scale system, and stress the need for refining the loops into reference models and design patterns.
Although these ideas have been discussed at the conceptual level, no implementation or validation of the work
using techniques such as simulations has been reported [12].

Vromant et al. [15] describe an implementation framework that extends IBM’s MAPE-K model with support
for two types of adaptation coordination: intra-loop and inter-loop. While their work is comprehensive in
coordinating and integrating multiple control loops, the MAPE-K loops used do not support an integration of
centralized and decentralized adaptation coordination as provided in our work.

To manage the complexity of internet applications, the authors in [14] propose a set of weakly interacting
(i.e. stigmergy, hierarchy and direct interaction) feedback structures where each structure consists of a set of
feedback loops to maintain one system property. As in our work, in [16] a feedback loop has been represented
as a flow of information and actions, and UML activity diagrams have been used as notation. However, unlike
our approach, both [14] and [16] have not provided detailed individual steps of the adaptation process nor have
they provided tool support for modelling, simulation and validation of the feedback loop models.

Vogel and Giese [20] establish a domain-specific modelling language for run-time models called megamodels
and an interpreter to execute them. Using the modelling language, single and multiple feedback loops and their
interplay can be explicitly specified in the megamodels. Like our approach, their work has considered detailed
individual adaptation steps like monitoring, analysis, planning and execution. Also, their modelling language
is similar to the UML activities used in our work with respect to modelling flows of actions or operations.
However, the authors have not considered any validation of the simulated feedback loop models in [20].

Compared to previous approaches to the engineering and implementation of self-adaptive systems using
feedback loops, to the best of our knowledge, there is very little implementation or tool support to address the
needs of software architects. The present work aims to contribute to this end.

7. Conclusions and Future Work. In this paper, we presented SimSOTA, which is an integrated Eclipse
plug-in tool we have developed to engineer and implement self-adaptive systems based on our feedback loop-
based approach. SimSOTA facilitates both modelling and simulating of complex patterns, and the generation
of Java-based implementation code for the patterns using transformations. The approach integrates both
decentralized and centralized feedback loop techniques in order to exploit their associated benefits. The approach
and plug-in have been validated and assessed using a case study in cooperative electric vehicles.

As part of our future work, we will exploit the results of our simulation and implementation experiences to
produce effective software engineering guidelines to facilitate the development of self-adaptive application with



ENGINEERING& IMPLEMENTING SOFTWARE ARCHITECTURAL PATTERNS BASED ON FEEDBACK LOOPS307

SimSOTA. Second, we plan to integrate the SOTA patterns defined at the conceptual, UML and Java levels
with the rest of the e-mobility framework for further validation. Finally, we plan to assess SimSOTA in the
context of different application areas, namely swarm robotics systems and distributed cloud systems.

Acknowledgments. This work is supported by the ASCENS project (EU FP7-FET, Contract No.257414).

REFERENCES

[1] D. B. Abeywickrama, N. Hoch, and F. Zambonelli, An integrated Eclipse plug-in for engineering and implementing
self-adaptive systems, Proceedings of the IEEE 23rd International WETICE Conference, IEEE (2014), pp. 3–8.

[2] D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli, SOTA: Towards a general model for self-adaptive systems, Pro-
ceedings of the IEEE 21st International WETICE Conference, IEEE (2012), pp. 48–53.

[3] D. B. Abeywickrama, and F. Zambonelli, Model checking goal-oriented requirements for self-adaptive systems, Proceedings
of the IEEE 19th International Conference and Workshops on Engineering of Computer Based Systems (ECBS), IEEE
(2012), pp. 33–42.

[4] D. B. Abeywickrama, N. Hoch, and F. Zambonelli, SimSOTA: Engineering and simulating feedback loops for self-adaptive
systems, Proceedings of the 6th International C* Conference on Computer Science & Software Engineering (C3S2E’13),
ACM (2013), pp. 139–144.

[5] D. B. Abeywickrama, F. Zambonelli, and N. Hoch, Towards simulating architectural patterns for self-aware and self-
adaptive systems, Proceedings of the 2nd Awareness Workshop co-located with the SASO’12 Conference, IEEE (2012),
pp. 133–138.

[6] G. Cabri, M. Puviani, and F. Zambonelli, Towards a taxonomy of adaptive agent-based collaboration patterns for auto-
nomic service ensembles, Proceedings of the International Conference on Collaboration Technologies and Systems, IEEE
(2011), pp. 508–515.

[7] J. DeCarlo, L. Ackerman, P. Elder, C. Busch, A. Lopez-Mancisidor, J. Kimura, and R. S. Balaji, Strategic Reuse
with Asset-Based Development, IBM Corporation, Riverton, New Jersey, USA (2008).

[8] R. Hebig, H. Giese, and B. Becker, Making control loops explicit when architecting self-adaptive systems, Proceedings of
the 2nd International Workshop on Self-Organizing Architectures, ACM (2010), pp. 21–28.

[9] N. Hoch, K. Zemmer, B. Werther, and R. Y. Siegwart, Electric vehicle travel optimization—customer satisfaction despite
resource constraints, Proceedings of the 4th Intelligent Vehicles Symposium, IEEE (2012), pp. 172–177.

[10] J. O. Kephart and D. M. Chess, The vision of autonomic computing, IEEE Computer (2003), 36(1):41–50.
[11] M. Luckey, B. Nagel, C. Gerth, and G. Engels, Adapt cases: extending use cases for adaptive systems, Proceedings of

the 6th International SEAMS Symposium, ACM (2011), pp. 30–39.
[12] H. Müller, M. Pezzè, and M. Shaw, Visibility of control in adaptive systems, Proceedings of the 2nd International Workshop

on Ultra-large-scale Software-intensive Systems, ACM (2008), pp. 23–26.
[13] M. Puviani, G. Cabri, and F. Zambonelli, A taxonomy of architectural patterns for self-adaptive systems, Proceedings of

the 6th International C* Conference on Computer Science & Software Engineering (C3S2E’13), ACM (2013), pp. 77–85.
[14] P. Van Roy, S. Haridi, and A. Reinefeld, Designing robust and adaptive distributed systems with weakly interacting

feedback structures, Technical report, ICTEAM Institute, Universit catholique de Louvain (2011).
[15] P. Vromant, D. Weyns, S. Malek, and J. Andersson, On interacting control loops in self-adaptive systems, Proceedings

of the 6th International SEAMS Symposium, ACM (2011), pp. 202–207.
[16] T. De Wolf and T. Holvoet, Using UML 2 activity diagrams to design information flows and feedback-loops in self-

organising emergent systems, In T. De Wolf, F. Saffre, and R. Anthony, editors, Proceedings of the 2nd International
Workshop on Engineering Emergence in Decentralised Autonomic Systems (2007), pp. 52–61.

[17] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, et al, Software engineering for self-adaptive systems: A
research roadmap, Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, Springer-Verlag (2009), pp. 1–
26.

[18] E. Clayberg and D. Rubel, Eclipse Plug-ins, Addison-Wesley Professional, 3 edition, 2008.
[19] T. Haupt, Towards mediation-based self-healing of data-driven business processes, Proceedings of the 7th International

SEAMS Symposium, IEEE/ACM (2012), pp. 139–144.
[20] T. Vogel and H. Giese, A language for feedback loops in self-adaptive systems: Executable runtime megamodels, Proceedings

of the 7th International SEAMS Symposium, IEEE/ACM (2012), pp. 129–138.
[21] J. Wuttke, Y. Brun, A. Gorla, and J. Ramaswamy, Traffic routing for evaluating self-adaptation, Proceedings of the 7th

International SEAMS Symposium, IEEE/ACM (2012), pp. 27–32.

Edited by: Giacomo Cabri
Received: September 15, 2014
Accepted: January 5, 2015





Scalable Computing: Practice and Experience
Volume 15, Number 4, pp. 309–329. http://www.scpe.org

DOI 10.12694/scpe.v15i4.1053
ISSN 1895-1767
c⃝ 2014 SCPE

SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION

CLAUDIO GARGIULO∗, DELFINA MALANDRINO†, DONATO PIROZZI‡, AND VITTORIO SCARANO§

Abstract.
This paper introduces Floasys, a Web-based platform to foster the collaboration among engineers involved in Computational

Fluid Dynamics (CFD) simulations. The platform has been designed around the simulation data, i.e., fostering and stimulating
sharing, re-use and aggregation of models, simulation results and engineers annotations. Floasys requirements come directly from
an extensive requirements study that we conducted with two different teams in Automobiles (FCA), geographically distributed,
who daily perform an intense activity of CFD simulations to design vehicle products. Collaborative requirements were gathered
through stakeholders’ interviews and a user survey. We describe, first, Functional and Non-Functional requirements as suggested by
relevant literature (both in scientific and industrial setting) and by the user survey performed within FCA teams. Then, we show
Floasys functionalities and its architecture, that is based on a centrally managed repository of simulation data. By enriching the
repository with metadata annotations, Floasys provides all the desired functionalities to allow CFD analysts an easy and immediate
access to simulation data and results performed within the teams so that they can leverage them to make the right design decisions.

In this paper, we were able to (1) identify key collaborative requirements for CFD design, (2) address each of them with
an integrated, extensible and modular architecture, (3) implement a working industrial prototype (currently under testing and
evaluation in a real setting like FCA), and (4) identify the possible extensions to different contexts (like aeronautic, rail and naval
sectors).

Key words: Data sharing, model sharing, collaboration, simulation survey, CFD simulators integration, Web-based simulation,
simulation tagging, simulation search, simulation data version control.

AMS subject classifications. 68U20

1. Introduction. Nowadays, SMEs and large industries extensively use simulations to design new prod-
ucts. Products became even more complex, they integrate many components (e.g., more than 20000 separate
components for automotive product [1]) and are available to customers in many configurations. To manage this
complexity, to get “a better insight into product behaviour” [2], and to reduce costs for prototypes [3], industries
use different types of computer simulations [3] to simulate and analyse the products behaviour. One type of
simulation is Computational Fluid Dynamics (CFD) used to investigate the physical product behaviour, such as
external aerodynamics, underhood cooling, air conditioning and so on. In addition, SMEs and large industries
have many locations, therefore, both co-located and geographically distributed engineers need to collaborate
together, share simulation models, know-how, best practices and other important information.

This paper introduces Floasys, a Web-based platform designed to support simulation data, knowledge and
result sharing among CFD analysts in Fiat Chrysler Automobiles (FCA). The goal is to promote the sharing
of simulation models and results to foster their reuse among engineers. This work introduces, analyses
and discusses Functional and Non-Functional collaborative requirements (Section 2) as suggested by relevant
literature (both in scientific and industrial setting) and by results of an extensive user survey performed within
FCA teams. The collaborative requirements are: simulation data centralisation, metadata over simulation data,
search facility, version control over data and data sharing. Functional and Non-Functional requirements led
the design of Floasys’ architecture and its functionalities. Floasys collects and centralises simulation data over
time. Simulation data are collected from multiple simulators and are stored in open format (e.g., XML). Floasys
provides additional services over collected simulation data. It provides a Search tool that is independent by the
specific simulator. It is very useful to get simulations performed by different engineers to compare performance
about multiple design revisions. In addition, it allows the data sharing through URLs exchange. The Floasys
target customers are industries who use CFD simulators to design their products. From architectural point of
view, Floasys meets the extensibility and modularity Non-Functional requirements since it can be tailored to
customer needs, accommodate future needs and used in many departments. Although this work concerns an
automotive use case, issues that we are facing within this sector seems to be very common issues also in other

∗R&D - Aerothermal CFD, FIAT Chrysler Automobiles, Italy, claudio.gargiulo@fiat.com
†ISISLab, Dipartimento di Informatica, Università di Salerno, Italy, delmal@dia.unisa.it
‡ISISLab, Dipartimento di Informatica, Università di Salerno, Italy, dpirozzi@unisa.it
§ISISLab, Dipartimento di Informatica, Università di Salerno, Italy, vitsca@dia.unisa.it

309



310 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

sectors as highlighted in [2, 4], especially for the list of gathered requirements. Therefore, we believe that many
of our considerations and design decisions could be adopted also for other type of simulations and in other
contexts (i.e., aeronautic, rail and naval sectors).

The paper is organized as follows. Section 2 briefly introduces the use case study and outlines who are
the stakeholders. The aim is to provide an overview about the context and its internal organization. Then, it
analyses the collaborative Functional and Non-Functional requirements. Section 3 introduces the Floasys proto-
type with its functionalities. Section 4 discusses the Floasys architecture design decisions to meet stakeholders’
requirements. Through the paper, we track and map the collaborative requirements with the solution ideas
and the specific implementation technologies (i.e., libraries) used to develop the Floasys architecture. Section 6
concludes the paper and discusses possible future works.

2. Collaborative Requirements. This section analyses the key collaborative Functional and Non-Func-
tional requirements to design a platform to foster the collaboration among industrial simulation practitioners
and promote the sharing of models, results, and know-how. These requirements come from a relevant literature
study and an extensive requirements elicitation activity performed through observations, stakeholders interviews
and a user survey (Appendix A).

Fiat Chrysler Automobiles (FCA), as many other large industries, is organised in multiple geographically
distributed teams that collaborate together. Through our survey analysis, we get that all analysts collaborate at
least with another engineer in the same office and more than half analysts collaborate with at least one engineer
who works in another location. They collaborate together sharing file geometries (CAD files), simulations and
documents (e.g., slides, spreadsheets).

Fig. 2.1. Geographically distributed teams that collaborate together in asynchronous way.

Large industries have multiple locations around the world and are internally organized in multiple structures
of different types. One type of structure is the functional area. Functional areas have technical know-how
about a specific sector (i.e., engineering, cost engineering, marketing, commercial). Specifically, engineering
functional areas perform tasks to design products and constantly invest in Research and Development (R&D)
to improve their know-how and to be ready to provide innovative design solutions. The Computational Fluid
Dynamics (CFD) unit is the engineering functional area with highly skilled engineers, called CFD analysts,
who perform numerical computer simulations to analyse problems that involve fluid flow and other related
physical phenomena, such as aerodynamic, aerothermal and aeroacoustic automotive product behaviour. CFD
is widely adopted in many industrial sectors, such as automotive, aerospace, high-tech and chemical sectors.
CFD analysts perform simulations following the CFD Workflow [5] that is iterative and consists of three phases:
(1) pre-processing to prepare simulation, (2) solving and (3) post-processing to analyse results. The CFD unit



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 311

and the CFD Workflow are our use cases. In each CFD unit, there are analysts and a technical manager who
is responsible for the internal team organisation, resources monitoring and their allocations.

In a large industry, many CFD units collaborate together (Fig. 2.1). The collaboration is among geo-
graphically distributed CFD units and, among CFD units and other industrial teams, such as the product style
designers and the performance engineers. In order to design an automotive product many engineers collaborate
together. Especially, to perform aerodynamics/aerothermal analyses, CFD analysts, automotive designers, and
performance engineers collaborate together.

The prerequisite to enable the collaboration among analysts is the simulation data centralisation.
Industries perform many simulations per year, therefore, in order to foster the model reuse and promote
the data sharing, it is fundamental how easy it is to retrieve the needed data stored in multiple repositories
with different formats (often in closed file format). In order to improve data retrieval, users aim to annotate
simulation files with additional metadata over data, such as free tags or structured data, and to have a search
tool able to get desired data. Search tools should support at least the search through files’ names, annotated
metadata and simulations’ contents. Simulation data version control is another desired feature. The aim
is to have a history of modifications made to simulations. It is a desired feature because the same simulation is
often performed changing only some parameters (e.g., inlet velocity).

Table 2.1
Stakeholders’ Collaborative Requirements.

Requirement Notes
Req. 1 Simulation Data centralisation
Req. 2 Metadata over simulation data Link metadata to simulations (e.g., free tags).
Req. 3 Search facility Search based on file names, file content and tags.
Req. 4 Version control over data
Req. 5 Data sharing
Req. 6 Integrate multiple simulators Avoid Vendor Lock-In
Req. 7 Extensibility and modularity
Req. 8 Do not change how engineers work

In order to gather the collaborative requirements (Table 2.1), we worked closely with a team of professionals
in Pomigliano D’Arco (Italy) who extensively use CFD simulations to design automotive products. We observed
their daily work annotating, collecting and analysing their tasks and workflows. We constantly discussed with
analysts and technical managers trying to get a deep understanding of their work and answer to our questions.
Requirements are refined through continuous iterations. FCA has multiple geographically distributed teams,
therefore in order to get the collaborative requirements directly from stakeholders, we issued an electronic
survey (shown in Appendix A) created with Google Forms1. The survey questions were divided in the following
main sections: participants’ experience, collaboration among engineers and data sharing, data centralisation
and data search, and simulation data versioning. The survey responders are seventeen FCA professionals half
from Pomigliano D’Arco (Naples, Italy) and half from Orbassano (Turin, Italy). Both groups design products
using Computational Fluid Dynamics simulations. Through the paper we sometimes differentiate the technical
managers and the analysts because they have different roles and requirements. Technical managers usually ask
management features, such as the opportunity to monitor resources, projects timeline and performance goals.
On the other hand, CFD analysts, who perform simulations, require engineering features (e.g., simulation
monitoring, automatic document generation). Of course, both roles aim to collaborate over centralised data
at different granularity. Floasys has been designed to also support engineering tasks, such as the simulation
convergence monitoring, engineering wizards to automate repetitive tasks, simulation templates and so on. In
this paper we mainly focus on the collaborative aspects overlooking the engineering Floasys’s features. An
important consideration is the impossibility to change how the employers actually work. Any architectural
software solution to meet the requirements shown in Table 2.1 must rely on existing internal procedures and
must not change them. During the requirement elicitation activity we also tried to understand the ways on
how a collaborative platform could be introduced and deployed over existing practices without hardly change

1http://www.google.com/google-d-s/createforms.html



312 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

how the engineers work but at same time improving their work. The following section will analyse each
requirement listed in Table 2.1.

2.1. Simulation Data Centralisation. In order to support collaboration among engineers (Fig. 2.1) they
must access to centrally available simulation data (Req. 1, Table 2.1). The idea is to collect data from different
sources over time (i.e., from different simulators) and store them in open format like XML. In this way, data
and results can be aggregated in different ways and can be compared within the same project or among different
projects. Performance engineers and technical managers need to work on aggregate data (e.g., statistical data,
trends about performances) whereas CFD analysts access to fine grain simulation data (e.g., model, simulation
case) and their results to perform comparison. Obviously, data aggregation is not feasible with classic shared
network folders that store data in a closed file format. Actually it is manually performed with continuous
copy-and-paste operations among simulators and documents. In according to Aberdeen Group’s whitepaper
“Getting Product Right the First Time with CFD” [2], in order to improve the company competitiveness, they
should centralise simulations results. Our aim is to centralise simulations and all their related data, such as the
3D geometries, simulation setup parameters and documents supporting their retrieval. In order to centralise
data and provide additional services over them, software designers should consider: file size, total number of
performed simulations and closed file format. In our use case, both geometries and simulations are very large
files. In the survey, we asked which are usually the geometries and the simulations file sizes (questions Q5 and
Q6 of the Survey shown in Appendix A). Figure 2.2a shows that the CAD file size is about one gigabyte in
the fifty percent of answers. The file geometry can also contain the surface mesh and/or the volume mesh,
explaining the differences of file size answers depicted in the chart of Figure 2.2a. Instead, the simulation file
size (Fig. 2.2b) is more than ten gigabyte in 80% of answers. Simulations are so large because they contain the
entire detailed vehicle geometry, the surface and the volume mesh as well as the physical/mathematical data to
describe the model.

Fig. 2.2. Geometries (question Q7) and simulations file size (question Q8).

An alternative idea to provide services like data search or results aggregation, is to use a rational database
to store simulation data, but considering file sizes and huge number of simulations we excluded it. In order to
solve simulations the original files can not be moved and must be stored in their original format on file system.
The use of a database leads to continuous transfers of data from the database to the file system and vice versa,
compromising performance and response time.

2.2. Provide Search Facility. The aim is to provide a search tool able to find data using simulation file
names, simulation content (e.g., its model, parameters, etc.) and metadata (e.g., tags). Simulators software
often store simulation data as binary files in a closed file format. In addition, the used CFD simulator does not
have an export functionality to an open format. Therefore, classical search tools are not useful to find simulation
files based on their content (files are in binary format). For instance, the Windows OS search utility can not
be used to search within the file content. To overcome this issue, users actually insert a lot of information
in the simulation file name that will be useful to find data the next time. As shown in Figure 2.3, the main



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 313

information inserted in the file name are (questions Q13-Q18): the project, the release, the revision number,
the engine model and the vehicle trimming. Users decide to put the most important information, regarding
their personal opinion, in the file name with the drawback to have very long file names. In addition, not all
information can be stored in the file name so a lot of data remain within the simulation closed file and can not
be used for next retrievals.

Fig. 2.3. Information inserted in the simulation file names (multiple choices question Q12).

More than half of analysts follow roughly some rules to store files in shared file system trying to follow them
over time. Here, the term “rules” mainly means how engineers give a name to a file and how they decide the
directories structures to improve the future simulation retrieval. Nevertheless these rules are mostly a personal
choice (82%), engineers add essentially the same information to file names because the analysed engineering
field is very specific. The limitation of this approach emerges when an engineer needs to search a simulation
performed by other employees, mostly because he can not use existing search tools (e.g., the Windows Search
tool) to search simulations based on the file content. An example of query is: “search all simulations performed
at inlet velocity X [km/h] that has the spoiler”. Unfortunately these data are not inserted in the file name
and remain inside the closed files. This also limits the aggregation of data at different levels based on specific
keywords and the relative results comparison of multiple different simulations to generate performance history
charts.

Fig. 2.4. Rules to store the files on shared network folder (questions Q11, Q13, Q14).

2.3. Provide Metadata over Simulation Data. Engineers use multiple simulators software, some of
them store data in closed file format. As stated in the previous section, the file content can not be used to
retrieve the files using the classical search tools such as using the Operating System find tool. Actually, to
overcome this issue, engineers insert a lot of information in the simulation file name such as project name,
revision and engine type (Fig. 2.3). Obviously, the file name can not host too many data, so other useful



314 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

data are not annotated with simulations (e.g., free comments, descriptions). To get this requirement through
interviews and the survey we asked whether the engineers desire to link other data to files (question Q15). All
analysts (100%) desire a system to link other information to the files, such as the file tagging.

2.4. Simulation Data Versioning. As reported in the Aberdeen Group market research [2], an action
to improve the company competitiveness is to provide version control over data. Our survey aims to further
investigate this need especially to understand its value for stakeholders. Version control means that users can
track modifications made to a simulation over time. It is interesting because engineers usually do not start
simulations from scratch but they copy an existing file changing some parameters. In addition, starting from
the same simulation file many other simulations can be performed just changing few parameters (e.g., the inlet
velocity). In according to our survey, more than 60% of participants declared that they do not have a tool to
track the simulations modifications. In addition more than 80% of participants said that the feature could be
useful.

Fig. 2.5. Version control (question Q20).

2.5. Support Data Sharing. CFD analysts need a mechanism to exchange references about data. On
Internet a common way to share resources is exchanging URLs. Hence, our idea is to univocally identify
simulation data with URLs and use them to share data among engineers. An important aspect of this technique
is “who can see what data”. Multiple industrial roles exists (Fig. 2.1), so an access control is important to
control the sharing of confidential data.

2.6. Simulator Independence and Integration of Multiple CFD Simulators. The previous re-
quirements must work independently by specific used simulators to generate data. For instance, tagging and
search functions must work on a repository of heterogeneous simulations coming from multiple simulators. This
requirement is very important because in the analysed context, analysts use multiple CFD software and actually
one single software can not be used to perform all simulation types. In our use case and large industries, there
are different teams that use different software to perform tasks. For instance, a team is responsible for the
CAD design whereas another team simulates models using other software. Obviously, in other contexts both
design and simulations can be done by the same team with an all-in-one CAD/CAE software. Through the
survey, we asked (multiple choices question Q21) to indicate which simulator software the analysts use, to give
an idea about their multiplicity. All analysts use Star-CCM+ and more than half of them use OpenFOAM.
Other used software are: CFD++ (35%) and PowerFlow (18%). Analysts have used software over the years
and they are confident with them. Moreover, industries are unwilling to invest in training engineers on other
software products. Therefore, in order to meet the requirements is fundamental to support and collect data
from multiple daily used CFD simulators. This is a key difference with other platforms (i.e., e-Science) that
often integrate simplified or in-house developed solvers [6].

It is evident that any platform must consider the integration of multiple simulators. The integration of
multiple simulators (Req. 6 in Table 2.1) has some difficulties especially because CFD analysts use often
proprietary software and actually a lack of simulator standardisation exists so that many software do not have



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 315

function to export data in open format. The import/export in open format are important functions to evaluate
during the choose of a CAD/CAE software [7] otherwise simulation data are locked in the vendor software.
Vendor Lock-In is a well-known Anti-Pattern [8] [9] [10]: the phenomenon that causes customer dependency on
given vendor about a specific good or service [11] with high switching costs [12]. Vendor Lock-In occurs both
in terms of services and data. Vendor Lock-In Anti-Pattern in terms of services occurs when the architecture
heavily relies on a closed vendor software and strictly depends on vendor choices, so the architecture is product-
dependent [13]. Data Lock-In occurs when the only way to access to data is using the Vendor Software because
data are stored in a proprietary file format or on a vendor server that does not provide an export functionality
to open format or a public customer API. The exporting and importing of geometric data are well-established
functionalities for CFD software, simply because they must commercially support the interaction with other
CAD software. Conversely, it is not the same for simulation data such as case setup, simulation results and
so on. Data Lock-In is very common in Cloud Environments [14] and is an obstacle to cloud computing [15].
Vendors lock users in to make difficult to change product because they cannot get their data; despite, as reported
in literature, giving the opportunity for customers to get their data increases their trust in the product [16]. A
design solution useful to mitigate the Vendor Lock-In is to design the system with an additional layer called
isolation layer [8].

2.7. Extensibility and Modularity. The combination of modularity and extensibility [17, 18] system
qualities advantages are: the opportunity to compose a system with the only needed modules, the introduction
of new functionalities tailored to customers’ needs, and the creation of customers own modules to automatise
specific tasks keeping them private to protect the know-how. Extensibility is the ability of a software system to
allow and accept significant extension of its capabilities without major rewriting of code [17] [18]. Extensibility
is a quality architecture attribute useful during the development and especially in future when more and more
simulators’ features will be integrated in the architecture [19]. Industries want to deploy the same system with
different features. Modularity “is the degree to which a system or computer program is composed by discrete
components such that a change to one component has minimal impact on other components” [17]. The architec-
ture must be modular to support both the adding of new simulators and the removing of existent simulators.
The modularity requirement has an interesting advantage for the architecture design: the engineering tools and
simulators are loosely coupled. An important consideration concerns the software license. Two opposite needs
must be taken into account: on one hand, industries want to protect their know-how, on the other hand, the
architecture must be also adopted in other contexts. Based on our use case, modularity, extensibility and EPL
license [20] are the right mix. The architecture, the framework and some other modules are open source. At
same time industries can protect their know-how developing their own private and closed modules.

3. Floasys Functionalities. This section describes the Floasys functionalities and shows its graphical user
interface (GUI). Floasys provides a simulator independent repository tool to navigate open format simulation
data repositories and annotate selected files through free and structured tags (Req. 2). Floasys has a structured
and assisted Search tool to get simulations performed by different engineers (Req. 3) and share them (Req.
5). Floasys’s screenshots contain CFD related data but its GUI and its ideas are general to be reused in other
engineering areas (e.g., ergonomics).

Floasys is a Web-based platform to support both engineering tasks (e.g., run simulation, monitor sim-
ulations, generate documentation automatically etc.) and data sharing among dispersed engineers. Floasys
centralises simulation data in open format and provides a search tool able to browse and query the simulation
database using tags identifying versions, interesting features and open comments. The Figure 3.1 depicts a real-
world Floasys workflow that is difficult or time-consuming without our platform. It is composed by six tasks
executed in sequence. In Task 1, user finds a simulation using keywords like project name, revision, velocity and
so on. The velocity is an internal simulation parameter. It is embedded in the closed file format, so the task to
search by velocity can not be accomplished without Floasys or at least, as come to light in Section 2, the user
can remember where he stored the simulation file and open it to check the velocity value. In addition, Operating
System find tool can not be used to get the simulation because velocity is not included in the simulation file
name (Fig. 3.2). With Tasks 2 and 3, the user selects a simulation from the list of results to get the original
simulation file and open it with the proprietary software. Unfortunately, the original simulation file is not in the
repository. Using Floasys, nevertheless the original file was deleted, the user can get the simulation data, setup



316 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

Fig. 2.6. Mapping among Stakeholders’ requirements, solutions and prototype technologies.

and results. Of course, these data can not be used directly to simulate it again. Anyway, an expert engineer
can recreate the simulation starting from the provided surface mesh and simulation setup (boundary conditions,
physical model, used parameters, previous reports and so on). The Task 6 concerns the sharing of a simulation
URL to another user via a preferred medium (e.g., e-mail, chat). Of course, the shared URL is available only
within the industry’s Intranet.

Floasys provides a re-configurable GUI based on Perspectives and Views concepts provided by Eclipse
Remote Application Platform (RAP) [21]. The idea is that the virtual workbench changes according to the
engineering tasks. In this way, the system is able to show only relevant functionalities to perform the actual
task. A perspective is a specific configuration of the workbench and contains many views to show information.
A perspective provides well-organized software functionalities access because it divides them in semantically
homogeneous sections.

3.1. System Independent Repository Tool and Simulations Tagging. The Repository tool sup-
ports the navigation of central simulation repositories. Floasys integrates multiple simulators, so data hetero-
geneity is one of the issues to face. For instance, OpenFOAM stores data in a well-defined directories structure
of three folders (e.g., system, constant and iteration directories) and data are stored in multiple files. Instead,
Star-CCM+ stores all simulation data in one single-vendor format file. OpenFOAM files are plain-text readable
without the software, instead Star-CCM+ files are in closed format and they can be read only using the vendor
software. The Repository tool, relaying on Floasys framework services, is simulator independent and is able to
manage data from different simulators. The Repository tool inherits the user file system access permissions, so
logged user can access only to files he/she has authorised. Floasys can access to network folder through a server
using a SSH connection with logged user credentials.

The Repository tool provides file annotation and tagging features. The idea is to enrich simulations files



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 317

Fig. 3.1. Example of a typical workflow supported by Floasys.

with metadata: a user can annotate a simulation file and provide additional information useful to retrieve and
share it in future. Examples of free tag categories are: brand, project name, revision and engine type; all
information that can not be stored directly within simulation files, whereas Floasys allows it. Analysts are free
to add any tag to files. In order to uniform the provided tags, during typing, Floasys suggests the tags to use
(Fig. 3.2). Tags are both unstructured with free tags and structured inserted filling out standard forms like in
Figure 3.3.

3.2. Search Tool and Data sharing. The Search tool (Fig. 3.4) is a Floasys perspective developed to
provide the search of simulation data stored in central repositories. The tool supports the search by file name,
simulation content, free tags and structured data (Req. 3 in Table 2.1). When a user types the search keywords,
Floasys recommends further keywords to refine the search (Fig. 3.4). In this way, the tool supports the search
activity suggesting further search keys to reduce the total number of potential results. The system performs
search using only indexed data without accessing (e.g., open) to original closed format files. The results are
displayed in a list. In order to display the revisions history, the user can select a simulation from the list of
results.

Each simulation file has a unique ID within Floasys and all relevant data (e.g., documents, simplified 3D
geometry, surface mesh and so on) are linked to this ID. Both repository and search tools provide a unique
URL for each selected simulation. Our idea is to share data by simply exchanging unique reference to the
specific simulation data. URLs identify simulation data and inherit file system permissions. The URL is private
and is accessible only within the industry boundaries. Considering the Computer Supported Cooperative Work



318 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

Fig. 3.2. Repository tool to navigate a simulation repository and tag the resources (e.g., files).

Fig. 3.3. An example of structured data to store.

(CSCW) space-time quadrants [22], Floasys supports the asynchronous data sharing for both co-located and
distributed teams.

3.3. Web-based 3D Model Visualisation. Floasys shows a reduced 3D geometry of the simulated
vehicle. Through this tool, engineers can quicly discover which components have been used to simulate the
product without opening the CAD software. The tool shows a list of components with their Property IDs (PID)
on the left (Fig. 3.5). The user can activate or deactivate some parts and can perform the basic zoom and pan
operations. Figure 3.5 shows the simplified 3D surface geometry of a FCA production vehicle. The 3D vehicle
geometries usually are very complex. To give an idea, each geometric model takes up ten gigabytes and engineers



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 319

Fig. 3.4. Search Tool

use very performing hardware to open and manipulate them. An important requirement for any engineering
platform is the visualisation of 3D geometric data. As many other platforms, Floasys is a Web-based platform.
The vehicle geometries are impossible to render in the browsers using WebGL because they are very detailed
and heavy; also the quantity of data to transfer from the server to the clients is very huge. To overcome this
common issue and considering that the geometric representation is useful to give an immediate feedback on
which components are included in the simulation, Floasys generates a simplified geometry representation to be
rendered in the browser. Engineers need to have numerical tabular data, contour-plots and the 3D geometric
model in the same view. Floasys provides a reduced geometry visualisation allowing engineers to quickly check
which are the vehicle components at a glance. For instance, an engineer can visually check if the vehicle is
simulated with the spoiler.

4. Floasys Architecture. This section introduces the Floasys architectural solution to centralise, an-
notate, tag, search and share simulation data. In order to meet the stakeholders’ requirements, our solution
collects simulation data from already existing simulation repositories (e.g., network shared folders), transforms,
indexes (to provide high data retrieval performance) and store them in open format (e.g., XML).

4.1. Architecture Overview. Floasys is based on a Client/Server architecture (Fig. 4.1) developed us-
ing Eclipse Remote Application Platform (RAP) [21]. Clients are Web-based components. Therefore, Floasys
is accessible through any browser installed on the company workstations. The Web-Based RAP clients commu-
nicate with the server exchanging commands and messages in JSON text format [23] over the HTTP protocol.
Servers tend to interact with user browsers using the JSON exchange format [24] because it is easily parsed
in client-side JavaScript language [23]. The Floasys’s server can access to a set of already existing repositories
(mainly shared network folders) that store the simulation files in their original format. In according to the
internal policies, Floasys accesses to these existing FCA repositories in a read-only mode through the SSH
protocol with the logged user credentials. Therefore, the architecture needs an additional repository to store
simulations in open format (e.g., XML) with annotations, tags and additional metadata (Req. 2). Floasys
supports two types of repository: an internal Subversion server or a shared network folder (without the version
control support). In order to improve retrieval performances, Floasys indexes open format XML documents



320 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

Fig. 3.5. Floasys 3D model visualisation.

Fig. 4.1. Floasys Client/Server Architecture.

relaying on a well-established search engine technology like Apache Solr [25, 26, 27]. The server can access
also to simulator software and High Performance Computing (HPC) resources as well as other internal services
like the authentication service. Floasys is Intranet-based for security reasons. In addition, any kind of control
access to data must be compliant with the industries internal policies and can not be override. To provide au-
thentication and to manage both users and groups, Floasys can rely on existing industrial internal Lightweight
Directory Access Protocol (LDAP) servers [28, 29] or use existing Secure SHell (SSH) accounts comply with
existing file and directories access permissions. Floasys could be exposed also on Internet, but limitations exist



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 321

such as the huge amount of simulation data (gigabytes) to transfer. Trusting and security issues must be taken
into account (e.g., to avoid espionage activities). Floasys is designed, developed and tested following an Agile
methodology based on short iterations of two weeks each in average, delivering small functionalities every time.
During the development, especially for server-side features, we wrote black box unit tests using JUnit [30]. From
functionalities testing point of view, for each planned release we had a test plan with the test cases to execute
and check on a controlled environment software installation. In addition, during the Floasys development,
we worked closely to analysts in Fiat Chrysler Automobiles to get the user feedback as soon as possible that
were recorded in an issue tracking system (e.g., Edgewall Software Trac2) and scheduled for the next plans in
according to the issue/enhancement priority.

4.2. Server-side Software Architecture. The Floasys server-side component interacts with the simu-
lator software to collect closed format data and transform them in open format. The architecture is a three
layers approach (Fig. 4.2). It integrates multiple simulators in the bottom layer wrapping the vendor software.
The top layer is the front-end that contains the Web-based GUI tools (or applications). The middle layer
(1) provides a common APIs to the front-end tools, (2) provides a common unified data representation called
Simulation Model for data coming from different vendor systems, (3) it is an isolation layer [8] to decouple the
front-end from vendor-specific simulator wrappers and, (4) it allows the vendor-product switching at run-time
to choose which ones are able to provide the needed services and data.

The middle isolation layer contains the common APIs exposed to the upper applications layer. In order to
keep its use easy, it mainly contains interfaces (or abstract classes) which are implemented by vendor-specific
wrappers. The architecture is able to provide the middle layer services also with other technologies such as
Restful and Web Services to support the interaction and data exchange among other devices (i.e., mobile devices)
and/or industrial systems. In this way, another third application (i.e., mobile application) can access to the
central simulation repositories and provide other service over open format data. Actually Floasys Meeting
Mobile is under development to provide statistical information about projects during the meetings.

An alternative solution to our architecture could be the introduction of a separate isolation layer for each
vendor software. The support of multiple replaceable vendor products and the simulators selection process
requirements impose the introduction of a common isolation layer. In fact, the alternative solution has the
following drawbacks: (1) the selection process is performed in the application layer and (2) separate isolation
layers means also different APIs, differences that must be handled in the application layer. However, the use of
a common isolation layer does not exclude that each wrapper itself is designed with an isolation layer using a
proxy pattern.

The extraction of data from closed file format generally is a tricky task and the solution depends on the
specific proprietary software and it is strictly coupled with it. The reverse engineering of the binary file content
is an extreme solution and we definitively tried to avoid it during Floasys development. Our idea is to interact
with the simulator taking advantage of its specific features. Specifically, CFD simulators have an interesting
built-in feature: the opportunity to write (or record) a macro to automate tasks within the software. In addition,
CFD simulators run “headless” without the graphical user interface (GUI) and can execute macros from the
command line. It is a built-in feature because every CFD simulation requires and runs on High Performance
Computing (HPC) resources. For instance OpenFOAM, an open source CFD software package, is a set of
command line tools without GUI so that the aim of many projects [31] both open and commercial is to design a
GUI for OpenFOAM. Another CFD simulator is CD-Adapco Star-CCM+, it has a Java-based macro language
to automate repetitive tasks. Therefore, Floasys takes advantage of this built-in CFD software feature. In
order to extract the data from a closed file format, the specific Floasys Wrapper runs the original simulator
and execute a macro within the simulator. The macro reads the simulation content and stores everything in a
plain intermediate file that after it is managed by Floasys platform. Floasys reads this plain intermediate file,
transforms it to a common open format creating a XML document stored in the central open repository.

In order to meet extensibility and modularity requirements (Req. 7), the server is based on a pure plug-in
architecture [32]. A plug-in can provide well-defined hook points called extension points to define and describe
the way to extend its functionality. Other plug-ins (or modules) can add new functionalities implementing

2Edgewall Software Trac official web site: http://trac.edgewall.org/



322 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

Fig. 4.2. Floasys Server-side architecture.

an extension point. In addition, a module can be replaced with another equivalent implementation also at
run-time. The Floasys core provides two extensions points to extend its functionalities: (1) one hook point
to introduce new tools in the upper layer and (2) another hook point for new wrappers. In this way, the
following opportunities exist for the final customers: 1) multiple Floasys instances can be deployed choosing
which modules will compose the overall architecture in according to the industrial needs; 2) the industry can
identify exactly which modules contain their specific know-how; 3) each company can decide to invest money
for the development of its own internal modules to customise Floasys and meet specific internal requirements;
4) in according to Eclipse Public License [20] (EPL), each plug-in can be released open sources or with a closed
license.

Floasys has two kind of modules: wrappers on bottom to collect data and tools on top to provide engineering
features (Fig. 4.2). An interesting Floasys extension planned for the future is to develop a wrapper that collects
experimental data (e.g., wind tunnel experimental data, engine test bed). This is a challenging goal but
the advantage would be a central repository that contains both simulation and experimental in open format
supporting the comparison among them. An important task is the validation of simulation results and the
comparison among the computer results and experimental data is very important.

Floasys relies on mainstream technologies. The server-side components are Java servlet-based. Floasys is
developed upon Eclipse Remote Application Platform (RAP) that “uses standard servlet technology and runs on
any JEE servlet container” [21]. Therefore, the outcome of the deployment phase is a Web application ARchieve
(WAR) file that is deployed on a JEE servlet container (e.g., JBoss or Tomcat). This software stack can be
installed upon any operating system (e.g., Mac, Windows or Linux). Actually in according to the industrial
internal policies, the server is a Red Hat Linux distribution with JBoss3 but any other Linux distribution can
be used.

4.3. Simulation Model: Managing Simulator Differences. Floasys aims to collect data from multiple
different simulators that often use closed file formats. A lack of interoperability among CFD software exists
(see Section 2) so Floasys must directly handle these heterogeneities. Heterogeneities among vendor products
are both syntactic and semantic. The syntactic heterogeneity concerns the vendor product APIs differences
or the way to interact with them trough command line. The architecture has an isolation layer (Floasys
Framework in Fig. 4.2) to face these syntactic differences that remain within the simulator wrappers and one
common API has provided to upper layers. Semantics and data heterogeneities deal with data differences:
software are often similar but they use different concepts. This issue becomes evident when architectures try to
“support the concurrent use of multiple infrastructures, transparently” [8]. Floasys introduces an intermediate
common representation for simulation data called Simulation Data-Model. It is based on a tree-like data
structure as CGNS [33] format. In order to be reusable, it consists mainly of interfaces and abstract classes. In

3Red Hat JBoss official web site: http://www.jboss.org/



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 323

addition, Floasys provides a basic implementation based on the composite design pattern [34]. Each wrapper
(architecture bottom layer Fig. 4.2) knows how to interact with a specific simulator and can extract data from
a closed file format. The same wrapper is responsible to create the Simulation Data-Model instancing the basic
implementation and translating simulation content in nodes of Data-Model. The Simulation Data-Model is
serialisable. Floasys serialises the Simulation Data-Models in XML documents that are indexed using Solr and
stored in a Subversion repository. Floasys uses Java XStream [35] Library to serialize Simulation Data-Model
in XML. This Data-Model is very powerful because Floasys can enrich the original data adding meta-data as a
new node of the tree structure. Both Floasys Framework and wrappers can add metadata over data inserting
additional nodes in the tree (i.e., documents, automatic extracted information) during extraction phase. Also
users can enrich the Data-Model providing tags and comments through repository tool that become nodes in
Data-Model. All the information stored in Simulation Data-Model can be used during within the Search Tool
to find simulations.

The advantages of our intermediate Simulation Data-Model representation are: (1) metadata over data
adding custom nodes, (2) serialisation in open format such as XML, (3) decoupling of wrappers from tools so
it is possible to replace a wrapper limiting changes to upper layers and (4) opportunity to compare results that
came from simulators with the results that came from the experiments with real prototypes in future. Finally,
we experienced a great advantage of using a Data-Model during Floasys development and for the stakeholders
after. Using the Data-Model has the advantage to use the Floasys front-end without simulators. The idea
is to have a dummy simulator that reads data from the XML file and provides them through the described
architecture as a real simulator. This is a cost-saving in terms of HPC resources and available simulator licenses
for closed software. Considering the 3D geometry complexity, to open a simulation file, engineers access to a
computer cluster using a software license that are fixed by the project budget. Therefore, the requirement to
avoid data lock-in leads to a cost-saving feature.

4.4. Simulation Data Centralisation, Version Control and Data Indexing. The architecture inte-
grates multiple simulators, collects and centralises simulation data. Each simulation contains textual, numerical
(e.g., results), images and geometrical data. Floasys extracts all simulation data embedded in closed file format
and stores them in open format files. The textual and numerical data are stored in XML files in according to
the Simulation Data-Model and are committed to the Subversion repository. These XML files are relatively
small (MB) so they are easily managed by the Subversion repository. Obviously, most Subversion operations
are recursive but Subversion 1.5 introduced the sparse directories [36] (or shallow checkout) to checkout a por-
tion of the working directory with the freedom to get more files and directories later [36]. Therefore, Floasys
relies on the shallow checkout to get a partial group of XML files. Floasys can use multiple Subversion servers
to accommodate future needs. Version control granularity concerns the specific simulation file. In this way,
simulation XML files can be distributed among multiple Subversion servers. Floasys architecture has designed
to store the SVN URL within the Solr search engine during the indexing phase. Hence, when the user search a
simulation and gets the search results, for each result there is the SVN URL to a specific Subversion repository.
Hence, every time Floasys exactly knows the Subversion server used to store the open format XML document.
In addition, in order to provide high search performance, the generated simulation XML files are indexed using
Apache Solr [25]. Apache Solr provides extensions, configuration, infrastructure and programming languages
bindings around Apache Lucene. In according to the official documentation [25], Apache Solr is is highly reliable,
scalable and fault tolerant, providing distributed indexing, replication and load-balanced querying, automated
failover and recovery, centralized configuration and more. In particular, Apache Solr can be run in a standalone
configuration or it is possible to setup a cluster of Solr servers through SolrCloud to combine fault tolerance
and high availability as well as scalability using replication and distributed indexing dividing the index into
partitions called shards.

Floasys does not use the Subversion repository for the geometrical data because they are very huge (GB).
A simulation contains mainly two meshes (geometrical data): (1) a surface mesh that is the vehicle shapes used
to build the (2) volume mesh used at solving time to solve the simulation. Floasys extracts only the surface
mesh and makes two outputs: a simplified geometry that serves just as overview of the vehicle product (it is
fast to retrieve and render with WebGL, see Section 3.3) and a surface mesh file (e.g., STL file). Floasys does
not store geometric volume mesh (the most heavy part of a simulation) reducing the overall required amount



324 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

of physical space. In this way it saves space on repositories and it is always possible to build volume mesh from
surface mesh.

In order to get the simplified 3D geometry version used only for the visualisation on web, Floasys in batch
connects to the Matlab server and reduces the original STL surface mesh creating the lightweight version. This
simplified version contains all vehicle parts separately. After many attempts the best trade-off between running
time and the 3D geometry quality is to use the Matlab reducepatch command. The quality of the obtained
mesh is assessed asking to CFD analysts. Floasys interacts with Matlab as a black box, it gives in input the
original mesh and gets in output the simplified mesh, so in future we could replace Matlab with another system.

The proposed solution has an interesting advantage. XML files store the most important and useful simula-
tion data including a simplified 3D geometry. Therefore, users can open the XML files using the repository tool
and access to all simulation data without the original software and without the HPC resources. It is a useful
feature because sometimes CFD analysts need to open simulations to consult data, in this way no proprietary
software license nor HPC resources are used.

Fig. 4.3. Simulation data versioning.

For each simulation file (left-side of Fig. 4.3) stored in closed file format, an XML file exists in the SVN
repository (right-side of Fig. 4.3) that contains extracted simulation data and metadata in open format. In
addition, each XML file is indexed using Apache Solr [25].

Each XML file is always linked with its original simulation file using an unique ID. In this way, the users can
always get the original simulation following the provided link. Floasys generates a unique ID for each simulation
file and stores it with metadata in the XML file. The ID is based on the original simulation file content and path.
This solution has the following advantages. Floasys does not change the simulation file content to add other
information such as the ID. It performs search operations using indexed XML content getting high performances
and providing version control for them. Another alternative solution is to add metadata directly to simulation
files avoiding the creation of XML files. This solution has been discarded because has the following drawbacks:
1) it is difficult to find available and unused fields in the simulation files; 2) the simulation files are still stored in
closed file format, so the solution is vendor software specific; 3) the metadata management requires the access
to files through the vendor software using HPC resources due the geometry data and 4) it is difficult to provide
version control over simulation files because they takes up to ten gigabytes.

From implementation point of view, two Java libraries have been used (Fig. 4.1): SolrJ to interact with
the Solr Server and SVNKit to commit and update data to Subversion repository. Our solution meets also
other industrial constraints, such as the impossibility to move existing files and folders or to store them within
a database. Finally, the solution must be independent by the specific simulator, so it can not store metadata
within the simulation files, also because files are in closed file format.



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 325

5. Related Works. Aberdeen Group conducts market research studies to help businesses worldwide to
improve performance4. They use a research methodology called P.A.C.E. to classify companies in three cate-
gories: best-in-class, average and laggard. Then they identify and compare companies using the internal and
external pressures, their capabilities and the actions used to face the market challenges. The market research
“Getting Product Design Right the First Time with CFD” [2] by Aberdeen Group studied the experience of
704 companies that perform simulations to design their products. Specifically, they use the Computational
Fluid Dynamics (CFD) simulations to design the products. Their leading market research question is how
the CFD simulations impact the product design and which are the key advantages of using them. The white
paper includes a list of “actions” that are the steps to perform in order to increase the competitiveness of
the companies on the market. Some of the actions are: capture and document best practices for conducting
simulations, centrally manage the simulation results and the best practices, take advantage of predefined wizards
or templates to guide less experienced users. The market research provides some starting points that must be
further investigated, such as “promote the collaboration” among engineers, ensure the right people have access
to the results and offer version control. Obviously, the market research does not discuss the technical solutions
to achieve these actions.

We had the opportunity to work closely with professionals in Fiat Chrysler Automobiles (FCA) who use
CFD simulations to design vehicle products. Our work further investigates the collaborative requirements of
dispersed teams and co-located engineers gathered using interviews and a survey. Here, we analyse the survey
requirements results enriching them with the stakeholders observations and feedback. Our work contributes also
with technical solutions to meet the reported requirements. In [4], authors conducted a survey to understand
the needs and perception of practitioners about the Cloud-based simulation (CBS). In their survey results come
to light the need to share, store and retrieve models in CBS.

Many Web-based platforms have been created over the years to support Computational Fluid Dynamics.
The “e-Science Aerospace Integrated Research System” (e-AIRS) [6] is an educational Web portal developed
in Korea to help students to understand the aerodynamic simulation process [37]. EDISON CFD [38] is the
e-AIRS improvement in terms of stability, faster data response time and waiting time [39, 40]. Such systems
have remarkable differences with our use case requirements and with Floasys. The systems target is the first
difference, both e-AIRS and EDISON CFD have an educational target, instead Floasys aims to industrial sectors
(e.g., automotive sector). The e-AIRS target is educational and therefore it has been used in undergraduate and
graduate classes. This have an impact on the integrated tools, that is the other difference. e-AIRS integrates
custom in-house meshing tools and solvers. It operates with its own Fortran-based in-house CFD solvers [6].
Industries use widely adopted and validated CFD software, so Floasys platform aim is to integrate existing both
commercial and open source solvers (Req. 6). In addition, the meshing is very important because it impacts
on simulation quality results and running times. e-AIRS adopts a custom software called e-AIRSmesh to mesh
the geometry storing the mash in a specific custom file format. Each CFD simulator works with a specific mesh
topology. A Floasys requirement is to integrate multiple industrial adopted and validated CFD solvers (Req.
6). Industries have assistance contracts with CFD software vendors, so industrial platforms can not ignore their
integration. In addition the aim is to avoid Vendor Lock-In adopting open format data.

Many other platforms proposed to manage simulations on HPC resources but they do not focus on col-
laboration among engineers. For example, a Web-based system for Management of CFD simulations for Civil
Engineering was proposed with the goal to develop tools for civil engineers who are not CFD experts but need
to perform CFD analysis [38]. It allows the “dispatching and controlling of long-running simulations” [38]. The
system targets are civil engineers and CFD beginner users. The system was tested with a group of students in
civil engineering class. The main differences concern the system end-user target and the correlated requirements
to achieve. Our system target is automotive industry where CFD analysts need to collaborate, share data, result
and knowledge, simulation data and result centralisation with the aim to promote collaboration. An interesting
emerged common requirement is the need to use templates both for expert and beginner users. The nature of
CFD simulations with high number of parameters to consider forces the creation of standard templates both to
support beginner and expert users.

Another research avenue comes from the Semantic Web field. Many works in literature proposed software

4Aberdeen Group official web site http://www.aberdeen.com/



326 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

platforms for modelling and simulation. Simantics [41] is ontology based modelling; it uses ontologies to seman-
tically describe the simulation model and the data. The two mainly applications that have built on Simantics
platform are: the proprietary Apros6 for power plant M&S and an open source Simantics System Dynamics
Tool based on Melodica language and the OpenMelodica environment. The Simantics’s [41] developers are
working on the integration of OpenFoam, an open source CFD software package.

6. Conclusions and Future Works. In this paper, we were able to identify key collaborative require-
ments for CFD design through the use of stakeholders interviews and a user survey. In addition we were able
to address these requirements with an integrated, extensible and modular architecture. In this way, the paper
provides the solutions and the technologies able to address the collaborative requirements. Requirements, so-
lutions and technologies are tracked through the paper and their links are depicted in the Figure 2.6. Floasys
is Web-based platform designed and developed to meet the collaborative requirements and is the industrial
prototype currently under testing and evaluation in FCA.

Ideas behind Floasys, such as the integrated, extensible and modular architecture, could be adopted also
in other contexts. The great opportunity to have different modules to plug in the architecture allows the
deployment of a system tailored to engineers needs and development of some custom modules to embed team
know-how. The solution to integrate existing engineering software and extract data from closed file format
enables the creation of value added services over open format industrial data. In addition, large industries,
independently by the sector, have multiple geographically distributed teams so, the collaboration around open
format data and the sharing of data at different granularity and aggregation are great features. All features
that could boost the industry competitiveness.

Floasys relies on mainstream open source solutions and its architecture is made integrating widely used
existing enterprise technologies. The architecture can be divided into four main uncoupled parts: (1) simulators
wrappers that communicate with the simulator software to get the simulation data and transform them in XML
open format, (2) the version control repository for the XML files (e.g., SVN), (3) an enterprise search engine to
index, cache and search the XML documents (e.g., Apache Solr), and (4) the central web server that provides
the Web content (e.g., JBoss servlet container). Actually, we choose Apache Solr because it can scale using
SolrCloud, Subversion because Floasys supports multiple SVN repositories and a mainstream servlet container.
As future works, we have planned a controlled benchmark test to quantitatively assess and evaluate the Floasys
performance, reliability and robustness. In addition, we are planning an evaluation study to analyse the usability
of the Floasys user interface, and the user satisfaction when interacting with it [42, 43]. The user acceptance of
the software will be investigated as well [44].

Finally, an interesting future work is the opportunity to link our SVN that contains simulation data in open
format with an internal social network and enable the discussion on artefacts [45]. The aim is to understand
and evaluate the benefits of using the social in the field of industrial CFD simulations.

REFERENCES

[1] D. Sörensen, The automotive development process. Springer, 2006.
[2] C. K.-R. Michelle Boucher, Getting Product Design Right the First Time with CFD, 2011.
[3] D. H. Michelle Boucher, Engineering Envolved: Getting Mechatronics Performance Right The First Time, 2008.
[4] S. Onggo, S. Taylor, and A. Tulegenov, The need for cloud-based simulation from the perspective of simulation practi-

tioners, Proceedings of the Operational Research Society Simulation Workshop (SW14), 2014.
[5] C. Gargiulo, D. Pirozzi, V. Scarano, and G. Valentino, A platform to collaborate around CFD simulations, 23rd IEEE

International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2014), Parma,
Italy, 23-25 June, 2014, pp. 205–210.

[6] J. Moon, C. Kim, Y. Kim, and K. W. Cho, CFD Cyber Education Service using Cyberinfrastructure for e-Science, in Fourth
International Conference on Networked Computing and Advanced Information Management (NCM’08), 2008, vol. 2. pp.
306–313.

[7] V. Bertram and P. Couser, Aspects of Selecting the Appropriate CAD and CFD Software, 9th Conference on Computer
and IT Applications in the Maritime Industries, Gubbio, Italy, 2010.

[8] W. H. Brown, R. C. Malveau, and T. J. Mowbray, AntiPatterns: refactoring software, architectures, and projects in
crisis, 1998.

[9] Cunningham & Cunningham, Inc., Anti-Pattern, [Online]. Available: http://c2.com/cgi/wiki?AntiPattern, checked on
19/01/2015.



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 327

[10] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design patterns: Elements of reusable object-oriented software, Reading:
Addison-Wesley, vol. 49, p. 120, 1995.

[11] M. Perry and T. Margoni, Floss for the canadian public sector: open democracy, IEEE Fourth International Conference
on Digital Society (ICDS’10), pp. 294–300.

[12] R. Shah, J. Kesan, and A. Kennis, Lessons for open standard policies: a case study of the Massachusetts experience, in
Proceedings of the 1st international conference on Theory and practice of electronic governance, 2007.

[13] V. Varma, Software Architecture: A Case Based Approach. Pearson Education India, 2009.
[14] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, A survey of large scale data management approaches in cloud environ-

ments, IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 311–336, 2011.
[15] C.-W. Chang, P. Liu, and J.-J. Wu, Probability-based cloud storage providers selection algorithms with maximum availabil-

ity, IEEE International Conference on Parallel Processing (ICPP), pp. 199–208, 2012.
[16] B. W. Fitzpatrick and J. Lueck, The case against data lock-in, Queue, vol. 8, no. 10, 2010.
[17] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Radatz, M. Yee, H. Porteous, and F. Spring-

steel, IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries. IEEE Press, 1991.
[18] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns and Java-(Required). Prentice

Hall, 2004.
[19] J. Humble and D. Farley, Continuous delivery: reliable software releases through build, test, and deployment automation.

Pearson Education, 2010.
[20] Eclipse public license. [Online]. Available: http://www.eclipse.org/legal/epl-v10.html, checked on 19/01/2015.
[21] Eclipse RAP Remote Application Platform, [Online]. Available: http://eclipse.org/rap/, checked on 19/01/2015.
[22] J. Rama and J. Bishop, A survey and comparison of cscw groupware applications, in Proceedings of the 2006 annual research

conference of the South African institute of computer scientists and information technologists on IT research in developing
countries, 2006.

[23] X. Chen and K. Kasemir, Bringing control system user interfaces to the web, TUPPC078, ICALEPCS, vol. 13.
[24] G. Wang, Improving data transmission in web applications via the translation between XML and JSON, in Third International

Conference on Communications and Mobile Computing (CMC), 2011, pp. 182–185.
[25] A. Solr, Apache software foundation Solr, 2014. [Online]. Available: http://lucene.apache.org/solr/, checked on 19/01/2015.
[26] R. Kuć, Apache Solr 4 Cookbook. Packt Publishing Ltd, 2013.
[27] D. Smiley and D. E. Pugh, Apache Solr 3 Enterprise Search Server. Packt Publishing Ltd, 2011.
[28] T. A. Howes, M. C. Smith, and G. S. Good, Understanding and deploying LDAP directory services. Addison-Wesley

Longman Publishing Co., Inc., 2003.
[29] B. Arkills, LDAP directories explained: an introduction and analysis. Addison-Wesley, 2003.
[30] P. Tahchiev, F. Leme, V. Massol, and G. Gregory, JUnit in action. Manning Publications Co., 2010.
[31] OpenFOAM GUIs [Online]. Available: http://openfoamwiki.net/index.php/GUI, checked on 19/01/2015.
[32] D. Birsan, On plug-ins and extensible architectures, Queue, vol. 3, no. 2, Mar. 2005.
[33] T. H. Christopher L. Rumsey, Bruce Wedan and M. Poinot, Recent Updates to the CFD General Notation System

(CGNS), 50th AIAA Aerospace Sciences Meeting, 2012.
[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable object-oriented software. Pearson

Education, 1994.
[35] J. Walnes, J. Schaible, M. Talevi, G. Silveira, et al., XStream, [Online]. Available: http://xstream.codehaus.org, 2011,

checked on 19/01/2015.
[36] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick, Version control with subversion. O’Reilly Media Inc., 2008.
[37] J. Moon, K. W. Cho, S.-H. Ko, J.-H. Kim, C. Kim, and Y. Kim, A Cyber Environment for Engineering Cyber Education,

in IEEE Fourth International Conference on eScience, 2008, pp. 532–539.
[38] S. Lee and C. Kim, Development and utilization of online computational environment for education and research in fluid

engineering, 2013.
[39] Y. Jung, J. Moon, D. Jin, B. Ahn, J. Seo, H. Ryu, O. Byeon, and J. Lee, Web simulation service improvement on

EDISON CFD, Computer Science and Technology, 2012.
[40] Y. J. Jung, J. Moon, D.-S. Jin, B.-Y. Ahn, J. H. Seo, H. Ryu, O.-H. Byeon, and J. R. Lee, Performance Improvement

for Web based Simulation Service on EDISON CFD, 2013.
[41] Simantics platform, [Online]. Available: https://www.simantics.org/simantics/about-simantics/simantics-platform/, checked

on 19/01/2015.
[42] Questionnaire for user interface satisfaction. [Online]. Available: http://oldwww.acm.org/perlman/question.cgi?form=QUIS,

checked on 19/01/2015
[43] Computer system usability questionnaire, [Online]. Available: http://oldwww.acm.org/perlman/question.cgi?form=CSUQ,

checked on 19/01/2015.
[44] F. D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS quarterly, pp.

319–340, 1989.
[45] D. Malandrino, I. Manno, A. Negro, A. Petta, V. Scarano, and L. Serra, Social team awareness, in 9th International

Conference Conference on Collaborative Computing: Networking, Applications and Worksharing (Collaboratecom), 2013,
pp. 305–314.



328 C. GARGIULO, D. MALANDRINO, D. PIROZZI AND V. SCARANO

Appendix A. Requirements elicitation Survey.
The survey aims to identify the most important requirements for a collaborative simulation platform to support the

engineering activities. Survey is confidential and all data will be processed in aggregated way. Thank you for your time
and your advice. At the end we will provide you the survey results and considerations.

Your experience.

Q1. Which is your role in the company?

- CFD analyst
- Technical Manager
- Performance Engineer

Q2. Which is your place of work?

- (FCA) Pomigliano D’Arco (Naples)
- (FCA) Orbassano (Turin)

Q3. How many years you spent working in the CFD field?

- (write the number of years)

Q4. How many simulations do you perform per year?

- (write the number of simulations per year)

Collaboration among analysts and data sharing.

Q5. In my office I daily work with a number of analysts equal to

- (write the number of analysts)

Q6. I daily work with a number of analysts in a different place equal to

- (write the number of analysts)

Q7. On average, the geometries file size in average is

- (write the geometry file size)

Q8. On average, the simulations file size in average is

- (write the simulation file size)

Q9. In order to exchange geometries and simulations files I usually use

E-mail: (Never) 1 2 3 4 5 6 7 (Always)
Chat: (Never) 1 2 3 4 5 6 7 (Always)
Phone: (Never) 1 2 3 4 5 6 7 (Always)
FTP: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a colleague: (Never) 1 2 3 4 5 6 7 (Always)
Internal Platform: (Never) 1 2 3 4 5 6 7 (Always)

Q10. In order to exchange documents I usually use

E-mail: (Never) 1 2 3 4 5 6 7 (Always)
Chat: (Never) 1 2 3 4 5 6 7 (Always)
Phone: (Never) 1 2 3 4 5 6 7 (Always)
FTP: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a colleague: (Never) 1 2 3 4 5 6 7 (Always)
Internal Platform: (Never) 1 2 3 4 5 6 7 (Always)

Data centralisation and simulation data search.

Q11. I follow some rules to store simulations and assign the name to their corresponding files

(Never) 1 2 3 4 5 6 7 (Always)

Q12. The information that I store in the simulation file name are (Multiple choice)

- Project Name



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 329

- Release
- Ground Clearance
- Revision
- Engine
- Vehicle Trimming
- Date

Q13. The rules are:

- Personal Choice
- Team Conventions
- Fixed imposed rules

Q14. I follow the rules over time

(Never) 1 2 3 4 5 6 7 (Always)

Q15. The opportunity to link other information (e.g., tags) to files could be:

(Useless) 1 2 3 4 5 6 7 (Useful)

Q16. In order to find simulation files I usually use

My mind: (Never) 1 2 3 4 5 6 7 (Always)
Free directory navigation: (Never) 1 2 3 4 5 6 7 (Always)
Windows Find Tool: (Never) 1 2 3 4 5 6 7 (Always)
See the file name: (Never) 1 2 3 4 5 6 7 (Always)
Open the simulation: (Never) 1 2 3 4 5 6 7 (Always)
File History: (Never) 1 2 3 4 5 6 7 (Always)
Unix Find Tool: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a coworker: (Never) 1 2 3 4 5 6 7 (Always)

Q17. I have a tool to search simulations according to their content

(Never) 1 2 3 4 5 6 7 (Always)

Q18. A tool to support the search operations based on simulation data could be:

(Useless) 1 2 3 4 5 6 7 (Useful)

Simulation data versioning.

Q19. I have a tool to show the simulation’s modification over time

(Never) 1 2 3 4 5 6 7 (Always)

Q20. A tool to show the simulation revisions could be

(Never) 1 2 3 4 5 6 7 (Always)

Used simulators.

Q21. During my work I use these simulator software (multiple choices):

- Star-CCM+
- OpenFOAM
- SolidWorks
- PowerFlow
- CFD++

Edited by: Giacomo Cabri
Received: September 15, 2014
Accepted: January 5, 2015





Scalable Computing: Practice and Experience
Volume 15, Number 4, pp. 331–343. http://www.scpe.org

DOI 10.12694/scpe.v15i4.1054
ISSN 1895-1767
c⃝ 2014 SCPE

INVESTIGATION ON THE OPTIMAL PROPERTIES OF SEMI ACTIVE CONTROL
DEVICES WITH CONTINUOUS CONTROL FOR EQUIPMENT ISOLATION

MICHELA BASILI∗AND MAURIZIO DE ANGELIS†

Abstract. The paper treats the semi active isolation of a single equipment, acceleration sensitive, by means of a variable elastic
control device. A numerical study on a single degree of freedom (SDOF) structural model equipped with a continuously variable
elastic device subjected to harmonic input is presented. The utilized control algorithm is derived by the Lyapunov method and
specialized in order to obtain instantaneous optimality. In order to minimize the dynamic response of interest, i.e. the equipment
absolute acceleration, some parameters that define the algorithm and the device are conveniently selected. The purpose of the paper
is to investigate the optimal isolation properties of semi active variable stiffness devices with continuous control across the whole
frequency spectrum. The performances of the isolated equipment are evaluated in terms of absolute acceleration transmissibility.
Semi active continuous control is compared with semi active ON-OFF mode and conventional linear passive control. Results show
that it is possible to choose conveniently the parameters regulating semi active continuous control in order to limit the absolute
acceleration transmissibility at all the frequencies. In literature from problems concerning vibration isolation, transmissibility
is alternatively defined in terms of absolute acceleration or displacement. Here, absolute displacement transmissibility is also
estimated. It is observed that in case of semi active control, there are differences between the two transmissibility representations,
and they do not lead to analogous results for evaluating the performance of the control system.

Key words: Equipment isolation, semi active control, continuous control law, absolute acceleration and displacement trans-
missibility

AMS subject classifications. 34H35, 98C83

1. Introduction. Among the different control strategies, semi active devices appear interesting for vibra-
tion mitigation, since they can adjust adaptively their mechanical characteristics (stiffness and/or dissipation
parameters) in real time depending on the input and/or the structural response according to a given control
law, without adding external energy to the structures, thus not compromising system stability. Numerical and
experimental works that focus the attention on the performances of semi active control for the dynamic response
of systems with different structural configurations are present in literature, e.g. [1], [2]. The force supplied by
semi active devices can vary according to a given control law which can be ON-OFF or continuous. In ON-OFF
operation the control devices may assume only one of the two operation states: ON state (device activated)
and OFF state (device deactivated). In continuous operation, the mechanical parameters of the semi active
devices may continuously assume any value between the given limits. Most of the studies and applications
found in the literature concern applications with ON-OFF control, e.g. [1]- [5], whereas only few papers concern
continuous semi active control, [6]- [9], for this reason, closer attention will be given to this area in the following
investigation.

Equipment of various nature, intended as objects of artistic great value (statues or sculptures), or precision
technical equipment, or sensitive and refined medical components in the hospitals, placed in buildings usually
need to be protected against vibrations. Among this class of objects, the study is concerned with acceleration
sensitive components prone to damage from inertial loading. Passive systems have been proved to be effective and
practical, but at the same time might suffer from low-frequency resonances and excessive isolator displacements,
if subjected to long period ground motions (e.g. near-fault earthquakes). For this reason, efforts on the
utilization of semi active devices for vibration isolation are made; the response transmitted to the equipment
can be effectively reduced, and performances appear superior when compared with conventional linear passive
control strategy [10]- [12].

This study investigates the base isolation of acceleration sensitive equipment by means of a variable elastic
device with continuous control law. A single degree of freedom model is adopted with a harmonic base motion
as input motion condition and the attention is focused on the absolute approach (absolute motion with respect
to a fixed reference). The continuous control law is derived from the Lyapunov method and specialized in order
to obtain instantaneous optimality. The aim of the paper is to investigate the optimal properties of semi active

∗Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Italy (michela.basili@uniroma1.it)
†Department of Structural& Geotechnical Engineering, Sapienza University of Rome, Italy (maurizio.deangelis@uniroma1.it)

331



332 M. BASILI AND M. DE ANGELIS

continuous control varying the frequency ratio between the input and the equipment, in order to cover all the
regions of the frequency spectrum. Two parameters, one related to the algorithm and the other related to the
device, defined as the stiffness ratio between the device and the equipment, are optimized in order to minimize
the equipment acceleration. The performance of the optimized control system is evaluated in terms of absolute
acceleration transmissibility curves in order to investigate the behavior across the whole frequency spectrum.
Comparisons with semi active ON-OFF and conventional linear passive control are also carried out.

Since in literature from problems concerning vibration isolation, transmissibility is alternatively defined in
terms of absolute acceleration or displacement (often interpreted similar), in this paper, absolute displacement
transmissibility is estimated as well. The aim of the paper is also to investigate if there are differences between
the two transmissibility representations in case of semi active control, and to see if they lead to analogous results
for evaluating the performance of the control system.

The paper is organized as follows: section two reports the description of the single degree of freedom model
together with the governing equations, section three presents the semi active control law, section four discusses
the case study and, finally, section five carries out the results in terms of control system optimization and the
performances of semi active continuous control compared with semi active ON-OFF and conventional linear
passive control.

2. Description of the model and governing equations. The reference model is represented by a single
degree of freedom (SDOF) undamped structural model, base-excited, Fig. 2.1.

 

Fig. 2.1. SDOF reference model.

The state-space equations of motion, in the relative or absolute state space, can be written as:

żr,a(t) = Azr,a(t) +Bu(t) +Hr,awr,a(t)
(2.1)

zr,a(0) = z(r,a)0

where

zr,a =

(
y
ẏr,a

)
;A =

(
0 1

−ω2 0

)
;B =

(
0

−1/m

)
(2.2)

Hr =

(
0
1

)
;Ha =

(
−1
0

)
;wr(t) = ÿg(t);wa(t) = ẏg(t)

where ω is the circular frequency of the equipment, y is the relative displacement of the structural mass m with
respect to support, yg is the displacement of the support with respect to a fixed reference and u is the force in the
control device. Finally, k is the elastic structural stiffness (k=mω2) and T 0 is the natural period (T 0=2π/ω).
Absolute response quantities are evaluated by adding the support motion quantities to the corresponding relative
ones. The present study refers to a variable stiffness device with control force:

u(t) = λ(t)mω2[(y(t)− y(ti)] (2.3)



SEMI ACTIVE CONTROL DEVICES FOR EQUIPMENT ISOLATION 333

where the relative stiffness λ(t) represents the ratio between the device (kd) and the structural (k) stiffness,
whereas y(ti) is the structural displacement corresponding to the last activation instant ti of the device. The
λ(t) parameter has the following physical limitation:

0 ≤ λ(t) ≤ λmax (2.4)

3. Semi active control law. The direct Lyapounov method is used to define the control algorithm.
It is based on the definition of an appropriate Lyapounov function and a control law which guarantees the
hypothesis of the Lyapounov theorem. The state function, assumed as Lyapounov function, in the relative or
absolute approach is defined as:

Λ =
1

2
zTr,a(t)Qzr,a(t) +

∫ τ

0

uTRu(τ)dτ (3.1)

where Q is the weighting matrix (symmetrical and, at least, positive semi-definite) of the state and R (sym-
metrical and positive definite) weights the control force. The procedure in order to select an optimal control
law based on the Lyapounov function defined in Eq. 3.1 is deeply explained in [6] in the case of the relative
approach. In this work only the final expression of the optimal control force is reported, valid for the relative
and the absolute approach:

uopt(t) = −1

2
R−1BTQzr,a(t) (3.2)

It is important to remark that the resulting law Eq. 3.2 guarantees only locally (for a given time) the
optimality of the control law (i.e. a local minimum of the state function). It is possible to give a physical
interpretation of the control process since the Lyapunov function Eq. 3.1 may be also viewed as input energy.
In the case of a SDOF system, matrices appearing in Eq. 3.2 may be written as follows:

Q =

(
Q11 Q12

Q12 Q22

)
;R = R (3.3)

The non-dimensional parameters and the optimized parameters for the algorithm introduced in [6] are used
and, after passages, the optimal control force is:

uopt(t) =
mω

ρ
ẏr,a(t) (3.4)

For a variable stiffness semi active device with constitutive equation expressed by Eq. 2.3, the variation law
of the device stiffness is obtained as follows:

λ(t) = F[0, λ∗(t), λmax] (3.5)

where for the relative approach the λ∗(t) parameter is evaluated as:

λ∗(t) =
1

ρω

ẏr(t)

[(y(t)− y(ti)]
(3.6)

and for the absolute approach is:

λ∗(t) =
1

ρω

ẏa(t)

[(y(t)− y(ti)]
(3.7)

Let’s observe that for ρ −→ 0, uopt −→ ∞ and, by evaluating the sign of this limit, the ON-OFF control
law is obtained, [1]. In both approaches, the parameter ρ must be selected.



334 M. BASILI AND M. DE ANGELIS

4. Description of the case study. The study of the forced vibrations of the SDOF system represented
in Fig. 2.1 is carried out, having assumed a harmonic base motion. In the Relative Approach (RA), the input
is defined in terms of a base acceleration:

ÿg(t) = Ag sin(βωt+ ψ) (4.1)

where β = ωf/ω is the ratio between the input ωf and the equipment ω circular frequency, Ag is the amplitude
and ψ is the phase angle. In this work it is assumed Ag =1, since the structural system is homogeneous of order
one [12] and the dynamic response is not dependent of the motion amplitude, and ψ =0.

In the Absolute Approach (AA) the input is defined in terms of a base velocity:

ẏg(t) = Vg cos(βωt) (4.2)

where Vg = −Ag/βω.
Concerning the control system, an optimal selection of the algorithm parameter ρ and the relative stiffness

device parameter λ, will be made by choosing such values that minimize the maximum absolute acceleration.
Meantime, it will be checked that the relative structural displacement is be limited.

Two response quantities will be evaluated:

A =
max(aa,SAC(t))

max(aa,PC(t))
(4.3)

Y =
max(ySAC(t))

max(yPC(t))

where A andY are defined respectively as the maximum values of the absolute acceleration/relative displacement
in case of semi active control (SAC) to the maximum corresponding values obtained with classical linear passive
control (PC) having assumed a conventional damping ratio of 10%. The response quantities are therefore
normalized with respect to the corresponding values assumed in case of conventional linear passive isolation
system.

Once having conveniently chosen the algorithm and device parameter ρ and λ respectively, some response
functions, all estimated in the stationary response, will be evaluated in order to observe the dynamics of the
controlled system and its effectiveness.

The transmissibility factor will be the most important quantity observed. Here, two transmissibility defi-
nitions will be utilized, one estimated with the absolute acceleration, TRa, and the other estimated with the
absolute displacement, TRd, respectively defined as:

TRa =
|aa(t)|max

Ag
(4.4)

TRd =
|ya(t)|max

Yg

Let’s remember that Ag is the acceleration amplitude of the base notion, defined in Eq. 4.1, whereas Yg represents
the displacement amplitude of the base motion.

It is known in literature from problems concerning vibration isolation that transmissibility can be alterna-
tively defined in terms of absolute acceleration or displacement. However, it is important to remark that, only in
case of a linear system these two measures are identical. Since the equipment is acceleration sensitive, absolute
acceleration transmissibility should be always considered to check the effectiveness of the control strategy. One
of the aims of this paper is to investigate what are the main differences between these two representations often
interpreted similar in literature. Moreover, the intent is to see if the optimization of the parameters which define
the control, leads to the same conclusions in terms of absolute acceleration or displacement transmissibility.

Equipment relative displacement is checked by observing two other quantities. The maximum displacement
vibration amplitude, Yn, that is the ratio of the amplitude of the relative displacement to the static displacement,



SEMI ACTIVE CONTROL DEVICES FOR EQUIPMENT ISOLATION 335

and the ratio between the maximum relative equipment displacement Y and the maximum amplitude of the
input Yg, named Y/Yg, defined respectively as:

Yn = |y(t)|max · ω2

(4.5)

Y/Yg =
|y(t)|max

Yg

4.1. Synthesis of the results obtained for the Relative Approach (RA) versus Absolute Ap-
proach (AA). In Ref. [9], the authors studied acceleration sensitive equipment isolated with a semi active
variable stiffness device with continuous control. Both relative and absolute approaches have been considered.
The algorithm and device parameters were conveniently optimized in order to obtain the smallest equipment
acceleration in the range of frequencies typical of the isolation.

In has been shown through absolute acceleration transmissibility curves TRa versus β, that, in the region
where typically isolation strategy is considered (β ≥

√
2), semi active continuous control gives superior per-

formances in comparison to the case of semi active ON-OFF control and conventional linear passive control
(10% of damping ratio). Moreover, comparing relative and absolute approaches, the paper concluded that,
absolute approach should be preferred to relative one since the transmissibility seemed to be better controlled,
Fig. 4.1. In particular, if the attention was paid in proximity to the resonance condition and in the region around
β ≥

√
2, the absolute acceleration transmissibility was well limited if compared with relative approach. The two

approaches became equal by increasing β. When β=3, reductions of the absolute acceleration transmissibility
up to 80% were observed.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

T
R

a

 

 

RA
AA

Fig. 4.1. TRa varying β for λ=5: continuous SAC, relative approach (ρ=10) and absolute apporach (ρ=0.4).

5. Results. The aim of this paper is to extend the investigation on the optimal properties of semi ac-
tive continuous control across the whole frequency spectrum, in order to explore the control system and its
effectiveness. The study will focus exclusively on the absolute approach.

The section is organized as follows: first, the optimal parameters ρ and λ at different input frequency ratios
β will be selected in order to minimize the absolute acceleration. Then, the absolute acceleration transmissibility
curves versus β will be carried out and comparisons among semi active continuous, ON-OFF and passive control
will be done. Discussion about utilizing absolute acceleration or displacement transmissibility for acceleration
sensitive systems will be debated. Finally, other response functions, defined in Eq. 4.5, to control relative
displacement will also be revised. Three regions are meaningful in the frequency spectrum: the region where
the input frequency, ωf , is greater than the system’s frequency ω, β > 1, the region in proximity to resonance
condition, β=1, and the region where the input frequency is lower than the system’s frequency, β < 1.

Figure 5.1 depicts the investigation on the properties of the semi active continuous control varying the
algorithm and device parameters, ρ and λ, at different values of the frequency ratios β in terms of the dimen-
sionless absolute acceleration and relative displacement response quantities, A and Y respectively. The range



336 M. BASILI AND M. DE ANGELIS

0 2 4 6 8 10
0

0.5

1

1.5

2

ρ

A

β =0.3

 

 

λ=0.5
λ=1
λ=5

0 2 4 6 8 10
0

0.5

1

1.5

2

ρ

Y

β =0.3

 

 

λ=0.5
λ=1
λ=5

0 2 4 6 8 10
0

0.5

1

1.5

2

ρ

A

β =0.6

 

 

λ=0.5
λ=1
λ=5

0 2 4 6 8 10
0

0.5

1

1.5

2

ρ

Y

β =0.6

 

 

λ=0.5
λ=1
λ=5

0 2 4 6 8 10
0

0.5

1

1.5

2

ρ

A

β =1

 

 

λ=0.5
λ=1
λ=5

0 2 4 6 8 10
0

0.5

1

1.5

2

ρ

Y

β =1

 

 

λ=0.5
λ=1
λ=5

0 2 4 6 8 10
0

0.5

1

1.5

2

ρ

A

β =2

 

 

λ=0.5
λ=1
λ=5

0 2 4 6 8 10
0

0.5

1

1.5

2

ρ

Y

β =2

 

 

λ=0.5
λ=1
λ=5

Fig. 5.1. A and Y varying ρ for different β and λ=0.5, 1, 5.



SEMI ACTIVE CONTROL DEVICES FOR EQUIPMENT ISOLATION 337

of interest of the parameter ρ is among 0 and 10, whereas the λ parameter assumed three values: λ=0.5, 1, 5.
Let’s observe that, for shortness, λ here means λmax, Eq. 3.5. Optimal ρ and λ are selected as the ones that
minimize the absolute acceleration response A.

Since response quantities are dimensionless, when the ordinate values are less than the unity means that
response quantities are less respect to conventional linear passive control case. Besides, semi active ON-OFF
control corresponds to ρ=0, while semi active continuous control corresponds to ρ ̸=0.

Considering the device parameter λ, Fig. 5.1, it can be noticed that, irrespectively of β, the optimal choice
is always λ=5. Only in the neighborhood of β about 0.6, the maximum absolute acceleration reduction is
obtained for λ=0.5. In fact, for these values of β, the A curves have a well defined minimum at low λ, whereas
at λ=5 the curve does not show a minimum and reaches higher values of A.

Considering the algorithm parameter ρ, two different behaviors are observed varying β:

• For β ≤ 0.6, a good choice of ρ can be assuming it at high values, e.g. ρ=10, the effectiveness of semi
active continuous control is slightly better than passive control and is always superior to semi active
ON-OFF control;

• For β > 0.6, a good choice of ρ can be assuming it at low values, e.g. ρ=0.7, the effectiveness of semi
active continuous control becomes more evident and is always superior to ON-OFF and conventional
linear passive control.

By observing the A curves, in proximity to the resonance condition, they have a well defined minimum
varying ρ, instead in the other regions the functions decrease until a certain value and then remain constant.
Effectively, in [9] an optimal value ρ=0.4 was selected having optimized it only in the region of frequencies
typical of the isolation. It can be noticed that the choice ρ=0.7 at β > 0.6 fits well also in the regions where
β ≥

√
2, since for such frequencies the acceleration curve is constant increasing ρ (the choice ρ=0.4 or ρ=0.7 is

identical in terms of acceleration reduction, see Fig. 5.1 case β=2). However, the frequency ratio zone around
β=0.6 where a discontinuity has been observed in the choice of the optimal algorithm and device parameters,
deserves a deeper investigation in a future work by the authors in order to explore the peculiar dynamic behavior
of the control system.

The relative displacement Y is checked, once selected optimal values of ρ and λ. In general Y is always
limited; however, it cannot be identified a systematic trend comparing semi active continuous and ON-OFF
control and conventional linear passive control. Relative displacement is not always reduced to the maximum
with semi active continuous control.

Figure 5.2 shows absolute acceleration and displacement transmissibility curves, the maximum displacement
amplitude Yn and the displacement ratio Y/Yg curves versus the frequency ratio β. For comparison purposes,
the corresponding curves in the case of semi active ON-OFF control and conventional linear passive control
are reported as well. In the case of semi active continuous control the curves are estimated having assumed
λ=5, ρ=10 for β ≤ 0.6 and ρ=0.7 for β > 0.6, whereas, in case of semi active ON-OFF control the curves are
estimated for ρ=0 and λ=5.

Since the equipment is acceleration sensitive, absolute acceleration transmissibility TRa must be primarily
observed. Semi active continuous control always leads to better response reduction compared with ON-OFF
and passive control. Continuous control can isolate for frequency ratios up to 1.2, but when β ≤ 1 the absolute
acceleration transmissibility continues to maintain low values (maximum TRa is 1.5), which means that the
equipment acceleration is sufficiently limited with respect to the base motion. However, it is stressed that
acceleration vibration cannot be isolated across the whole frequency spectrum, i.e. absolute acceleration trans-
missibility cannot be less than the unity across the whole frequency spectrum with any of the assumed three
strategies.

Absolute displacement transmissibility curve, TRd, is different with respect to the absolute acceleration
transmissibility curve in the semi active cases; only in case of conventional linear passive control, absolute
acceleration and displacement transmissibility are equal.

Therefore, considering absolute acceleration or displacement transmissibility, may lead to different results
for evaluating the performance of the control system in the case of semi active control. Displacement vibration
can be isolated across the whole frequency spectrum, i.e. absolute displacement transmissibility can be less than
the unity across the whole frequency spectrum (semi active ON-OFF control case). By checking the maximum



338 M. BASILI AND M. DE ANGELIS

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

T
R

a

 

 

Continuous
ON−OFF
PC

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

T
R

d 

 

 

Continuous
ON−OFF
PC

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

Y
n 

 

 

Continuous
ON−OFF
PC

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

Y
/Y

g 

 

 

Continuous
ON−OFF
PC

Fig. 5.2. TRa, TRd, Yn and Y/Yg varying β for λ=5, semi active continuous (optimized ρ), semi active ON-OFF control
(ρ=0), conventional linear passive control, PC, with 10% of damping ratio.

displacement amplitude Yn, as β > 1 it is below the unity only in case of ON-OFF control, when β < 1 it
is greater than one, but still limited only in case of semi active continuous and passive control. By checking
the displacement ratio Y/Yg, when β < 1, as general trend, it decreases decreasing β and it is almost lower
than the unity in the two semi active control strategies, whereas as β > 1, it tends to the unity as β increases,
the convergence is faster in case of semi active ON-OFF control. Curves obtained with semi active continuous
and ON-OFF control show light differences, whereas significantly differences are evident with respect to linear
passive control, especially in correspondence to the resonance condition.

So far, transmissibility and displacement curves have been obtained having optimized ρ with the frequency
ratio, however this action is possible as soon as the input frequency is considered known. If the action and its
frequency involved is unknown, such as a natural earthquake, a fixed value for the ρ parameter must be assumed.
Figure 5.3 depicts absolute acceleration and displacement transmissibility curves, the maximum displacement
amplitude Yn and the displacement ratio Y/Yg curves, versus the frequency ratio β for a given value of the ρ
parameter. The cases ρ=0.7 (optimal for β > 0.6) and ρ=10 (optimal for β ≤ 0.6) are reported. For each curve,
the results shown in Fig. 5.2, referred to the optimal choice of the algorithm parameter, here can be obtained
by crossing the curves at ρ=0.7 and ρ=10. If the expected input action has frequency content mainly in the
region over β=0.6 the solution with ρ=0.7 should always be preferred. In fact, acceleration is well limited and
displacement is controlled as well.

If the equipment is acceleration sensitive, absolute acceleration transmissibility must be considered and the
continuous control law should be preferred to the ON-OFF law or linear passive control. If the equipment is
displacement sensitive, absolute displacement transmissibility must be considered and the ON-OFF control law
should be preferred to the others.

In order to observe the dynamics of the controlled system with the three strategies, Fig. 5.4 depicts time
histories of equipment absolute acceleration for a frequency ratio lower and higher than the resonance frequency



SEMI ACTIVE CONTROL DEVICES FOR EQUIPMENT ISOLATION 339

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

T
R

a

 

 

ρ=0.7
ρ=10
ON−OFF
PC

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

T
R

d 

 

 

ρ=0.7
ρ=10
ON−OFF
PC

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

Y
n 

 

 

ρ=0.7
ρ=10
ON−OFF
PC

0 0.5 1 1.5 2 2.5 3
0

1

2

3

β

Y
/Y

g 

 

 

ρ=0.7
ρ=10
ON−OFF
PC

Fig. 5.3. TRa, TRd, Yn and Y/Yg varying β for λ=5, semi active continuous (ρ=0.7, ρ=10), semi active ON-OFF control
(ρ=0), conventional linear passive control.

ratio (β=0.8 and β=1.2 respectively), whereas Fig. 5.5 shows, at the same frequency ratios, the variation of the
device parameter λ versus time for continuous and ON-OFF control.

The different dynamic behavior in terms of amplitude and shape clearly emerges comparing semi active and
passive control; in fact, the acceleration time histories differ from the typical sinusoid of passive control. Semi
active continuous control mostly reduces the peaks with respect to the other cases. Semi active ON-OFF case
shows the sudden discontinuities in correspondence with the deactivation process, observed in Fig. 5.5 where
the time history of the device parameter λ is depicted; instead, continuous case shoots down such peaks in the
deactivation process, as a result of the transition in that instants between the maximum and minimum λ being
continuous, Fig. 5.5.

By observing the variation of the device parameter λ versus time, Fig. 5.5, in the case of ON-OFF control
more than one switch is noticed in one activation and deactivation phase of continuous control for β=0.8, whereas
for β=1.2, the frequency of the activation and deactivation phases is almost the same in the two strategies. As
known, the transition between the activated (ON) and deactivated (OFF) state is continuous for continuous
control and instantaneous for ON-OFF control.

Finally Fig. 5.6 depicts typical absolute acceleration-relative displacement cycles in case of continuous and
ON-OFF mode for β=0.8 and β=1.2. A different dynamic behavior in the two cases is observed, and the better
effectiveness on the reduction of the absolute acceleration emerges in case of continuous control.

6. Conclusions. This paper treated the topic of base isolation of equipment against vibrations. A SDOF
structural model, acceleration sensitive, equipped with a continuously variable elastic device subjected to har-
monic input has been discussed, focusing the attention on the absolute approach. The continuous law for the
variation of the device parameter has been derived by the Lyapunov method and specialized in order to obtain
instantaneous optimality. The aim was to investigate the optimal properties of the semi active continuous
control in all the regions of frequency spectrum. Two parameters were optimized in order to minimize the



340 M. BASILI AND M. DE ANGELIS

4 4.5 5 5.5 6 6.5 7 7.5 8
−6

−4

−2

0

2

4

6

β t/T
0

a a

β=0.8

 

 

Continuous
ON−OFF
PC

4 4.5 5 5.5 6 6.5 7 7.5 8
−6

−4

−2

0

2

4

6

β t/T
0

a a

β=1.2

 

 

Continuous
ON−OFF
PC

Fig. 5.4. Equipment absolute acceleration and relative displacement versus time for semi active continuous (ρ=0.7, λ=5),
ON-OFF (ρ=0, λ=5), and passive control for β=0.8, 1.2.

equipment acceleration: ρ related to the algorithm and λ, the stiffness ratio between the device and the equip-
ment, related to the device. It emerged that for the algorithm parameter ρ, two different behaviors are observed
varying β: for β ≤ 0.6, a good choice of ρ can be assuming it at high values, whereas for β > 0.6, a good choice
of ρ can be assuming it at low values. For the device parameter λ it was noticed that, irrespectively of β, the
optimal choice was almost always to set it at its maximum value in the ON state. This result implies that as
the difference among the operational states of the semi active device is greater as the effectiveness of the control
system increases. Once optimized the parameters which govern the control system, the absolute acceleration
and displacement transmissibility curves, TRa and TRd, were evaluated versus β together with the maximum
displacement amplitude Yn and the displacement ratio Y/Yg. The performance of the continuous semi active
control has been evaluated in comparison to semi active ON-OFF and conventional linear passive control.

The performance of the optimized control system was evaluated in terms of absolute acceleration trans-
missibility curves in order to investigate the behavior across the whole frequency spectrum. It was shown that
semi active continuous control always led to better response reduction compared with ON-OFF and linear pas-
sive control. It isolated for frequency ratios up to 1.2, still maintaining, for lower frequency ratios, equipment
acceleration sufficiently limited with respect to the base motion.



SEMI ACTIVE CONTROL DEVICES FOR EQUIPMENT ISOLATION 341

4 4.5 5 5.5 6 6.5 7 7.5 8
0

1

2

3

4

5

6

β t/T
0

 λ

β=0.8

 

 

Continuous
ON−OFF

4 4.5 5 5.5 6 6.5 7 7.5 8
0

1

2

3

4

5

6

β t/T
0

 λ

β=1.2

 

 

Continuous
ON−OFF

Fig. 5.5. Variation of the device parameter λ vesrus time for semi active continuous (ρ=0.7) and ON-OFF (ρ=0) control
for β=0.8, 1.2.

In literature from problems concerning vibration isolation, transmissibility can be alternatively defined in
terms of absolute displacement. Here, absolute displacement transmissibility curves were estimated as well, in
order to investigate if there were differences with the absolute acceleration transmissibility representation. It
was observed that absolute displacement transmissibility curves differ with respect to the absolute acceleration
transmissibility curves in the semi active cases (continuous and ON-OFF). In fact, only in case of linear passive
control, acceleration and displacement transmissibility are equal. Therefore, the performance of a semi active
control system may result different if absolute acceleration or displacement transmissibility are alternately con-
sidered. Besides, the effectiveness of a control strategy should be always checked with the absolute acceleration
transmissibility in case of acceleration sensitive equipment.

Equipment relative displacement was checked by evaluating two other quantities. The maximum displace-
ment amplitude was limited across the whole frequency spectrum only with semi active continuous control.
Instead concerning the displacement ratio, only light differences were observed comparing the curves obtained
with semi active continuous and ON-OFF control, whereas significantly differences are evident with respect to
passive control, especially in correspondence to the resonance condition.

Since the input action and its frequency content is not considered always known, it seems difficult to optimize



342 M. BASILI AND M. DE ANGELIS

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

ω2*y

a a/A
g

β=0.8

 

 

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

ω2*y

a a/A
g

 

 

Continuous mode ON−OFF mode

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

ω2*y

a a/A
g

β=1.2

 

 

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

ω2*y

a a/A
g

 

 

Continuous mode ON−OFF mode

Fig. 5.6. Absolute acceleration-displacement cycles for semi active continuous (ρ=0.7, λ=5) and ON-OFF (ρ=0, λ=5) control
for β=0.8, 1.2.

the algorithm parameter with the frequency ratio. However, if the expected input action has a frequency content
mainly in the region over β=0.6, the solution with ρ=0.7 should be preferred. For equipment acceleration
sensitive, the continuous control law gives superior performances with respect to the others: acceleration is well
limited and displacement is controlled as well.

In the optimization process, a discontinuity has been observed in the choice of the optimal algorithm and
device parameters in the frequency ratio zone around β=0.6. Such region deserves a deeper investigation in a
future work by the authors in order to explore the peculiar dynamic behavior of the control system.

REFERENCES

[1] E. Renzi and M. De Angelis, Optimal semi active control and non linear dynamic response of variable stiffness structures,
Journal of Vibration and Control, 11-10 (2005), pp. 1253–1289.

[2] M. Basili and M. De Angelis, Shaking table experimentation on adjacent structures controlled by passive and semi-active
MR dampers, Journal of Sound and Vibration, 332-13 (2013) pp. 3113–3133.

[3] Y. C. Fan, C. H. Loh, J. N. Yang and P. Y. Lin, Experimental performance evaluation of an equipment isolation using
MR dampers, Earthquake Engineering and Structural Dynamics, 38 (2009) pp. 285–305.

[4] L. Y. Lu and G. L. Lin, Predictive control of smart isolation system for precision equipment subjected to near-fault earth-
quakes, Engineering Structures, 30 (2008) pp. 3045–3064.

[5] H. P. Gavin and A. Zaicenco, Performance and reliability of semi-active equipment isolation, Journal of Sound and Vibra-



SEMI ACTIVE CONTROL DEVICES FOR EQUIPMENT ISOLATION 343

tion, 306 (2007) pp. 74–90.
[6] E. Renzi and M. De Angelis, Semi active continuous control of base excited structures: an exploratory study, Journal of

Structural Control and Health Monitoring, 17 (2010), pp. 563–589.
[7] L. Y. Lu, G. L. Lin and T. C. Kuo, Stiffness controllable isolation system for near-fault seismic isolation, Engineering

Structures, 30 (2008) pp. 747–765.
[8] L. Y. Lu and G. L. Lin, Improvement of near-fault seismic isolation using a resettable variable stiffness damper, Engineering

Structures, 31 (2009) pp. 2097–2114.
[9] M. Basili and M. De Angelis, Equipment isolation systems by means of semi active control devices, Proc. Copech at Wetice,

IEEE Conference, Parma, Italy, (2014) pp. 237–242.
[10] M. Ahmadian, On the isolation properties of semiactive dampers, Journal of Vibration and Control, 5-2 (1999) pp. 217–232.
[11] Y. Liu, T. P. Waters and M. J. Brennan, A comparison of semi-active damping control strategies for vibration isolation

of harmonic disturbances, Journal of Sound and Vibration, 280-1 (2005) pp. 21–39.
[12] J. A Liu, G. Leitmann and J. M. Kelly, Single degree of freedom non-linear homogeneous systems, ASCE Journal of

Engineering Mechanics, 120-7 (1994) pp. 1543–1562.

Edited by: Giacomo Cabri
Received: September 15, 2014
Accepted: January 5, 2015





Scalable Computing: Practice and Experience
Volume 15, Number 4, pp. 345–355. http://www.scpe.org

DOI 10.12694/scpe.v15i4.1055
ISSN 1895-1767
c⃝ 2014 SCPE

OPTIMIZING CLOUD RESOURCES ALLOCATION FOR AN INTERNET OF THINGS
ARCHITECTURE∗

BOGDAN MANAT, E†, TEODOR-FLORIN FORTIS, ‡, AND VIOREL NEGRU§

Abstract. The optimization of the cloud resources used to power a multi-agent Internet of Things architecture is an important
issue which has an important impact on the overall operation cost of the architecture. The resources tenancy is a costly operation,
thus their allocation and management should be optimized based on the usage patterns. The infrastructure for the multi-agent
system should not be affected by the deployment or maintenance life cycle, operations require parts of the system, or even the entire
system to be offline during the execution of scheduled procedures. This paper outlines of the importance of the infrastructure audit,
which offers a good insight of how the resources are used, the geographical areas which are heavily used and where the allocation
or release of used resources is mandatory. Also, the security audit, in a distributed multi-agent architecture that handles a large
number of heterogeneous devices, represents a good mechanism for performance improvement.

Key words: Internet of Things, cloud computing, multi-agent systems

1. Introduction. The recent advances in Internet of Things (IoT) technologies and the cloud computing
adoption have led to an increased usage of this two paradigms to create solid architectures that are able to handle
hundred of thousands of concurrent connections, at the same time offering a good Quality of Service (QoS) and
Quality of Experience (QoE) for the end user. The resources renting from public cloud providers for supporting
the backbone infrastructure for an IoT architecture is beneficial for small and medium-sized enterprises (SME)
or academic institutions which are trying to reach a large number of clients, because there is no need to upgrade
or maintain the physical infrastructure. Even though the cloud client is not completely aware of the exact
location of the hardware that delivers the required information, there are methods available that can determine
the best route (considering both geographical location and bandwidth) for optimal performance [39].

For handling a big number of connections from a wide range of devices, an Internet of Things architecture
should employ a fast, secure, reliable and fail safe infrastructure for the services offered to the end users which
rely upon the manner in which the information is collected. Because of different usage patterns that result
from the daily routine of different groups of users, the best solution for building an infrastructure for the
IoT framework relies on the elasticity provided by the cloud computing paradigm [11, 15, 23, 33]. Also, the
operational cost for maintaining the architecture up and running can be significantly reduced by releasing unused
resources at daily time intervals when the audit operations report a low usage of the infrastructure.

From the reliability and operational standpoint, the core infrastructure for the multi-agent system needs
to bypass any bottlenecks introduced by the on demand created infrastructure. Therefore, any replacement or
restart of the virtual machines should be scheduled on isolated groups of virtual machines without affecting the
system’s response time.

Usually, on a non-complex application, the application access point and the database server are hosted on
the same physical server, thus the business logic is very easy to manage. Therefore, the application access point
has direct access to the required information without searching and querying any other network nodes that can
be scattered in different data centers. In an Internet of Things framework, the business logic is separated on
multiple physical servers, because it needs to process and store a large amount of information sent by the clients.
Considering the tremendous amount of data that needs to be stored, the database instances are separated on
multiple virtual machines, so that the database instances can be grouped in clusters for a better management
and distribution of stored data. Given the heterogeneous nature of the information handled by the Internet of
Things architecture the data that needs to be stored can be also grouped based on its type, therefore various

∗EXTENDED VERSION OF [18]
†West University of Timişoara, Faculty of Mathematics and Informatics, Computer Science Department, bvd. V. Pârvan, 4,

300223,Timişoara, Romania(bogdan.manate@info.uvt.ro).
‡Institute e-Austria Timişoara & West University of Timişoara, Faculty of Mathematics and Informatics, Computer Science

Department, bvd. V. Pârvan, 4, 300223,Timişoara, Romania(fortis@info.uvt.ro).
§Institute e-Austria Timişoara & West University of Timişoara, Faculty of Mathematics and Informatics, Computer Science

Department, bvd. V. Pârvan, 4, 300223,Timişoara, Romania(vnegru@info.uvt.ro).

345



346 B. MANAŢE, T.F. FORTIŞ AND V. NEGRU

Fig. 1.1. The actors that interact with the multi-agent architecture [18].

types of storage solutions can be used based on the information type. The information which is collected on a
regular basis from the sensors can be stored in a time series database, the semantic information about devices
can be stored using a triple store database and the information about the system’s users (e.g. credentials and
preferences) can be stored in a document based database.

The same need for intensive infrastructure management is identified in social networks like Facebook [8],
Twitter [12], LinkedIn [28] and MySpace [7] and online video streaming providers like Netflix [41] and Hulu [40],
where data integrity and services up time play an important role because the services downtime may generate
significant revenue losses.

This papers presents how an on demand infrastructure is created to support a multi-agent architecture
which operates in the Internet of Things context and how the resources allocation can be optimized based on
the usage patterns inferred from the audit operations.

This paper is structured as follows: in Section 2 is presented a literature review of existing infrastructures,
in Section 3 is presented the multi-agent architecture designed for Internet of Things governance that needs
to manage the underlying cloud infrastructure, in Section 4 is presented a solution for a cloud infrastructure
management able to scale an IoT architecture, in Section 5 it is emphasized the importance of infrastructure
audit and underline the benefits of a proper infrastructure audit, in Section 6 are presented two methods that
enhance the resources utilization and the system scalability and finally, in Section 7 are presented the final
conclusions of this paper.

2. Background. By unifying the Internet of Things, Cloud Computing and network edge services a new
paradigm emerges called Fog Computing [4], which offers compute power, support for data storage and provides
necessary infrastructure for connecting the sensors and clouds. The researchers from CISCO have proposed the
Fog Computing term to exemplify a system that is characterize by low latency, ample geographical distribution,
location awareness, mobility and heterogeneity. In the context of Fog Computing the services are closer to
the consumer delivering this way the required information in a fast and reliable manner. The support for bi-
directional data flow (from devices to the cloud and conversely) allows the system to have a greater control over
the data sources and the cloud resources. In case of a data source failure, the system can isolate the affected
data sources and any important information is inferred from the neighboring devices based on the localization
service. Also, the bi-directional data flow enables the multi-agent system to send commands to devices that are



OPTIMIZING CLOUD RESOURCES ALLOCATION FOR AN INTERNET OF THINGS ARCHITECTURE 347

Fig. 2.1. The types of virtual machines used in the IoT infrastructure [18].

able to execute simple or complex operations (like actuators).
Beside moving some of the logic to the edge of the network it is imperative to take into account the

geographical distribution of the resources that need these services [22]. The services distribution depends on
the audit performed on that parts of the network characterized by same location and the number of clients
that the system should service. The services are distributed based on the number of possible clients in a given
geographical area, therefore a big number of resources will be available for urban areas to service the existing
clients and a smaller number of resources will be distributed for the users living in the vicinity of the urban
areas. In the edge computing (EC) an important role is played by context awareness, so that a resource it is
aware of its current location, the surrounding resources and where is the case the resource can be aware of the
entire surrounding context. Thus the methods for information aggregation can benefit from the informations
exchanged by the edge services about the surrounding context.

Even though the services are brought as close as possible to the end-users, parts of the data requested by
the users is sometimes stored on different database servers situated in various data centers. In [16] is proposed a
solution based on the data replication mechanism provided by distributed databases. The important data sets
stored in the main data center are replicated on cheap commodity hardware situated at the edge of the network
closer to the edge services, reducing by this way the network latency and core network utilization. Also, some of
the information can be stored for a small amount of time on the client devices, enabling this way a peer-to-peer
information exchange between different users.

By utilizing the multi-agent system based on a distributed infrastructure the end-users should benefit from
a good quality of service (QoS) enhanced by a pleasant experience which respects high standards of quality of
experience (QoE) [24]. The QoE term is usually used to express the overall experience of using a multimedia
system. However, considering the multitude of devices that are encompassed by the Internet of Things framework
it is worth noting that these devices are used to improve the user’s experience in an environment.

In order to scale the multi-agent architecture proposed in [19], a large number of virtual machine instances
are launched in the cloud so that the system load can be evenly distributed on the available resources. The
system can be scaled as long as the cloud provider has the necessary resources available, otherwise additional
resources may be launched using another public cloud provider or a private cloud. A solution for this problem is
offered by the open-source platform mOSAIC [27], which offers an unified application programming interface and
a platform for developing large scale applications that are using resources rented from multiple cloud providers.
The resources provisioning mechanism is based on a multi-agent architecture (CloudAgency) [38], that enables
the platform to rent the best cost effective heterogeneous resources from different cloud providers based on a
service level agreement (SLA) provided by the user. The best solution is matched by a semantic reasoning
module embeded in the multi-agent system that operates on a Cloud Ontology.

Aneka [37] is another a cloud computing platform that uses cloud resources from the Microsoft Azure cloud
for creating services oriented applications. The Aneka platform offers a configurable services container, services
discovery and load balancing, therefore the developers can focus on the application development and less on the
infrastructure management.

Given the fact that it is impossible for a single cloud provider to scatter its data centers around the globe to



348 B. MANAŢE, T.F. FORTIŞ AND V. NEGRU

Fig. 3.1. The multi-agent architecture [19]

offer on demand computing power as close as possible to their clients, a viable solution to overcome this problem
is represented by a cloud federation [5]. By using a federation of clouds and a location discovery services, the
resources are rented from the closest available cloud provider thus enabling the infrastructure to offer fast and
localized support.

3. Architecture. The proposed architecture for the multi-agent system [19] presented in Figure 3.1 uses
the agents as independent and mobile entities, which are specialized to solve specific domain oriented issues that
are introduced by the Internet of Things paradigm. As seen in Fig. 1.1, groups of agents are working together
to gather, annotate, process and store data in a cloud environment. Other collections of specialized agents are
distributed on client devices based on the devices semantic definition. By having the agents distributed both
on the client devices and on the cloud infrastructure, the communication and the management of the agents
is delegated to the core implementation of the multi-agent platform, thus the resulting system operates as an
integrated environment.

The information, which may be sent as partially processed or raw data, flows from the clients to the cloud
endpoints that are managed by the instances of the ProxyAgent, which are routing the information based on
its type to the available resources. When the information reaches one of the end-points of the cloud, it can be
semantically annotated and sent for further processing. Considering the special cases when the context aware
component is active, the information related to a particular context can be used for updating the current context
if the information received contains relevant values that depict a modification of the actual state. The informa-
tion that contributes to context modelling is managed by ContexManagerAgent [21], therefore the ProxyAgent
needs to route the information related to the context to a virtual machine where the ContextManagerAgent is
instantiated.

The data cache plays an important role in a system that handles massive quantities of information because
it has a big impact on the system performance. The most accessed information is stored in the RAM memory,



OPTIMIZING CLOUD RESOURCES ALLOCATION FOR AN INTERNET OF THINGS ARCHITECTURE 349

so that all requests trying to read the information from a database are routed directly to the information stored
by the cache system. The agents that are handling a large amount of information are developed with an of the
shelf local caching system to reduce the time needed for information access.

When data gathered from the devices is older than a specified amount of time it is transferred to the data
archive database. The archive database compress and stores the aggregated information in order to facilitate a
later information retrieval of the archived data. When the information stored in the archive database becomes
obsolete the data archive is subjected to a purge operation that aims to remove the existing information which
has not been used in a long time.

The multi-agent system was developed to serve a general purpose when it comes to data collection and
processing, but it can be used in various domains like ambient intelligence, smart city management, ambient
assisted living and for supervising the industrial processes.

4. Infrastructure management. The proposed multi-agent system employs three types of virtual ma-
chines, which have to accomplish a specific task in the architecture:

• Compute VM - compute optimized instances which offer the highest performing processors. These
types of instances are used for the data collection end-points. The multi-agent container runs on these
instances, where agents specialized for data processing and semantic annotation are instantiated.

• Database VM - storage optimized instances that are able to offer support for memory-intensive and ran-
dom I/O operations. The instances of this type can be grouped into clusters depending on the technical
specifications provided by the company which delivers the database software solution. A virtualization
advisor [34] can be used to determine based on the audit data which is the best configuration for the
database instances.

• GPU instances - instances that have attached a graphical and general purpose GPU. This type of
instance is used for data mining [17], data-matching [29], intrusion detection [14, 36] and learning [10].

4.1. Managing compute instances. In the paper [20] it is presented a suite of benchmark tests per-
formed on a prototypical implementation of the Internet of Things architecture briefly presented in Section 3.
The benchmarks results define the maximum number of connections that can be handled by different types of
virtual machines rented from Amazon EC2. The maximum threshold for every virtual machine type can be
used by the BrokerAgent, as a trigger, to launch a new instance in order to distribute the system load.

The standard virtual machine images, that are built with the purpose of supporting the architecture, are
bundled with necessary software packages to start the architecture. When a non standard image is launched
from the cloud provider repository, the BrokerAgent handles the deployment phase as well the registering phase
after which the image is marked as ready to process the data collected from the devices.

Event though the implementation of the proposed multi-agent architecture targets the Scala programming
language and Akka toolkit, to benefit from the highly concurrent and distributed nature of the proposed multi-
agent system, the out of the box scheduling mechanism [3] implemented by Scala/Akka software stack can be
greatly improved with the addition of load balancers [32], which are offered by default by the majority of the
cloud providers. Therefore, the BrokerAgent is designed to handle this scenario by grouping the targeted virtual
machines, automatically, requesting a new load balancer for the grouped instances from the cloud provider using
the cloud provider’s public API.

Another benefit resulted from the usage of a multi-agent system on top of the Akka toolkit is the standard
implementation of the communication protocol, which is the default option supported by every agent. This
way the agents are able to exchange information regardless of their location, hence, the infrastructure might be
exposed to a higher network traffic when the actors are deployed on a virtual machine that has been launched
in a different data centers.

The audit operations performed by the AuditAgent on the entire infrastructure are important, because
they offer valuable information about the resources utilization, unauthorized access attempts, system loading,
the number of newly added/removed devices and the geographical distribution of the end users. In order to
offer edge computing services for the clients the system should be aware of the resources’ positions which are
useful when a local system failure occurs. By knowing the exact location of the resources and the location of
the clients, the edge services can be dynamically managed and deployed offering a flexible alternative when a
local resource becomes unavailable.



350 B. MANAŢE, T.F. FORTIŞ AND V. NEGRU

4.2. Managing database instances. The instance type that is hosting the database software solutions
represents an important instance type for the architecture, because it assures the data persistence. The database
instances need to be configured based on the technical specifications of the database software which is launched
on these instances. The special situation that arise when database instances are grouped together in a cluster
or ring require additional instructions to join the group after a restart. Also, other tuning operations can be
executed to improve the database response time. Therefore, the BrokerAgent has to mitigate the interaction
between the cluster and the new database instance and any other operations that require interaction with
the database software. For applications targeting the Java platform, the JSch 1 library can be used to send
commands over SSH to a virtual machine in a secure manner.

The operations executed via the command line interpreter, like joining a cluster, gathering audit data or a
force data replication, are executed by any of the agents running on the local agents container or running on a
remote virtual machine, thus allowing the multi-agent system to have total control over the launched instances.
Therefore, for security reasons, the interactions with the underlying operating system should be executed only by
the agents which have a very well defined role in the infrastructure management like AuditAgent or BrokerAgent.

Some NoSQL databases, like Riak, recommend the usage of a load balancer [1] as a best practice, because
every node that is a member of a cluster is able to handle the incoming requests, hence the incoming requests
can be routed to any available instance.

4.3. Managing GPU instances. The GPU instances are offered at high rates, because the GPU boards
are bundled with expensive hardware. Hence, only a handful of cloud providers offer such instances, some of
them are big players in cloud computing domain like Amazon, Nimbix, Peer1, Penguin computing and Softlayer.

The data processing using a high performance GPU is very fast, hence the data traffic between the GPU
instances and the data store can simply overcome the infrastructure network capability. To solve this problem,
the GPU instances need to be started in the same data center where the data which is subject to processing is
available. Also, the network connection between the database instances and the GPU instances should offers
support for a higher bandwidth to speed up the data transfer. A better solution for networking is a cluster
network where the instances launched in the same cluster group are started on the same physical server rack, so
that the cluster network provides high network bandwidth and low latency for data transfer between instances.

The agents of the proposed multi-agent system that are running tasks on the GPU instances are implemented
using ScalaCL 2 a library that lets the programmers to run Scala code on the GPUs in a very natural way.
The tasks distribution is handled by a router agent, which uses a Round Robing algorithm to distribute the
information stored in the local mailbox (an internal queue).

5. Infrastructure audit. The system audit is important in an environment where tens of thousands
of virtual machines represent the backbone of a multi-agent architecture (Fig. 5.1). The audit is useful for
automatic maintenance as well as for human operators, so that the data gathered by the audit operation can
be used to maximize the infrastructure performance and to reduce the operational costs. The audit operations
offer important data about the network latency, CPU usage, GPU usage, RAM memory loading, and it can
also verify if the resources rented from the cloud provider respect the service level agreement (SLA) [25], which
is very important for the infrastructure stability. The multi-agent system relies on the cloud infrastructure to
operate at best performance parameters, so that any change in the infrastructure components can affect the
system’s overall performance. Thus, the audit operations must be scheduled after every start/restart of a virtual
machine to validate the changes [6].

Because the multi-agent architecture proposed in [19] was developed to target a wide-spread geographical
area, the audit information is useful to determine which area offers a high QoS/QoE for end-users. Thus, the
edge computing services offered for certain geographical areas can be configured for best performance results
considering the audit data collected for the specified areas.

The AuditAgent uses a database to store different audit results based on the execution time. Storing audit
results for a long period of time is useful to identify the parts of the infrastructure that are extensively used so

1http://www.jcraft.com/jsch/
2https://code.google.com/p/scalacl/



OPTIMIZING CLOUD RESOURCES ALLOCATION FOR AN INTERNET OF THINGS ARCHITECTURE 351

Fig. 5.1. The IoT infrastructure audit [18].

that further actions may be taken to improve performances by moving some of the resources situated in areas
with low traffic to the area where the infrastructure is experiencing peaks of traffic.

Considering the vast applications of the Internet of Things in domains like health care, smart city, ambient
intelligence and industrial, a lot of private information is transferred between agents which are situated either
on the client side or in the cloud. To protect the private information of the end-users it is imperative to
execute security audit operations [35] over different components of the system. The heterogeneous character of
the devices that interact in the IoT framework offer a wide range of possibilities for a cyber-attack, therefore
periodic audit operations are compulsory. The security audit needs to target the client-side applications, edge
computing services and the cloud infrastructure periodically, so that any attempt or unauthorized usage of the
system has to be immediately identified and reported.

Another important aspect of the infrastructure audit is related to the detection of the intrusion attempts.
The detection of intrusion attempts can be automatically handled by the SecurityAgent, which has a set of rules
implemented to deal with such situations. Real time intrusion detection for the Internet of Things paradigm
has been implemented in SVELTE [31] project with an impressive detection rate of almost 100%, thus the task
of detecting potential attackers can be assigned to an agent which has full access to the data exchange inside
of the multi-agent system.

6. Resources usage optimization. Even though there are many research papers [2, 9, 13, 26, 30] focused
on the optimization of the cloud resources usage, for the particular case regarding the proposed multi-agent
architecture the resource usage can be optimized using a two-phase method base on resources pooling and
virtual machine pre-warm-up. In order to optimize the resources usage in an Internet of Things architecture
there should be a balance between assuring the system stability and resources usage. The first method presented
bellow is based on a pool of resources and is employed when no information about the system usage is available.
After the audit operations manage to gather a significant amount of data about how and when the system is
accessed by the end users the multi-agent architecture will be able to pre-warm the virtual machines just in
time for the expected traffic peak.

6.1. Resources pooling. The resource pooling method is used when there is no audit data available
about the system’s usage so that the virtual machines cannot be prepared for the network traffic peaks. A
variable number of compute virtual machines are provisioned with the required software stack and are kept
in a resources pool for when the system is under heavy load. As seen in Fig. 6.1 when the system is under
heavy load the available resources are moved from the resources pool and attached to the load balancer that is



352 B. MANAŢE, T.F. FORTIŞ AND V. NEGRU

Fig. 6.1. Resources pool.

experiencing heavy network traffic.

Keeping the underutilized resources running is the main drawback of this method but is a fair compromise
for keeping the system running in special situations generated by massive network traffic.

6.2. Virtual machines ’warm-up’. The Internet of Things is characterized by highly localized and
repetitive events, therefore after collecting enough information about the system usage it is very easy to forecast
where and when are required extra cloud resources. The information about the system usage can be extracted by
analyzing the audit data collected by the AuditAgent. The number of virtual machines present in the resources
pool can be gradually decreased as the information gathered from the audit operations has relevant information
about the usage time frame.

In Fig. 6.2 is presented a general usage sample of the available resources. The point B represents the
maximum number of connections that can be handled by the multi-agent system using the existing resources.
The point C represents a forecast of the maximum number of connections for the current time interval. In order
to avoid an overloading of the system by reaching the critical point B, when no additional virtual machines are
started to take over the excess traffic, the point A was selected as the best time when a new virtual machine
should be started. The best time is calculated by subtracting the time needed for the virtual machine to start
(the time needed for booting and for installing the required software stack) from the time when the critical
point B will be reached.

7. Conclusion and future work. This paper presents a method for a cloud infrastructure management
and cloud resources allocation based on a multi-agent solution. The proposed solutions aim to overcome the
issues encountered when managing an on-demand cloud infrastructure for such a dynamic framework like the
Internet of Things. Because the entire logic for infrastructure management is detached to specialized agents,
that operate on data collected from the system logs or from user defined constraints, it can be used as a
standalone component in other contexts, that have similar requirements like the multi-agent system used for
Internet of Things governance and which are required to operate using the infrastructure as a service paradigm.

Another important aspect underlined in this paper is related to infrastructure audit and the positive impact
on the system performance when the data collected during the audit operation is used to dynamically reconfigure
the system. As presented in Section 6 the audit operation also play an important role for resources usage
optimization. The audit information is useful when dealing with location aware services, because it offers
valuable information about the current state of the machines which are hosting the edge network services.



OPTIMIZING CLOUD RESOURCES ALLOCATION FOR AN INTERNET OF THINGS ARCHITECTURE 353

Fig. 6.2. A general usage sample

Hence, the regions which are characterized by heavy network traffic can benefit from a new set of computing
resources during traffic peak.

For further research it is planned to develop a feature of the multi-agent system that analyses the instances
usage patterns related to users profiles, so that the agents will be able to significantly reduce the number of
the instances launched in the resources pool. Therefore the multi-agent system will provide just in time the
instances needed for balancing the incoming requests, thus reducing the unnecessary costs generated by the idle
instances from the resources pool.

Acknowledgment. The work of the first author was partially supported by the strategic grant POS-
DRU/159/1.5/S/137750, “Project Doctoral and Postdoctoral programs support for increased competitiveness
in Exact Sciences research” cofinanced by the European Social Fund within the Sectoral Operational Programme
Human Resources Development 2007–2013 and Romanian Government grant PN-II-ID-PCE-2011-3-0260 (AMI-
CAS). The views expressed in this paper do not necessarily reflect those of the corresponding projects consortium
members.

REFERENCES

[1] Riak load balancing. http://docs.basho.com/riak/1.3.1/cookbooks/Load-Balancing-and-Proxy-Configuration/. Ac-
cessed: 2014-09-08.

[2] V. Aggarwal, V. Gopalakrishnan, R. Jana, K. Ramakrishnan, and V. A. Vaishampayan, Optimizing cloud resources for
delivering IPTV services through virtualization, in Communication Systems and Networks (COMSNETS), 2012 Fourth
International Conference on, IEEE, 2012, pp. 1–10.

[3] M. Bevilacqua-Linn, M. Byron, P. Cline, J. Moore, and S. Muir, Sirius: distributing and coordinating application
reference data, in Proceedings of the 2014 USENIX conference on USENIX Annual Technical Conference, USENIX
Association, 2014, pp. 293–304.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing and its role in the internet of things, in Proceedings of
the first edition of the MCC workshop on Mobile cloud computing, ACM, 2012, pp. 13–16.

[5] R. Buyya, R. Ranjan, and R. N. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for
scaling of application services, in Algorithms and architectures for parallel processing, Springer, 2010, pp. 13–31.

[6] F. Doelitzscher, C. Fischer, D. Moskal, C. Reich, M. Knahl, and N. Clarke, Validating cloud infrastructure changes
by cloud audits, in Services (SERVICES), 2012 IEEE Eighth World Congress on, IEEE, 2012, pp. 377–384.

[7] M. Farkas, Going where patrons are: Outreach in MySpace and Facebook, American Libraries, 38 (2007), p. 27.
[8] N. Farrington and A. Andreyev, Facebooks Data Center Network Architecture, in IEEE Opt. Interconnects Conf, Citeseer,

2013, pp. 5–7.
[9] J. M. Ferris, Methods and systems for optimizing resource usage for cloud-based networks, Aug. 22 2008. US Patent App.

12/196,459.



354 B. MANAŢE, T.F. FORTIŞ AND V. NEGRU

[10] L. F. Gruber and M. West, GPU-Accelerated Bayesian Learning and Forecasting in Simultaneous Graphical Dynamic
Linear Models, tech. report, Technical report, Department of Statistical Science, Duke University, 2014.

[11] D. Guinard, C. Floerkemeier, and S. Sarma, Cloud computing, REST and mashups to simplify RFID application devel-
opment and deployment, in Proceedings of the Second International Workshop on Web of Things, ACM, 2011, p. 9.

[12] T. Hoff, Scaling Twitter: Making Twitter 10000 Percent Faster, High Scalability, (2009).
[13] S. Khatua, A. Ghosh, and N. Mukherjee, Optimizing the utilization of virtual resources in Cloud environment, in Virtual

Environments Human-Computer Interfaces and Measurement Systems (VECIMS), 2010 IEEE International Conference
on, IEEE, 2010, pp. 82–87.

[14] S.-i. Kim, W. Edmonds, and N. Nwanze, On GPU accelerated tuning for a payload anomaly-based network intrusion
detection scheme, in Proceedings of the 9th Annual Cyber and Information Security Research Conference, ACM, 2014,
pp. 1–4.

[15] M. Kovatsch, S. Mayer, and B. Ostermaier, Moving application logic from the firmware to the cloud: Towards the thin
server architecture for the internet of things, in Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),
2012 Sixth International Conference on, IEEE, 2012, pp. 751–756.

[16] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris, Enhancing edge computing with database replication, in
Reliable Distributed Systems, 2007. SRDS 2007. 26th IEEE International Symposium on, IEEE, 2007, pp. 45–54.

[17] W. Ma and G. Agrawal, A translation system for enabling data mining applications on GPUs, in Proceedings of the 23rd
international conference on Supercomputing, ACM, 2009, pp. 400–409.

[18] B. Manaţe, T.-F. Fortiş, and V. Negru, Infrastructure Management Support in a Multi-Agent Architecture for Internet
of Things, in European Modelling Symposium EMS2014 (EMS2014), Pisa, Italy, Oct. 2014.

[19] B. Manaţe, T.-F. Fortis, and P. Moore, Applying the Prometheus methodology for an Internet of Things architecture,
in Utility and Cloud Computing (UCC), 2014 Fourth IEEE International Conference on Utility and Cloud Computing,
IEEE, 2014.

[20] B. Manaţe, V. I. Munteanu, and T.-F. Fortiş, Towards a Scalable Multi-agent Architecture for Managing IoT Data, in
P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth International Conference on, 2013, pp. 270–
275.

[21] B. Manaţe, V. I. Munteanu, T. F. Fortis, and P. T. Moore, An intelligent context-aware decision-support system oriented
towards healthcare support, Complex, Intelligent and Software Intensive Systems (CISIS), 2014 Eighth International
Conference, (2014), pp. 386–391.

[22] R. Manning, Dynamic and distributed managed edge computing (MEC) framework, May 20 2004. US Patent App. 10/850,291.
[23] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi, Combining Cloud and sensors in a smart city environment,

EURASIP Journal on Wireless Communications and Networking, 2012 (2012), pp. 1–10.
[24] R. F. Moghaddam and M. Cheriet, A Note on Quality of Experience (QoE) beyond Quality of Service (QoS) as the

Baseline, arXiv preprint arXiv:1407.5527, (2014).
[25] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and K. Krishnakumar, A multi-agent infrastructure and a

service level agreement negotiation protocol for robust scheduling in grid computing, in Advances in Grid Computing-EGC
2005, Springer, 2005, pp. 651–660.

[26] N. Paton, M. A. De Aragão, K. Lee, A. A. Fernandes, and R. Sakellariou, Optimizing utility in cloud computing
through autonomic workload execution, Bulletin of the Technical Committee on Data Engineering, 32 (2009), pp. 51–58.

[27] D. Petcu, B. Di Martino, S. Venticinque, M. Rak, T. Máhr, G. E. Lopez, F. Brito, R. Cossu, M. Stopar, S. Šperka,
et al., Experiences in building a mOSAIC of clouds, Journal of Cloud Computing, 2 (2013), pp. 1–22.

[28] J. M. Pujol, G. Siganos, V. Erramilli, and P. Rodriguez, Scaling online social networks without pains, in Proc of
NETDB, 2009.

[29] C.-P. Pungila, M. Reja, and V. Negru, Efficient parallel automata construction for hybrid resource-impelled data-matching,
Future Generation Computer Systems, 36 (2014), pp. 31–41.

[30] J. Rao, X. Bu, C.-Z. Xu, and K. Wang, A distributed self-learning approach for elastic provisioning of virtualized cloud
resources, in Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2011 IEEE
19th International Symposium on, IEEE, 2011, pp. 45–54.

[31] S. Raza, L. Wallgren, and T. Voigt, SVELTE: Real-time intrusion detection in the Internet of Things, Ad hoc networks,
11 (2013), pp. 2661–2674.

[32] M. Sharma, Y. Anitha, and P. Sharma, An Optimistic Approach for Load Balancing in Cloud Computing, (2014).
[33] J. Soldatos, M. Serrano, and M. Hauswirth, Convergence of utility computing with the internet-of-things, in Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, IEEE, 2012,
pp. 874–879.

[34] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath, Automatic virtual machine
configuration for database workloads, ACM Transactions on Database Systems (TODS), 35 (2010), p. 7.

[35] X. Sun and C. Wang, The Research of Security Technology in the Internet of Things, in Advances in Computer Science,
Intelligent System and Environment, Springer, 2011, pp. 113–119.

[36] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis, Gnort: High performance network
intrusion detection using graphics processors, in Recent Advances in Intrusion Detection, Springer, 2008, pp. 116–134.

[37] C. Vecchiola, X. Chu, and R. Buyya, Aneka: a software platform for .NET-based cloud computing, High Speed and Large
Scale Scientific Computing, (2009), pp. 267–295.

[38] S. Venticinque, R. Aversa, B. Di Martino, and D. Petcu, Agent based Cloud Provisioning and Management-Design and
Prototypal Implementation., in CLOSER, 2011, pp. 184–191.

[39] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, Cloudanalyst: A cloudsim-based visual modeller for analysing cloud



OPTIMIZING CLOUD RESOURCES ALLOCATION FOR AN INTERNET OF THINGS ARCHITECTURE 355

computing environments and applications, in Advanced Information Networking and Applications (AINA), 2010 24th
IEEE International Conference on, IEEE, 2010, pp. 446–452.

[40] F. Wu, W.-H. Chen, P. R. Graham, and G. D. Pelton, Efficiently distributing video using a hybrid network that uses
existing infrastructure, Oct. 13 2009. US Patent 7,602,846.

[41] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, Large-scale parallel collaborative filtering for the netflix prize, in
Algorithmic Aspects in Information and Management, Springer, 2008, pp. 337–348.

Edited by: Dana Petcu
Received: November 15, 2014
Accepted: January 15, 2015





AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:
• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-
ciency.

System engineering:
• programming environments,
• debugging tools,
• software libraries.

Performance:
• performance measurement: metrics, evalua-
tion, visualization,

• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.


