
SCALABLE COMPUTINGPratie and Experiene
Speial Issue: Pratial Aspets of High-LevelParallel ProgrammingEditor: Frédéri Loulergue

Volume 6, Number 4, Deember 2005ISSN 1895-1767

Editor-in-ChiefMarin PaprzykiInstitute of Computer SieneWarsaw Shool of Soial Psyhologyul. Chodakowska 19/3103-815 WarszawaPolandmarin.paprzyki�swps.edu.plhttp://mpaprzyki.swps.edu.plManaginig EditorPaweª B. MyszkowskiInstitute of Applied InformatisWroªaw University of TehnologyWyb. Wyspia«skiego 27Wroªaw 51-370, POLANDpawel.myszkowski�pwr.wro.plSoftware Reviews EditorsHong ShenGraduate Shoolof Information Siene,Japan Advaned Instituteof Siene & Tehnology1-1 Asahidai, Tatsunokuhi,Ishikawa 923-1292, JAPANshen�jaist.a.ipDomenio TaliaISI-CNR /o DEISUniversità della Calabria87036 Rende, CS, ITALYtalia�si.deis.unial.itTehnial EditorAlexander Denisjuk
Elbląg Universityof Humanities and Eonomyul. Lotniza 282-300 Elbląg, POLANDdenisjuk�euh-e.edu.pl

Editorial BoardPeter Arbenz, Swiss Federal Inst. of Tehnology, Zürih,arbenz�inf.ethz.hDorothy Bollman, University of Puerto Rio,bollman�s.uprm.eduLuigi Brugnano, Università di Firenze,brugnano�math.unifi.itBogdan Czejdo, Loyola University, New Orleans,zejdo�beta.loyno.eduFrederi Desprez, LIP ENS Lyon,Frederi.Desprez�inria.frDavid Du, University of Minnesota, du�s.umn.eduYakov Fet, Novosibirsk Computing Center, fet�ssd.ss.ruLen Freeman, University of Manhester,len.freeman�manhester.a.ukIan Gladwell, Southern Methodist University,gladwell�seas.smu.eduAndrzej Gosinski, Deakin University, ang�deakin.edu.auEmilio Hernández, Universidad Simón Bolívar, emilio�usb.veDavid Keyes, Old Dominion University, dkeyes�odu.eduVadim Kotov, Carnegie Mellon University, vkotov�s.mu.eduJanusz Kowalik, Gda«sk University, j.kowalik�omast.netThomas Ludwig, Rupreht-Karls-Universität Heidelberg,t.ludwig�omputer.orgSvetozar Margenov, CLPP BAS, So�a,margenov�parallel.bas.bgOsar Naím, Orale Corporation, osar.naim�orale.omLalit M. Patnaik, Indian Institute of Siene,lalit�miro.iis.ernet.inDana Petu, Western University of Timisoara,petu�info.uvt.roHong Shen, Japan Advaned Institute of Siene & Tehnology,shen�jaist.a.ipSiang Wun Song, University of São Paulo, song�ime.usp.brBolesªaw Szyma«ski, Rensselaer Polytehni Institute,szymansk�s.rpi.eduDomenio Talia, University of Calabria, talia�deis.unial.itRoman Trobe, Jozef Stefan Institute, roman.trobe�ijs.siCarl Tropper, MGill University, arl�s.mgill.aPavel Tvrdik, Czeh Tehnial University,tvrdik�sun.felk.vut.zMarian Vajtersi, University of Salzburg,marian�osy.sbg.a.atJan van Katwijk, Tehnial University Delft,J.vanKatwijk�its.tudelft.nlLonnie R. Welh, Ohio University, welh�ohio.eduJanusz Zalewski, Florida Gulf Coast University,zalewski�fgu.eduSUBSCRIPTION INFORMATION: please visit http://www.spe.org

Salable Computing: Pratie and ExperieneVolume 6, Number 4, Deember 2005TABLE OF CONTENTSGuest Editor's Introdution: Pratial Aspets of High-Level ParallelProgramming iiiFrédéri LoulergueSpeial Issue Papers:Evaluating the performane of pipeline-strutured parallel programswith skeletons and proess algebra 1Anne Benoit, Murray Cole, Stephen Gilmore and Jane HillstonExtending resoure-bounded funtional programming languages withmutable state and onurreny 17Stephen Gilmore, Kenneth MaKenzie and Niholas WolversonE.V.E., An Objet Oriented SIMD Library 31Joel Falou, AND Joelyn SerotExternal Memory in Bulk-Synhronous Parallel ML 43Frédéri Gavanéral de GaullePetri nets as Exeutable Spei�ations of High-Level Timed ParallelSystems 71Frank PommereauResearh Papers:Agent Based Semanti Grids: Researh Issues and Challenges 83Omer F. Rana and Line PouhardA Feedbak Control Mehanism for Balaning I/O- andMemory-Intensive Appliations on Clusters 95Xiao Qin, Hong Jiang, Yifeng Zhu and David R. Swanson

© SWPS, Warszawa 2005

Salable Computing: Pratie and ExperieneVolume 6, Number 4, p. iii. http://www.spe.org ISSN 1895-1767© 2005 SWPSGUEST EDITOR'S INTRODUCTIONComputational Siene appliations are more and more omplex to develop and require more and moreomputing power. Parallel and grid omputing are solutions to the inreasing need for omputing power. Highlevel languages o�er a high degree of abstration whih ease the development of omplex systems. Being basedon formal semantis, it is even possible to ertify the orretness of ritial parts of the appliations. Algorithmiskeletons, parallel extensions of funtional languages, suh as Haskell and ML, or parallel logi and onstraintprogramming, parallel exeution of delarative programs suh SQL queries, et. have produed methods andtools that improve the prie/performane ratio of parallel software, and broaden the range of target appliations.This speial issue of presents reent work of researhers in these �elds. These artiles are extended andrevised versions of papers presented at the �rst international workshop on Pratial Aspets of High-Level Par-allel Programming (PAPP), a�liated to the International Conferene on Computational Siene (ICCS 2004).The PAPP workshops fous on pratial aspets of high-level parallel programming: design, implementationand optimization of high-level programming languages and tools (performane preditors working on high-levelparallel/grid soure ode, visualisations of abstrat behaviour, automati hotspot detetors, high-level GRIDresoure managers, ompilers, automati generators, et.), appliations in all �elds of omputational siene,benhmarks and experiments. The PAPP workshops are aimed both at researhers involved in the developmentof high level approahes for parallel and grid omputing and omputational siene researhers who are potentialusers of these languages and tools.One onern in the development of parallel programs is to predit the performanes of the programs fromthe soure ode in order to be able to optimize the programs or to �t the resoures needed by the programsto the resoures o�ered by the arhiteture. In their paper, Evaluating the performane of pipeline-struturedparallel programs with skeletons and proess algebra, Anne Benoît et al., propose a framework to evaluate theperformane of strutured parallel programs with skeletons and proess algebra. Frédéri Gava in ExternalMemory in Bulk-Synhronous Parallel ML provides an extension of the Bulk Synhronous Parallel ML libraryby input/output operations on disks, together with an extension of the Bulk Synhronous Parallel model.Another diretion of researh is to set onstraints on the resoures used by the programs. Stephen Gilmore etal. designed and developed the Camelot language whih is a resoure-bounded funtional programming languagewhih ompiles to Java byte ode to run on the Java Virtual Mahine. Their paper Extending resoure-boundedfuntional programming languages with mutable state and onurreny extends Camelot to inlude languagesupport for Camelot-level threads and extends the existing Camelot resoure-bounded type system to providesafety guarantees about the heap usage of Camelot threads. Frank Pommereau's previous work is about high-level Petri nets with a notion of time, alled ausal time, used for the spei�ation and the veri�ation of systemswith time onstraints. In his paper Petri nets as Exeutable Spei�ations of High-Level Timed Parallel Systemshe presents a step forward the use of this formalism for exeution purposes: an algorithm for the exeution ofa restrited lass of high-level Petri nets with ausal time.High-level programming languages aim at easing the programming of systems. This should not hinder thepreditability and the e�ieny of programs. Joël Falou and Joelyn Sérot designed a high-level library C++for the programming of the SIMD omponent of the Power PC proessors, whih is muh simpler to use thatlower level spei� libraries but with a very good e�ieny. Their EVE library is thus a very good pratialhoie for the programming of suh hardware.I would like to thank all the people who made the PAPP workshop possible: the organizers of the ICCSonferene, the other members of the programme ommittee: Rob Bisseling (Univ. of Utreht, The Netherlands),Matthieu Exbrayat (Univ. of Orléans, Frane), Sergei Gorlath (Univ. of Muenster, Germany), Clemens Grelk(Univ. of Luebek, Germany), Kevin Hammond (Univ. of St. Andrews, UK), Zhenjiang Hu (Univ. of Tokyo,Japan), Quentin Miller (Miller Researh Ltd., UK), Susanna Pelagatti (Univ. of Pisa, Italy), Alexander Tiskin(Univ. of Warwik, UK). I also thank the other referees for their e�ient help: Martin Alt, Frédéri Gava andSven-Bodo Sholz. Finally I thank all authors who submitted papers for their interest in the workshop, thequality and variety of researh topis they proposed.Frédéri Loulergue,Laboratoire d'Informatique Fondamentale d'Orléans, University of Orléans,rue Léonard de Vini, B. P. 6759 F-45067 ORLEANS Cedex 2, Frane.iii

Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 1�16. http://www.spe.org ISSN 1895-1767© 2005 SWPSEVALUATING THE PERFORMANCE OF PIPELINE-STRUCTURED PARALLELPROGRAMS WITH SKELETONS AND PROCESS ALGEBRA∗ANNE BENOIT† , MURRAY COLE , STEPHEN GILMORE , AND JANE HILLSTONAbstrat. We show in this paper how to evaluate the performane of pipeline-strutured parallel programs with skeletonsand proess algebra. Sine many appliations follow some ommonly used algorithmi skeletons, we identify suh skeletons andmodel them with proess algebra in order to get relevant information about the performane of the appliation, and to be ableto take good sheduling deisions. This onept is illustrated through the ase study of the pipeline skeleton, and a tool whihgenerates automatially a set of models and solves them is presented. Some numerial results are provided, proving the e�ay ofthis approah.Key words. Algorithmi skeletons, pipeline, high-level parallel programs, performane evaluation, proess algebra, PEPAWorkbenh.1. Introdution. One of the most promising tehnial innovations in present-day omputing is the in-vention of grid tehnologies whih harness the omputational power of widely distributed olletions of om-puters [8℄. Designing an appliation for the Grid raises di�ult issues of resoure alloation and sheduling(roughly speaking, how to deide whih omputer does what, and when, and how they interat). These issuesare made all the more omplex by the inherent unpreditability of resoure availability and performane. Forexample, a superomputer may be required for a more important task, or the Internet onnetions required bythe appliation may be partiularly busy.In this ontext of grid programming, a skeleton-based approah [5, 16, 7℄ reognizes that many real ap-pliations draw from a range of well-known solution paradigms and seeks to make it easy for an appliationdeveloper to tailor suh a paradigm to a spei� problem. Powerful struturing onepts are presented to theappliation programmer as a library of pre-de�ned `skeletons'. As with other high-level programming modelsthe emphasis is on providing generi polymorphi routines whih struture programs in learly-delineated ways.Skeletal parallel programming supports reasoning about parallel programs in order to remove programmingerrors. It enhanes modularity and on�gurability in order to aid modi�ation, porting and maintenane ativ-ities. In the present work we fous on the Edinburgh Skeleton Library (eSkel) [6℄. eSkel is an MPI-based librarywhih has been designed for SMP and luster omputing and is now being onsidered for grid appliations usinggrid-enabled versions of MPI suh as MPICH-G2 [14℄.The use of a partiular skeleton arries with it onsiderable information about implied sheduling depen-denies. By modelling these with stohasti proess algebras suh as Performane Evaluation Proess Algebra[13℄, and thereby being able to inlude aspets of unertainty whih are inherent to grid omputing, we believethat we will be able to underpin systems whih an make better sheduling deisions than less sophistiated ap-proahes. Most signi�antly, sine this modelling proess an be automated, and sine grid tehnology providesfailities for dynami monitoring of resoure performane, our approah will support adaptive resheduling ofappliations.Stohasti proess algebras were introdued in the early 1990s as a ompositional formalism for performanemodelling. Sine then they have been suessfully applied to the analysis of a wide range of systems. In generalanalysis is based on the generation of an underlying ontinuous time Markov hain (CTMC) and derivation ofits steady state probability distribution. This vetor reords the likelihood of eah potential state of the system,and an in turn be used to derive performane measures suh as throughput, utilisation and response time.Several stohasti proess algebras have appeared in the literature; we use Hillston's Performane EvaluationProess Algebra (PEPA) [13℄.Some related projets obtain performane information from the Grid using benhmarking and monitoringtehniques [4, 17℄. In the ICENI projet [9℄, performane models are used to improve the sheduling deisions,but these are just graphs whih approximate data obtained experimentally. Moreover, there is no upper-levellayer based on skeletons in any of these approahes.
∗This work is part of the ENHANCE projet, funded by the United Kingdom Engineering and Physial Sienes Researhounil grant number GR/S21717/01.
†Shool of Informatis, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, May�eld Road,Edinburgh EH9 3JZ, UK. enhaners�inf.ed.a.uk, http://groups.inf.ed.a.uk/enhane/1

2 A. Benoit et al.Other reent work onsiders the use of skeleton programs within grid nodes to improve the quality of ostinformation [1℄. Eah server provides a simple funtion apturing the ost of its implementation of eah skeleton.In an appliation, eah skeleton therefore runs only on one server, and the goal of sheduling is to selet themost appropriate servers within the wider ontext of the appliation and supporting grid. In ontrast, ourapproah onsiders single skeletons whih span the Grid. Moreover, we use modelling tehniques to estimateperformane.Our main ontribution is based on the idea of using performane models to enhane the performane ofgrid appliations. We propose to model skeletons in a generi way to obtain signi�ant performane resultswhih may be used to reshedule the appliation dynamially. To the best of our knowledge, this kind of workhas not been done before. We show in this paper how we an obtain signi�ant results on a �rst ase studybased on the pipeline skeleton. An earlier version of this paper is published in the proeedings of the workshopon Pratial Aspets of High-level Parallel Programming (PAPP04), part of the International Conferene onComputational Siene (June 7-9, 2004, Kraków, Poland) [2℄. In this extended version a presentation of PEPAis inluded; the model resolution and the tool AMoGeT are desribed more preisely; and more experimentalresults are exposed.In the next setion, we present the pipeline and a model of the skeleton. Then we explain how to solvethe model with the PEPA Workbenh in order to get relevant information (Setion 3). In Setion 4 we presenta tool whih automatially determines the best mapping to use for the appliation, by �rst generating a setof models, then solving them and omparing the results. Some numerial results on the pipeline appliationare provided in Setion 5, and the feasibility of this approah is disussed in Setion 6. Finally we give someonlusions.2. The pipeline skeleton. Many parallel algorithms an be haraterized and lassi�ed by their adhereneto one or more of a number of generi algorithmi skeletons [16, 5, 7℄. We fous in this paper on the onept ofpipeline parallelism, whih is of well-proven usefulness in several appliations. We reall brie�y the priniple ofthe pipeline skeleton. Then we introdue the proess algebra PEPA [13℄ and we explain how we an model thepipeline with PEPA. Finally, we show in Setion 2.4 the state transition diagram of a three stage pipeline.2.1. The priniple of pipeline. In the simplest form of pipeline parallelism [6℄, a sequene of Ns stagesproess a sequene of inputs to produe a sequene of outputs (Fig. 2.1).
...Stage 1 Stage 2 Stage Ns

inputs outputsFig. 2.1. The pipeline appliationEah input passes through eah stage in the same order, and the di�erent inputs are proessed one afteranother (a stage annot proess several inputs at the same time). Note that the internal ativity of a stage maybe parallel, but this is transparent to our model. In the remainder of the paper we use the term �proessor�to denote the hardware responsible for exeuting suh ativity, irrespetive of its internal design (sequential orparallel).We onsider this appliation lass in the ontext of omputational grids, and so we want to map it toour omputing resoures, whih onsist of a set of potentially heterogeneous proessors interonneted by aheterogeneous network.It is well known that a omputing pipeline performs most e�etively when the workload is well balanedaross stages and there are a large enough number of inputs to amortize the osts of �lling and draining. Ourwork diretly addresses the �rst of these issues, by failitating exploration of the stage-to-proessor mappingspae. The seond issue remains the responsibility of the programmer: our approah assumes that running theappliation will take long enough for the system to reah an equilibrium behaviour. The models help us tostudy this steady state behaviour.Considering the pipeline appliation in the eSkel library [6℄, we fous here on a pipeline variant whihrequires that eah stage produes exatly one output for eah input.We now go on to present the PEPA language whih we will use to model the pipeline appliation. Thepresentation below is neessarily brief and rather informal. For full details the reader is referred to [13℄. Theoperational semantis an also be found in Appendix A.

Evaluating The Performane of Pipeline-strutured Parallel Programs 32.2. Introdution to PEPA. The PEPA language provides a small set of ombinators. These allowlanguage terms to be onstruted de�ning the behaviour of omponents, via the ativities they undertake and theinterations between them. Timing information is assoiated with eah ativity. Thus, when enabled, an ativity
a = (α, r) will delay for a period sampled from the negative exponential distribution whih has parameter r.If several ativities are enabled onurrently, either in ompetition or independently, we assume that a raeondition exists between them. The omponent ombinators, together with their names and interpretations,are presented informally below.Pre�x: The basi mehanism for desribing the behaviour of a system is to give a omponent a designated�rst ation using the pre�x ombinator, denoted by a full stop. For example, the omponent (α, r).S arriesout ativity (α, r), whih has ation type α and an exponentially distributed duration with parameter r, and itsubsequently behaves as S.Choie: The hoie ombinator aptures the possibility of ompetition between di�erent possible ativities.The omponent P + Q represents a system whih may behave either as P or as Q. The ativities of both Pand Q are enabled. The �rst ativity to omplete distinguishes one of them: the other is disarded. The systemwill behave as the derivative resulting from the evolution of the hosen omponent.Constant: It is onvenient to be able to assign names to patterns of behaviour assoiated with omponents.Constants are omponents whose meaning is given by a de�ning equation. For example, P

def
= (α, r).P de�nesa omponent whih performs ativity α at rate r, forever.Hiding: The possibility to abstrat away some aspets of a omponent's behaviour is provided by the hidingoperator, denoted P/L. Here, the set L of visible ation types identi�es those ativities whih are to beonsidered internal or private to the omponent and whih will appear as the unknown type τ .Cooperation: In PEPA diret interation, or ooperation, between omponents is the basis of ompositionality.The set whih is used as the subsript to the ooperation symbol, the ooperation set L, determines thoseativities on whih the o-operands are fored to synhronise. For ation types not in L, the omponentsproeed independently and onurrently with their enabled ativities. However, an ativity whose ation typeis in the ooperation set annot proeed until both omponents enable an ativity of that type. The twoomponents then proeed together to omplete the shared ativity. The rate of the shared ativity may bealtered to re�et the work arried out by both omponents to omplete the ativity (for details see [13℄). Wewrite P ‖ Q as an abbreviation for P ⊲⊳

L
Q when L is empty.In some ases, when an ativity is known to be arried out in ooperation with another omponent, aomponent may be passive with respet to that ativity. This means that the rate of the ativity is leftunspei�ed (denoted ⊤) and is determined upon ooperation, by the rate of the ativity in the other omponent.All passive ations must be synhronised in the �nal model.The dynami behaviour of a PEPA model is represented by the evolution of its omponents, either individ-ually or in ooperation. The form of this evolution is governed by a set of formal rules whih give an operationalsemantis of PEPA terms (see [13℄). Thus, as in lassial proess algebra, the semantis of eah term in PEPA isgiven via a labelled multi-transition system (the multipliities of ars are signi�ant). In the transition system astate orresponds to eah syntati term of the language, or derivative, and an ar represents the ativity whihauses one derivative to evolve into another. The omplete set of reahable states is termed the derivative setof a model and these form the nodes of the derivation graph whih is formed by applying the semanti rulesexhaustively.The derivation graph is the basis of the underlying Continuous Time Markov Chain (CTMC) whih is usedto derive performane measures from a PEPA model. The graph is systematially redued to a form where itan be treated as the state transition diagram of the underlying CTMC. Eah derivative is then a state in theCTMC. The transition rate between two derivatives P and Q in the derivation graph is the rate at whih thesystem hanges from behaving as omponent P to behaving as Q. It is the sum of the ativity rates labellingars onneting node P to node Q.2.3. Pipeline model. To model a pipeline appliation, we deompose the problem into the stages, theproessors and the network. The model is expressed in PEPA (f. Setion 2.2).

4 A. Benoit et al.The stagesThe �rst part of the model is the appliation model, whih is spei�ed independently of the resoures on whihthe appliation will be omputed. We de�ne one PEPA omponent per stage. For i = 1..Ns, the omponentStagei works sequentially. At �rst, it gets data (ativity movei), then proesses it (ativity proessi), and �nallymoves the data to the next stage (ativity movei+1).Stagei

def
= (movei,⊤).(proessi,⊤).(movei+1,⊤).StageiAll the rates are unspei�ed, denoted by the distinguished symbol ⊤, sine the proessing and move timesdepend on the resoures where the appliation is running. These rates will be de�ned later, in another part ofthe model.The pipeline appliation is then de�ned as a ooperation of the di�erent stages over the movei ativities,for i = 2..Ns.The ativities move1 and moveNs+1 represent, respetively, the arrival of an input in the appliation andthe transfer of the �nal output out of the pipeline. They do not represent any data transfer between stages, sothey are not synhronizing the pipeline appliation. Finally, we have:Pipeline def
= Stage1 ⊲⊳{move2}

Stage2 ⊲⊳{move3}
. . . ⊲⊳

{moveNs
}
StageNsThe proessorsWe onsider that the appliation must be mapped on a set of Np proessors. Eah stage is proessed by a given(unique) proessor, but a proessor may proess several stages (in the ase where Np < Ns). In order to keepthe model simple, we deide to put information about the proessor (suh as the load of the proessor or thenumber of stages being proessed) diretly in the rate µi of the ativities proessi, i = 1..Ns (these ativitieshave been de�ned for the omponents Stagei).Eah proessor is then represented by a PEPA omponent whih has a yli behaviour, onsisting ofproessing sequentially inputs for a stage. Some examples follow.

• In the ase when Np = Ns, we map one stage per proessor:Proessori def
= (proessi, µi).Proessori

• If several stages are proessed by a same proessor, we use a hoie omposition. In the followingexample (Np = 2 and Ns = 3), the �rst proessor proesses the two �rst stages, and the seondproessor proesses the third stage.Proessor1 def
= (proess1, µ1).Proessor1 + (proess2, µ2).Proessor1Proessor2 def
= (proess3, µ3).Proessor2Sine all proessors are independent, the set of proessors is de�ned as a parallel omposition of the proessoromponents: Proessors def
= Proessor1||Proessor2|| . . . ||ProessorNpThe networkThe last part of the model is the network. We do not need to diretly model the arhiteture and the topologyof the network for what we aim to do, but we want to get some information about the e�ieny of the linkonnetion between pairs of proessors. This information is given by a�eting the rates λi of the movei ativities(i = 1..Ns + 1).� λ1 represents the onnetion between the user (providing inputs to the pipeline) and the proessor hostingthe �rst stage.� For i = 2..Ns, λi represents the onnetion between the proessor hosting stage i− 1 and the proessorhosting stage i.� λNs+1 represents the onnetion between the proessor hosting the last stage and the user (the site wherewe want the output to be delivered).

Evaluating The Performane of Pipeline-strutured Parallel Programs 5Note that λi will enode information both about the load on the links and the size of the data proessedby proessi−1. When the data is �transferred� on the same omputer, the rate is really high, meaning that theonnetion is fast (ompared to a transfer between di�erent sites).The network is then modelled by the following omponent:Network def
= (move1, λ1).Network + · · ·+ (moveNs+1, λNs+1).NetworkThe pipeline modelOne we have de�ned the di�erent omponents of our model, we just have to map the stages onto the proessorsand the network by using the ooperation ombinator. For this, we de�ne the following sets of ation types:� Lp = {proessi}i=1..Ns
to synhronize the Pipeline and the Proessors� Lm = {movei}i=1..Ns+1 to synhronize the Pipeline and the NetworkMapping def

= Network⊲⊳
Lm

Pipeline ⊲⊳
Lp

ProessorsPEPA input �leAn example of an input �le for the PEPA Workbenh an be found in Appendix B.2.4. State transition diagram for the pipeline model. Figure 2.2 represents the state transitiondiagram of a three stage, three proess pipeline. This piture shows all of the possible interleavings of theomponents of the model with ars of various kinds showing the di�erent types of transitions from state tostate.In Table 2.1 we show the orrespondene between the state numbers in Figure 2.2 and the PEPA terms.Sine the PEPA terms are long we have omitted the ooperation sets, showing only the loal state of eahomponent. Moreover to keep the table ompat we have named the derivatives of the Stage omponents asfollows: Stagei0
def
= (movei,⊤).Stagei1Stagei1

def
= (proessi,⊤).Stagei2Stagei2
def
= (movei+1,⊤).Stagei03. Solving the models. One reason to work with a formal modelling language suh as PEPA is thatmodels are unambiguous and an serve to support reliable ommuniation between those who design systems,those who develop them and those who maintain them. Another reason to work with a formal modellinglanguage is that formal models an be automatially proessed by tools in order to derive information fromthem whih otherwise would have to be produed by manual alulation or reasoning.The tool whih we have used for proessing our PEPA models and omputing the steady-state probabilitydistribution of our system is the PEPA Workbenh. A full desription of the funtioning of this software an befound in [11℄; the referene manual for the latest release is [12℄. We inlude a brief desription of the funtioningof the Workbenh in Appendix C.1 in order to make the present paper self-ontained.Notie however that the steady-state probability distribution of the system is rarely the desired result ofthe performane analysis proess and so to progress we must identify a signi�ant performane result. Theperformane result that is pertinent for the pipeline appliation is the throughput of the proessi ativities(i = 1..Ns). Sine data passes sequentially through eah stage, the throughput is idential for all i, and we needto ompute only the throughput of proess1 to obtain signi�ant results. This is done by adding the steady-stateprobabilities of eah state in whih proess1 an happen, and multiplying this by µ1.We have made some hanges to the Java edition of the PEPA Workbenh in order to allow the user tospeify performane results whih will then be automatially omputed. This new funtionality is then used toompute numerial results from the pipeline models. Some more tehnial details are provided in Appendix C.2.

6 A. Benoit et al.
25 26 27

24

21

move1 move2 move3 move4

process3process2process1

8
9

2 3

10 11 12

7

16 17 18

2322

4
619 20

14 15

5

13

1

Fig. 2.2. State transition diagram of a three stage, three proess pipeline with states numbered aording to Table 2.14. AMoGeT: The Automati Model Generation Tool. We investigate in this paper how to enhanethe performane of grid appliations with the use of algorithmi skeletons and proess algebras. To do this, wehave reated a tool whih automatially generates performane models for the pipeline ase study, and thensolves the models. These results ould be used to reshedule the appliation.We give at �rst an overview of the tool. Then we desribe the information whih is provided to the tool viaa desription �le. Finally, we explain the funtioning of the tool.
desription�le performaneinformation

PEPAmodels resultsAMoGeT CompareresultsmodelsGenerate WorkbenhPEPA
Fig. 4.1. The priniple of AMoGeT4.1. AMoGeT desription. Fig. 4.1 illustrates the priniple of the tool. In its urrent form, the toolis a generi, reusable software omponent. Its ultimate role will be as an integrated omponent of a run-time sheduler and re-sheduler, adapting the mapping from appliation to resoures in response to hanges inresoure availability and performane.

Evaluating The Performane of Pipeline-strutured Parallel Programs 7Table 2.1Correspondene between state numbers in Figure 2.2 and PEPA terms (ooperation sets are omitted but remain onstant)state no. PEPA state1 (Network, (Stage10,Stage20,Stage30), (Proessor1,Proessor2,Proessor3))2 (Network, (Stage11,Stage20,Stage30), (Proessor1,Proessor2,Proessor3))3 (Network, (Stage12,Stage20,Stage30), (Proessor1,Proessor2,Proessor3))4 (Network, (Stage10,Stage21,Stage30), (Proessor1,Proessor2,Proessor3))5 (Network, (Stage11,Stage21,Stage30), (Proessor1,Proessor2,Proessor3))6 (Network, (Stage12,Stage21,Stage30), (Proessor1,Proessor2,Proessor3))7 (Network, (Stage10,Stage22,Stage30), (Proessor1,Proessor2,Proessor3))8 (Network, (Stage11,Stage22,Stage30), (Proessor1,Proessor2,Proessor3))9 (Network, (Stage12,Stage22,Stage30), (Proessor1,Proessor2,Proessor3))10 (Network, (Stage10,Stage20,Stage31), (Proessor1,Proessor2,Proessor3))11 (Network, (Stage11,Stage20,Stage31), (Proessor1,Proessor2,Proessor3))12 (Network, (Stage12,Stage20,Stage31), (Proessor1,Proessor2,Proessor3))13 (Network, (Stage10,Stage21,Stage31), (Proessor1,Proessor2,Proessor3))14 (Network, (Stage11,Stage21,Stage31), (Proessor1,Proessor2,Proessor3))15 (Network, (Stage12,Stage21,Stage31), (Proessor1,Proessor2,Proessor3))16 (Network, (Stage10,Stage22,Stage31), (Proessor1,Proessor2,Proessor3))17 (Network, (Stage11,Stage22,Stage31), (Proessor1,Proessor2,Proessor3))18 (Network, (Stage12,Stage22,Stage31), (Proessor1,Proessor2,Proessor3))19 (Network, (Stage10,Stage20,Stage32), (Proessor1,Proessor2,Proessor3))20 (Network, (Stage11,Stage20,Stage32), (Proessor1,Proessor2,Proessor3))21 (Network, (Stage12,Stage20,Stage32), (Proessor1,Proessor2,Proessor3))22 (Network, (Stage10,Stage21,Stage32), (Proessor1,Proessor2,Proessor3))23 (Network, (Stage11,Stage21,Stage32), (Proessor1,Proessor2,Proessor3))24 (Network, (Stage12,Stage21,Stage32), (Proessor1,Proessor2,Proessor3))25 (Network, (Stage10,Stage22,Stage32), (Proessor1,Proessor2,Proessor3))26 (Network, (Stage11,Stage22,Stage32), (Proessor1,Proessor2,Proessor3))27 (Network, (Stage12,Stage22,Stage32), (Proessor1,Proessor2,Proessor3))Information is provided to the tool via a desription �le (f. Setion 4.2). This information an be gatheredfrom the Grid resoures and from the appliation de�nition. In the following experiments, it is provided by theuser, but we an also get it automatially from grid servies, for example from the Network Weather Servie [17℄.The tool allows everything to be done in a single step through a simple Perl sript (f. Setion 4.3): itgenerates the models, solves them with the PEPA Workbenh, and then ompares the results. This allows usto have feedbak on the appliation when the performane of the available resoures is modi�ed.4.2. Desription �le for AMoGeT. The aim of this �le is to provide information about the availablegrid resoures and the modelled appliation, in our ase the pipeline.This desription �le is named mymodel.des, where mymodel is the name of the appliation.
• The �rst information provided is the type of the model. Sine we study here the pipeline skeleton, the�rst line is

type = pipeline;

• We then have the information about the Grid resoures and Network links, as a list of parameters. Thenumber of proessors N must at �rst be spei�ed:
nbproc =N ;And then, for i = 1..N and j = 1..N , we speify the available omputing power of the proessor i (pi),and the performane of the network link between proessors i and j (nli-j):p1=10; p2=5;nl1-1=10000; nl1-2=8;pi aptures the fat that a proessor's full power may not be available to our appliation (e. g. beauseof time-sharing with other ativities).

8 A. Benoit et al.
• Conerning the appliation, we have some information about the stages of the pipeline. Ns is thenumber of stages.nbstage=Ns;The amount of work wi required to ompute one output for stage i must be spei�ed for i = 1..Ns:w1=2; w2=4; ...Finally, we need to speify the size of the data transferred to and from eah stage. For i = 1..Ns + 1,dsi is the size of the data transferred to stage i, with the boundary ase dsNs + 1 whih represents thesize of the output data.ds1=100; ds2=5; ...
• Next we de�ne a set of andidate mappings of stages to proessors. Eah mapping spei�es where theinitial data is loated, where the output data must be left and (as a tuple) the proessor where eahstage is proessed. For example, the tuple (1, 1, 2) means that the two �rst stages are on proessor 1,with the third stage on proessor 2. A mapping is then of the form [input, tuple, output]. The mappingde�nition is a set of mappings, it an be as follows:mappings=[1,(1,2,3),3℄,[1,(1,1,2),2℄,[1,(1,1,1),1℄;
• The last thing is the performane result we want to ompute. For the pipeline appliation, we an askfor the throughput with the line:throughput;4.3. The AMoGeT Perl sript. The tool allows everything to be done in a single step through a simplePerl sript. The model generation is done by alling an auxiliary funtion. Models are then solved with thePEPA Workbenh as seen in Setion 3. Finally, the results are ompared. This allows us to have feedbak onthe appliation when the performane of the available resoures is modi�ed.One model is generated from eah mapping of the desription �le. Eah model is as desribed in Setion 2.3.The di�ult point onsists of generating the rates from the information gathered before. The model generationitself is then straightforward.To ompute the rates of the proessi ativities for a given model (i = 1..Ns), we need to know how manystages are hosted on eah proessor, and we assume that the work sharing between the stages is equitable. Therate assoiated with the proessi ativity is then:

µi = wi×
cpj

nbstjwhere j is the number of the proessor hosting the stage i, and nbstj is the number of stages being proessedon proessor j. In e�et, the available omputing power pj is further diluted by our own internal timesharingfator nbstj, before being applied to the workload assoiated with the stage, wi.The rates of ommuniation between stages depend on the mapping too, sine the rate of a movei ativitydepends on the onnetion link between the proessor j1 hosting stage i−1 and the proessor j2 hosting stage i,whih is given by nlj1-j2. Sine the mapping spei�es where the input and output data are, we an also �ndthe onnetion link for the data arriving into the pipeline and the data exiting the appliation. These ratesdepend also on the size of the data transferred from one stage of the pipeline to the next, given by dsi. Theboundary ases are applied to ompute the rates of the move1 and moveNs+1 ativities. The rate assoiatedwith the movei ativity is therefore:
λi =

nlj1−j2
dsiOne these rates are derived, generating the model is straightforward. We add into the �le the desriptionof the throughput of the proess1 ativity as a required result to allow an automati omputation of this result.The models an then be solved with the PEPA Workbenh, and the throughput of the pipeline is automatiallyomputed (Setion 3). During the resolution, all the results are saved in a single �le, and the last step of resultsomparison �nds out whih mapping produes the best throughput. This mapping is the one we should use torun the appliation.

Evaluating The Performane of Pipeline-strutured Parallel Programs 95. Numerial results. We present in this setion some numerial results. We explain through them howthe information obtained with AMoGeT an be relevant for optimizing the appliation.In the present paper we do not apply this method to a given �real-world� example. We use an abstratpipeline for whih we arbitrarily �x the time required to omplete eah stage. This is su�ient to show thatAMoGeT an help to optimize an appliation.5.1. Experiment 1: Pipeline with 3 stages��xed data size. We give here a few numerial resultson an example with 3 pipeline stages (and up to 3 proessors). The models that we need to solve are reallysmall (in this ase, the model has 27 states and 51 transitions, f. Figure 2.2).We suppose in this experiment that nli-i=10000 for i = 1..3, and that there is no need to transfer the inputor the output data. Moreover, we suppose that the network is symmetrial (nli-j=nlj-i for all i, j = 1..3).Conerning the pipeline parameters, the amount of work wi required to ompute eah stage is 1, as well as thesize of the data dsi whih is transferred from one stage to another. The relevant parameters are therefore nl1-2,nl2-3, nl1-3, and pi for i = 1..3. We ompare di�erent mappings, and just speify the tuple indiating whihstage is on whih proessor. We ompare the mappings (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1),(1,3,2) and (1,3,3) (the �rst stage is always on proessor 1). The results are displayed in Table 5.1, and we onlyput the best of the mappings whih were investigated in the relevant line of the table.Table 5.1Result table for Experiment 1Set of results Parameters Mapping &nl1-2 nl2-3 nl1-3 p1 p2 p3 Throughput1 10000 10000 10000 10 10 10 (1,2,3): 5.63467
10000 10000 10000 5 5 5 (1,2,3): 2.818922 10000 10000 10000 10 10 1 (1,2,1): 3.36671

10 10 10 10 10 1 (1,1,2): 2.59914
1 1 1 10 10 1 (1,1,1): 1.879633 10 1 1 10 10 10 (1,1,2): 2.59914
10 1 1 1 1 100 (1,3,3): 0.49988In the �rst set of results, all the proessors are idential and the network links are really fast. In these ases,the best mapping always onsists of putting one stage on eah proessor (the results for the mapping (1, 3, 2)are idential to the best mapping). If we divide the time alloated by the proessor to the appliation by 2, theresulting throughput is also divided by 2, sine only the proessing power has an impat on the throughput.The seond set of results illustrates the ase when one proessor is beoming really busy, in this aseproessor 3. We should not use it any more, but depending on the network links, the best mapping may hange.If the links are not e�ient, we should indeed avoid data transfer and try to put onseutive stages on the sameproessor. When nl1-2 = nl2-3 = nl1-3 = 10, the mapping (1, 2, 2) provides the same results as (1, 1, 2).Finally, the third set of results shows what happens if the network link to proessor 3 is really slow. Inthis ase again, the use of the proessor should be avoided, and the best mappings are (1, 1, 2) and (1, 2, 2).However, if proessor 3 is a really fast proessor ompared to the other ones (last line), we proess stage 2 andstage 3 on the third proessor (mapping (1, 3, 3)).5.2. Experiment 2: Pipeline with 3 stages�data size hanging. The third experiment keeps the

3 stage pipeline, but onsiders hanges in the size of the data. The assumptions are the same as for Experiment 1,but more parameters have a �xed value.In this experiment, the network onnetion between proessors 1 and 2 is slightly less e�etive than theothers. So, we have nl1-2 = 100, nl2-3 = nl1-3 = 1000. Moreover, the omputing power of eah stage ispi = 10. The size of the data is now �xed to 100, exept from the data transiting from stage 1 to stage 2(ds2), whose size is varying.Figure 5.1 presents the throughput obtained with eah mapping, as a funtion of the data size ds2.Notie �rst that some of the mappings are not in�uened by the hange of the data size, i. e. (1,1,1), (1,1,2)and (1,1,3). This is due to the fat that the onnetion between stages 1 and 2 is good beause the data stayson the same proessor. The in�uene of the size of the data transferred is muh more important when theonnetion is less e�etive (mappings (1,2,2) and (1,2,3)), sine the move2 ativity is then the bottlenek of thesystem.

10 A. Benoit et al.
T

hr
ou

gh
pu

t

ds2

mappings:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350

(1,1,1)
(1,1,2)
(1,1,3)
(1,2,1)
(1,2,2)
(1,2,3)
(1,3,1)

(1,3,3)
(1,3,2)

Fig. 5.1. Experiment 2: Throughput funtion of ds2The best mapping is (1,3,2) when ds2 < 150, and (1,1,3) for greater values. Both of them avoid theslow onnetion nl1-2, and they use several proessors so the proessing power is better than for mappingslike (1,1,1). When the size of the data transferred between the �rst two stages beomes high, the bottlenek isthe onnetion link between them, so it is better to put them on the same proessor, even if we may lose someproessing power.5.3. Experiment 3: Pipeline with 8 stages. The last experiment onsiders a larger pipeline, omposedof 8 stages. We use up to 8 proessors, and ompare four di�erent mappings, depending on the number ofproessors we wish to use:
• 8 proessors, the mapping is [1, (1, 2, 3, 4, 5, 6, 7, 8), 8]
• 4 proessors, the mapping is [1, (1, 1, 2, 2, 3, 3, 4, 4), 4]
• 2 proessors, the mapping is [1, (1, 1, 1, 1, 2, 2, 2, 2), 2]
• 1 proessor, the mapping is [1, (1, 1, 1, 1, 1, 1, 1, 1), 1]The parameters are the same as for Experiment 1, with pi = 10, wi = 1, dsi=1 and nli-i = 10000 forall i. We vary the parameters nli-j, for i 6= j, assuming that all these links are equal, and we ompute thethroughput for the di�erent mappings. Figure 5.2 displays the results.The urves obtained on�rm that we should avoid data transfer when the network onnetions are lesse�ient. When nli-j > 7, the network performs well enough to allow the use of the 8 proessors. However,when the performane dereases, we should use only 4 proessors, then two, and only one when nli-j < 0.8.When we need to transfer the output data bak to the �rst proessor (for example, the mapping

[1, (1, 2, 3, 4, 5, 6, 7, 8), 1]for the ase with 8 proessors), we obtain almost the same results, with a slightly smaller throughput due tothis additional transfer.6. Feasibility of the approah. We envisage the use of our approah within a sheduling and reshedulingplatform for long-running grid appliations. In this ontext it is antiipated that after initial analysis andsheduling, the system would be monitored and that resheduling would be needed only relatively infrequently,for example, one an hour. Nevertheless it is important that the use of the tool does not ontribute an overheadwhih eliminates the bene�t to be obtained from its use. In this setion we present evidene whih suggeststhat this is not likely to be the ase in pratie. The reader should note that here we are re�eting on theperformane of the analysis tools themselves rather than on the performane of the appliation whih theymonitor (as presented in the previous setion).

Evaluating The Performane of Pipeline-strutured Parallel Programs 11
Number of processors

T
hr

ou
gh

pu
t

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5 6 7 8 9 10

2
4
8

1

nli-jFig. 5.2. Experiment 3: Pipeline with 8 stagesWe ran an experiment to assess the time taken to generate and solve models using AMoGeT, whih will, ofourse, be dependent on the size of the generated model. Fig. 6.1 illustrates the number of states and transitionsof the models as a funtion of the parameters of the skeleton. These numbers are independent of the numberof proessors in the model; they depend only on the number of pipeline stages.
 1e+6

 8e+5

 6e+5

 4e+5

 2e+5

 0 2 4 8 10 12 6Number of StagesNumberofst
ates/transitio
ns statestransitions

Fig. 6.1. States and TransitionsThe time required to generate and solve the models must be arefully onsidered. The generation is alwaysvery quik: it takes less than 0.01 seonds to generate 20 models. The time required to solve the modelsis usually more important, espeially when the models have a large state spae. However, if we onsider onlyrelatively small models (up to 20, 000 states), the resolution with the PEPA workbenh takes only a few seonds.Fig. 6.1 shows that when the number of stages is less than 9, the size of the model is small enough to have a fastresolution. However, the model grows exponentially when the number of stages is inreased, making AMoGeTless e�etive for a large number of stages. Sine real appliations usually do not have very many stages, this isnot a limitation of the tool in pratie.

12 A. Benoit et al.The overall use of AMoGeT takes usually less than one minute for omplex appliations running on severalproessors, even when we onsider several models to solve.As stated earlier, in a senario of long omputing grid appliations, with eventually dynami reshedulingof the appliation, we onsider that the tool may be run one per hour. We therefore believe that the amountof time required may be quite negligible and that the gain obtained by using the best of the mappings whihwere investigated an outperform the ost of the use of the tool.7. Conlusions. In the ontext of grid appliations, the availability and performane of the resoureshange dynamially. We have shown through this study that the use of skeletons, and performane modelsof these, an produe some relevant information to improve the performane of the appliation. This hasbeen illustrated on the pipeline skeleton, whih is a ommonly used algorithmi skeleton. The models helpus to hoose the mapping, of the stages onto the proessors, whih will produe the best throughput. A toolautomates all the steps to obtain the result easily.The pipeline skeleton is a simple ontrol skeleton. The deal skeleton has already been modelled in a similarway [3℄, and experiments are ongoing using deal skeletons nested into a pipeline appliation. This approah willalso be developed on some other skeletons so it may be useful for a larger lass of appliations.Our reent work onsiders the generation of models whih take into aount information from the Gridresoures, whih is gathered with the help of the Network Weather Servie [17℄. This will allow us to havemodels �tted to the real-time onditions of the resoures. This �rst ase study has already shown that wean use suh information produtively and that we have the potential to enhane the performane of gridappliations with the use of skeletons and proess algebras.Having proess algebra models of our skeletons also potentially o�ers other bene�ts suh as the ability toformally verify the orret funtioning of the skeleton. We intend to explore this aspet in future work.Appendix A. Strutured Operational Semantis for PEPA.The semanti rules, in the strutured operational style, are presented in Figure A.1; the interested readeris referred to [13℄ for more details. The rules are read as follows: if the transition(s) above the inferene linean be inferred, then we an infer the transition below the line. The notation rα(E) whih is used in the thirdooperation rule denotes the apparent rate of α in E, i.e. the sum of the rates of all ativities of type α in
Act(E).Appendix B. Pipeline example: input �le for the PEPA Workbenh.The input �le for the PEPA Workbenh is displayed in Fig. B.1, for a small example with Ns = Np = 3,and where eah proessor is hosting one of the stages.Appendix C. The PEPA Workbenh.C.1. Funtioning of the Workbenh. The PEPA Workbenh begins by generating the reahable statespae of a PEPA model as found from all possible interleavings of its transitions from state to state. For a �nitestate model with n states we an enumerate this state spae as C = {C1, . . . , Cn}. As the workbenh arriesout this task it ompiles the in�nitesimal generator matrix Q of the ontinuous-time Markov proess underlyingthe PEPA model. The workbenh adds a transition rate r to Qij every time that it �nds a transition from state
Ci to Cj at rate r. Additionally it subtrats r from Qii in order that the row sum of the matrix remains inbalane.The onditions whih must be satis�ed in order to guarantee the existene of an equilibrium distributionfor a Markov proess, and for this to be the same as the limiting distribution, are well-known�a stationaryor equilibrium probability distribution, Π, exists for every time-homogeneous irreduible Markov hain whosestates are all positive-reurrent.The intuition behind this distribution is the obvious one, namely that in the long run the probability thatthe PEPA model is in state Ci is given by Π(Ci).For �nite state PEPA models whose derivation graph is strongly onneted, and whih therefore havegenerated an ergodi Markov proess, the equilibrium distribution of the model, Π, is found by solving thematrix equation

ΠQ = 0 (C.1)

Evaluating The Performane of Pipeline-strutured Parallel Programs 13Pre�x
(α, r).E

(α,r)
−−−→ ECooperation

E
(α,r)
−−−→ E′

E ⊲⊳
L

F
(α,r)

−−−→ E′ ⊲⊳
L

F

(α /∈ L)
F

(α,r)
−−−→ F ′

E ⊲⊳
L

F
(α,r)

−−−→ E ⊲⊳
L

F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E ⊲⊳
L

F
(α,R)
−−−→ E′ ⊲⊳

L
F ′

(α ∈ L) where R =
r1

rα(E)

r2

rα(F)
min(rα(E), rα(F))Choie

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)Constant
E

(α,r)
−→ E′

A
(α,r)
−→ E′

(A
def
= E)Fig. A.1. The operational semantis of PEPAsubjet to the normalisation ondition whih ensures that Π is a well-formed probability distribution

∑

Π(Ci) = 1. (C.2)The equations C.1 and C.2 are ombined by replaing a olumn of Q by a olumn of ones and plaing a 1 inthe orresponding row of 0.Beause the onnetivity graph of the state transition system of the model will in general have low degree,the transition matrix of the Markov proess is best stored as a sparse matrix. The PEPA Workbenh usesa Java implementation of the preonditioned bionjugate gradient method. This is an iterative proedure asdesribed in [15℄ storing the in�nitesimal generator matrix in row-indexed sparse storage mode, a ompat storagemode whih requires storage of only about two times the number of nonzero matrix elements. An advantageof onjugate gradient methods for large sparse systems is that they referene the matrix only through itsmultipliation of a vetor, or the multipliation of its transpose and a vetor.C.2. Computing performane results with the PEPA Workbenh. The new funtionality of theworkbenh is desribed through a tiny example [10℄, whih we shall �rst desribe. We then explain how to addthe desription of the results in the PEPA input �le and how to ompute them.A tiny example. We desribe the omponents of the PEPA input language for the Workbenh via asimple example, desribed in the �le tiny.pepa:r1=2; r2=10; r3=1;P1=(start,r1).P2;

14 A. Benoit et al.// PIPELINE APPLICATION// 3 stages, 3 proessors (1 stage per proessor)// Variables delaration (all idential)mu1=10; mu2=10; mu3=10;la1=10; la2=10; la3=10; la4=10;// Definition of the StagesStage1 = (move1, infty).(proess1, infty).(move2, infty).Stage1;Stage2 = (move2, infty).(proess2, infty).(move3, infty).Stage2;Stage3 = (move3, infty).(proess3, infty).(move4, infty).Stage3;// Definition of the ProessorsProessor1 = (proess1, mu1).Proessor1;Proessor2 = (proess2, mu2).Proessor2;Proessor3 = (proess3, mu3).Proessor3;// Definition of the NetworkNetwork = (move1,la1).Network + (move2,la2).Network+ (move3,la3).Network + (move4,la4).Network;// The pipeline modelNetwork <move1,move2,move3,move4>(Stage1 <move2> Stage2 <move3> Stage3)<proess1,proess2,proess3> (Proessor1||Proessor2||Proessor3)Fig. B.1. The input �le for the PEPA Workbenh: pipeline.pepaP2=(run,r2).P3;P3=(stop,r3).P1;P1 || P1This model is omposed of two opies of a omponent, P1, exeuting in a pure parallel synhronization. P1is a simple sequential proess whih undergoes a start ativity with rate r1 to beome P2 whih runs with rate
r2 to beome P3 whih goes bak to P1 via a stop ativity with rate r3.The �rst line of the �le is de�ning the rates. Then the sequential proess is de�ned, and the �nal line is thesystem equation, whih desribes the behaviour of the modelled system.Adding results to the input �le. In order to automatially ompute some performane results, the userjust needs to speify them in the PEPA input �le, for example in the �le tiny.pepa presented before. This isdone by inluding at the end of the �le one line per result, of the form:result_name = {result_desription};result_name = rate * {result_desription};The name of the performane result that is desribed is result_name, and the desription of the result for thePEPA State Finder is result_desription.The states of interest are desribed through the use of a simple pattern language, with double stars (**)for wild ards, and double vertial bars (||) for separators between model omponents. The model omponentsare desribed in the order used in the system equation.A rate an be added; in this ase the �nal result obtained by the PEPA State Finder will be multiplied bythis rate. This is quite useful to ompute throughput.For our example, we an add some results onerning the �rst proess, independently of the state of theseond one:start1 = {P1 || **};

Evaluating The Performane of Pipeline-strutured Parallel Programs 15run1 = {P2 || **};Trun1 = r2 * {P2 || **};stop1 = {P3 || **};For example, the performane result run1 mathes all the states in whih the �rst proess is ready toperform the run ativity. The state of the seond proess an be anything. Trun1 is the same, multiplied bythe rate of the run ativity r2. It orresponds therefore to the throughput of run for the �rst proess.For the pipeline appliation, the required performane result is spei�ed in the PEPA input �lepipeline.pepa (Fig. B.1). This is done by adding the following line at the end of this �le:Throughput = mu1 * { ** <move1,move2,move3,move4>((proess1, infty).(move2,infty).Stage1 <move2> ** <move3> **)<proess1,proess2,proess3> (** || ** || **)}Computing the results. The results an be omputed by using the ommand line interfae. This is doneby invoking the following ommand:java pepa.workbenh.Main -run lr ./tiny.pepaThe -run lr (or -run lnbg+results) option means that we use the linear bionjugate gradient methodto ompute the steady state solution of the model desribed in the �le ./tiny.pepa, and then we ompute theperformane results spei�ed in this �le.This exeution prints the results to the sreen, and it also saves one �le per performane result(./results/model_name.result_name). This �le is the output of the PEPA State Finder for the result desrip-tion spei�ed in the input �le. It ontains the state mathing the desription, and the sum of the steady-stateprobabilities for these states. It does not take the multipliative rate into aount. The results are also appendedto the �le./model_root.res, where model_root is the beginning of the model_name, until a �−� or a � .� isfound. This is used to automatially ompare results of similar models.Only a few �les have been modi�ed to inlude the new funtionality in the Java Workbenh. The interestedreader should refer to [12℄. REFERENCES[1℄ M. Alt, H. Bishof, and S. Gorlath, Program Development for Computational Grids Using Skeletons and PerformanePredition, Parallel Proessing Letters, 12 (2002), pp. 157�174.[2℄ A. Benoit, M. Cole, S. Gilmore, and J. Hillston, Evaluating the performane of skeleton-based high level parallelprograms, in The International Conferene on Computational Siene (ICCS 2004), Part III, M. Bubak, D. van Albada,P. Sloot, and J. Dongarra, eds., LNCS, Springer Verlag, 2004, pp. 299�306.[3℄ A. Benoit, M. Cole, S. Gilmore, and J. Hillston, Sheduling skeleton-based grid appliations using PEPA and NWS,Submitted to a speial issue of The Computer Journal on Grid Performability Modelling and Measurement, (2004).[4℄ R. Biswas, M. Frumkin, W. Smith, and R. V. der Wijngaart, Tools and Tehniques for Measuring and ImprovingGrid Performane, in Pro. of IWDC 2002 on Distributed Computing: Mobile and Wireless Computing, vol. 2571 ofLNCS, Calutta, India, De. 2002, Springer-Verlag, pp. 45�54.[5℄ M. Cole, Algorithmi Skeletons: Strutured Management of Parallel Computation, MIT Press & Pitman, 1989.http://homepages.inf.ed.a.uk/mi/Pubs/skeletonbook.ps.gz.[6℄ M. Cole, eSkel: The edinburgh Skeleton library. Tutorial Introdution, Internal Paper, Shool of Informatis, University ofEdinburgh, (2002).http://homepages.inf.ed.a.uk/mi/eSkel/.[7℄ M. Cole, Bringing Skeletons out of the Closet: A Pragmati Manifesto for Skeletal Parallel Programming, Parallel Com-puting, 30 (2004), pp. 389�406.[8℄ I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastruture, Morgan Kaufmann, 1998.[9℄ N. Furmento, A. Mayer, S. MGough, S. Newhouse, T. Field, and J. Darlington, ICENI: Optimisation ofComponent Appliations within a Grid Environment, Parallel Computing, 28 (2002), pp. 1753�1772.[10℄ S. Gilmore, The PEPA Workbenh: User's Manual, Internal Paper, Shool of Informatis, University of Edinburgh, (2001).http://www.ds.ed.a.uk/pepa/pwb.pdf.[11℄ S. Gilmore and J. Hillston, The PEPA Workbenh: A Tool to Support a Proess Algebra-based Approah to PerformaneModelling, in Pro. of the 7th Int. Conf. on Modelling Tehniques and Tools for Computer Performane Evaluation,no. 794 in LNCS, Vienna, May 1994, Springer-Verlag, pp. 353�368.http://www.ds.ed.a.uk/pepa/workbenh.ps.gz.[12℄ N. Haenel, User Guide for the Java Edition of the PEPA Workbenh - Tabaso release, Internal Paper, Shool of Informatis,University of Edinburgh, (2003).http://www.ds.ed.a.uk/pepa/.

16 A. Benoit et al.[13℄ J. Hillston, A Compositional Approah to Performane Modelling, Cambridge University Press, 1996.[14℄ N. Karonis, B. Toonen, and I. Foster, MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interfae,Journal of Parallel and Distributed Computing (JPDC), 63 (2003), pp. 551�563.[15℄ W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerial Reipes in C: The Art of Sienti�Computing, Cambridge University Press, 1992.[16℄ F. Rabhi and S. Gorlath, Patterns and Skeletons for Parallel and Distributed Computing, Springer Verlag, 2002.[17℄ R. Wolski, N. Spring, and J. Hayes, The network weather servie: a distributed resoure performane foreasting serviefor metaomputing, Future Generation Computer Systems, 15 (1999), pp. 757�768.Edited by: Frédéri LoulergueReeived: June 3, 2004Aepted: June 14, 2005

Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 17�30. http://www.spe.org ISSN 1895-1767© 2005 SWPSEXTENDING RESOURCE-BOUNDED FUNCTIONAL PROGRAMMING LANGUAGESWITH MUTABLE STATE AND CONCURRENCYSTEPHEN GILMORE, KENNETH MACKENZIE AND NICHOLAS WOLVERSON∗Abstrat. Camelot is a resoure-bounded funtional programming language whih ompiles to Java byte ode to run on theJava Virtual Mahine. We extend Camelot to inlude language support for Camelot-level threads whih are ompiled to nativeJava threads. We extend the existing Camelot resoure-bounded type system to provide safety guarantees about the heap usage ofCamelot threads. We demonstrate the usefulness of our onurreny extensions to the language by implementing a multi-threadedgraphial network hat appliation whih ould not have been expressed as naturally in the sequential, objet-free sublanguage ofCamelot whih was previously available.1. Introdution. Funtional programming languages allow programmers to express algorithms oniselyusing high-level language onstruts operating over strutured data, seured by strong type-systems. Togetherthese properties support the prodution of high-quality software for omplex appliation problems. Funtionalprograms in strongly-typed languages typially have relatively few programming errors when ompared to similarappliations implemented in languages without these bene�ial features.These desirable language properties mean that developers shed the burdens of expliit memory manage-ment, but this has the assoiated ost that they typially lose all ontrol over the alloation and dealloation ofmemory. The Camelot language provides an intermediate way between ompletely automati memory manage-ment and unassisted alloation and dealloation in that it provides type-safe storage management by re-bindingof addresses. The address of a datum an be obtained in a pattern math and used in an expression (to store adi�erent data value at that address), overwriting the urrently-held value.The Camelot ompiler targets the Java Virtual Mahine but the JVM does not provide an instrutionto free memory, onsigning this to the garbage olletor, a generational olletor with three generations andimplementations of stop-and-opy and mark-sweep olletions. Camelot allows more preise ontrol of memoryalloation, allowing in-plae modi�ation of user-de�ned data strutures. The Camelot ompiler supports variousresoure-aware type systems whih ensure that memory re-use takes plae in a safe manner and also allow statipredition of heap-spae usage. Camelot uses a uniform representation for types whih are generated by theompiler, allowing data types to exhange storage ells. This uniform representation is alled the diamondtype [10, 12℄, implemented by a Diamond lass in the Camelot run-time. The Camelot language implementsa type system whih assigns types to funtions whih reord the number of parameters whih they onsume,and their types; the type of the result; and the number of diamonds onsumed or freed. The outome is thatthe storage onsumption requirements of a funtion are statially omputed at ompile-time along with thetraditional Hindley-Milner type inferene proedure.The novel ontribution of the present paper is to explain how suh an unusually rih programming modelan be extended to inorporate objet-oriented and onurrent programming idioms. This ontribution is notjust a design: it has been realised in the latest release of the Camelot ompiler.Struture of this paper. In Setion 2 we present the Camelot language in order that the reader may under-stand the operational ontext of the work. We follow this in Setion 3 with a disussion of our objet-orientedextensions to Camelot. This leads on to a presentation of the use of threads in Setion 4 followed by an analysisof the management of threads by the run-time system in Setion 5. Setion 6 explains the relationship betweenthreads in Camelot and threads as traditionally implemented in onurrent funtional languages using �rst-lassontinuations. Setion 7 details the impliations for veri�ation of Camelot programs. Related work is surveyedin Setion 8 and onlusions follow after that.2. The Camelot language. The ore of Camelot is a standard polymorphi ML-like funtional languagewhose syntax is based upon that of O'Caml; the main novelty lies in extensions whih allow the programmer toperform in-plae modi�ations to heap-alloated data-strutures. These features are similar to those desribedin by Hofmann in [11℄, but inlude some extra extensions for free list management. To retain a purely funtionalsemantis for the language in the presene of these extensions a linear type system an be employed: in thepresent implementation, linearity an be enfored via a ompiler swith. We are in the proess of enhaning
∗Laboratory for Foundations of Computer Siene, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3JZ, Sotland17

18 S. Gilmore et al.the ompiler by the addition of other, less restritive type systems whih still allow safe in-plae modi�ations:more details will be given below.Cruial design hoies for the ompilation are transpareny and an exat spei�ation of the ompilationproess. The former ensures that the ompilation does not modify the resoure onsumption in an unpreditableway. The latter provides a formal basis for using resoure information inferred for the high-level language inproofs on the intermediate language.In the following setions we will give a brief desription of the struture of the language. We will then outlinehow the language is ompiled, and in partiular how the memory-management extensions are implemented.2.1. The struture of Camelot. We will give some examples to indiate the basi struture of Camelot;full details an be found in [20℄.Datatypes are de�ned in the normal way:type intlist = Nil | Cons of int * intlisttype 'a polylist = NIL | CONS of 'a * 'a polylisttype ('a, 'b) pair = Pair of 'a *'bValues belonging to user-de�ned types are reated by applying onstrutors and are deonstruted using themath statement:let re length l = math l withNil -> 0| Cons (h,t) -> 1+length tlet test () = let l = Cons(2, Cons(7,Nil))in length lAs an be seen from this example, onstrutor arguments are enlosed in parentheses and are separated byommas. In ontrast, funtion de�nitions and appliations whih require multiple arguments are written in a�urried� style:let add a b = a+blet f x y z = add x (add y z)Despite this notation, the present version of Camelot does not support higher-order funtions; any appli-ation of a funtion must involve exatly the same number of arguments as are spei�ed in the de�nition of thefuntion.2.2. Diamonds and Resoure Control. The Camelot ompiler targets the Java Virtual Mahine, andvalues from user-de�ned datatypes are represented by heap-alloated objets from a ertain JVM lass. Detailsof this representation will be given in Setion 2.4.Consider the following funtion whih uses an aumulator to reverse a list of integers (as de�ned by theintlist type above).let re rev l a = math l withNil -> a| Cons (h,t) -> rev t (Cons (h,a))let reverse l = rev l NilThis funtion alloates an amount of memory equal to the amount oupied by the input list. If no furtherreferene is made to the input list then the heap spae whih it oupies may eventually be relaimed by theJVM garbage olletor.In order to allow more preise ontrol of heap usage, Camelot inludes onstruts allowing re-use of heapells. There is a speial type known as the diamond type (denoted by <>) whose values represent bloks of heap-alloated memory, and Camelot allows expliit manipulation of diamond objets. This is ahieved by equippingonstrutors and math rules with speial annotations referring to diamond values. Here is the reverse funtionrewritten using diamonds so that it performs in-plae reversal:let re rev l a = math l withNil -> a| Cons (h,t)�d -> rev t (Cons (h,a)�d)let reverse l = rev l NilThe annotation ��d� on the �rst ourrene of Cons tells the ompiler that the diamond value d is to bebound to a referene to the spae used by the list ell. The annotation on the seond ourrene of Cons spei�es

Extending Camelot With Mutable State and Conurreny 19that the list ell Cons(h,a) should be onstruted in the diamond objet referred to by d, and no new spaeshould be alloated on the heap.One might not always wish to re-use a diamond value immediately. This an sometimes ause di�ultysine suh diamonds might then have to be returned as part of a funtion result so that they an be reyledby other parts of the program. For example, the alert reader may have notied that the list reversal funtionabove does not in fat reverse lists entirely in plae. When the user alls reverse, the invoation of the Nilonstrutor in the all to rev will ause a new list ell to be alloated. Also, the Nil value at the end of theinput list oupies a diamond, and this is simply disarded in the seond line of the rev funtion (and will besubjet to garbage olletion if there are no other referenes to it).The overall e�et is that we reate a new diamond before alling the rev funtion and are left with an extradiamond after the all had ompleted. We ould reover the extra diamond by making the reverse funtionreturn a pair onsisting of the reversed list and the spare diamond, but this is rather lumsy and programsquikly beome very omplex when using this kind of tehnique.To avoid this kind of problem, unwanted diamonds an be stored on a free list for later use. This is doneby using the annotation ��_� as in the following example whih returns the sum of the entries in an integer list,destroying the list in the proess:let re sum l a = math l withNil�_ -> a| Cons (h,t)�_ -> sum t (a+h)The question now is how the user retrieves a diamond from the free list. In fat, this happens automatiallyduring onstrutor invoation. If a program uses an undeorated onstrutor suh as Nil or Cons(4,Nil) thenif the free list is empty the JVM new instrution is used to alloate memory for a new diamond objet on theheap; otherwise, a diamond is removed from the head of the free list and is used to onstrut the value. Itmay oasionally be useful to expliitly return a diamond to the free list and an operator free: <> -> unit isprovided for this purpose.There is one �nal notational re�nement. The in-plae list reversal funtion above is still not entirelysatisfatory sine the Nil value arries no data but is nonetheless alloated on the heap. We an overome thisby rede�ning the intlist type astype intlist = !Nil | Cons of int * intlistThe exlamation mark direts the ompiler to represent the Nil onstrutor by the JVM null referene. Withthe new de�nition of intlist the original list-reversal funtion performs true in-plae reversal: no heap spaeis onsumed or destroyed when the reverse funtion is applied. The ! annotation an be used for a single zero-argument onstrutor in any datatype de�nition. In addition, if every onstrutor for a partiular datatype isnullary then they may all be preeded by!, in whih ase they will be represented by integer values at runtime.We have deliberately hosen to expose this hoie to the programmer (rather than allowing the ompiler toautomatially hoose the most e�ient representation) in keeping with our poliy of not allowing the ompilerto perform optimisations whih have unexpeted results on resoure onsumption.The features desribed above are very powerful and an lead to many kinds of program error. For example,if one applied the reverse funtion to a sublist of some larger list then the small list would be reversed properly,but the larger list ould beome partially reversed. Perhaps worse, a diamond objet might be used in severaldi�erent data strutures of di�erent types simultaneously. Thus a list ell might also be used as a tree node, andany modi�ation of one struture might lead to modi�ations of the other. The simplest way of preventing thiskind of problem is to require linear usage of heap-alloated objets, whih means that variables bound to suhobjets may be used at most one after they are bound. Details of this approah an be found in Hofmann'spaper [11℄. Strit linearity would require one to write the list length funtion as something likelet re length l = math l withNil -> Pair (0, Nil)| Cons(h,t)�d ->let p = length tin math p withPair(n, t1)�d1 -> Pair(n+1, Cons(h,t1)�d)�d1It is neessary to return a new opy of the list sine it is illegal to refer to l after alling length l.Our ompiler has a swith to enfore linearity, but the example demonstrates that the restritive nature

20 S. Gilmore et al.of linear typing an lead to unneessary ompliations. Aspinall and Hofmann [1℄ give a type system whihrelaxes the linearity ondition while still allowing safe in-plae updates, and Mihal Kone£ný generalises thisstill further in [15, 16℄. As part of the MRG projet, Kone£ný has implemented a typeheker for a variant ofthe type system of [15℄ adapted to Camelot.A di�erent approah to providing heap-usage guarantees is given by Hofmann and Jost in [13℄, where analgorithm is presented whih an be used to statially infer heap-usage bounds for funtional programs of asuitable form. In ollaboration with the MRG projet, Ste�en Jost has implemented a variant of this inferenealgorithm for Camelot: the implementation is desribed in [14℄. Both of these implementations are urrentlystand-alone programs, but we are in the proess of integrating them with the Camelot ompiler.One of our goals in the design of Camelot was to de�ne a language whih ould be used as a testbed fordi�erent heap-usage analysis methods. The inlusion of expliit diamonds �ts the type systems of [1, 15, 16℄, andthe inlusion of the free list failitates the Hofmann-Jost inferene algorithm, whih requires that all memorymanagement takes plae via a free list.2.3. Compilation of expressions. Camelot is initially ompiled into the Grail intermediate language[5, 19℄ whih is essentially a funtional form of Java byteode. This proess is failitated by an initial phase inwhih several transformations are applied to the abstrat syntax tree.2.3.1. Monomorphisation. Firstly, all polymorphism is removed from the program. For polymorphitypes (αn, . . . , α1) t suh as α list we examine the entire program to determine all instantiations of the typevariables, and ompile a separate datatype for eah distint instantiation. Similarly, whenever a polymorphifuntion is de�ned the program is examined to �nd all uses of the funtion and a monomorphi funtion of theappropriate type is generated for eah distint instantiation of types.2.3.2. Normalisation. After monomorphisation there is a phase referred to as normalisation whih trans-forms the Camelot program into a form whih losely resembles Grail.Firstly the ompiler ensures that all variables have unique names. Any dupliations are resolved by gener-ating new names. This allows us to map Camelot variable names diretly onto Grail variable names (whih inturn map onto JVM loal variable loations) with no danger of lashes arising.Next, we give names to intermediate results in many ontexts by replaing omplex expressions with vari-ables. For example, the expression f(a + b + c) would be replaed by an expression of the form let t1 =
a + b in let t2 = t1 + c in f(t2). The introdution of names for intermediate results an produe a largenumber of Grail (and hene JVM) variables. After the soure ode has been ompiled to Grail the number ofloal variables is minimised by applying a standard register alloation algorithm (see [30℄).A �nal transformation ensures that let-expressions are in a �straight-line� form. After all of these trans-formations have been performed expressions have been redued to a form whih we refer to as normalisedCamelotThe struture of normalised Camelot (whih is in fat in a type of A-normal form [9℄) is su�iently loseto that of Grail that it is fairly straightforward to translate from the former to the latter. Another bene�t ofnormalisation is that it is easier to write and implement type systems for normalised Camelot. The fat thatthe omponents of many expressions are atoms rather than omplex subexpressions means that typing rulesan have very simple premisses.2.4. Compilation of values. Camelot has various primitive types (int, float, et.) whih an betranslated diretly into orresponding JVM types. The ompilation of user-de�ned datatypes, however, israther more ompliated. Objets belonging to datatypes are represented by members of a single JVM lasswhih we will refer to as the diamond lass. Objets of the diamond lass ontain enough �elds to representany member of any datatype de�ned in the program. Eah instane X of the diamond lass ontains an integertag �eld whih identi�es the onstrutor with whih X is assoiated. The diamond lass also ontains a stati�eld pointing to the free list. The free list is managed via the stati methods allo (whih returns the diamondat the head of the free list, or reates a new diamond by alling new if the free list is empty), and free whihplaes a diamond objet on the free list. The diamond lass also has overloaded stati methods alled makeand fill, one instane of eah for every sequene of types appearing in a onstrutor. The make methods areused to implement ordinary onstrutor appliation; eah takes an integer tag value and a sequene of argumentvalues and alls allo to obtain an instane of the diamond lass, and then alls a orresponding fill method

Extending Camelot With Mutable State and Conurreny 21to �ll in the appropriate �elds with the tag and the arguments. The fill methods are also used when theprogrammer reuses an existing diamond to onstrut a datatype value.It an be argued that this representation is ine�ient in that datatype values are often represented by JVMobjets whih are larger than they need to be. This is true, but is di�ult to avoid due to the type-safe natureof JVM memory management whih prevents one from re-using the heap spae oupied by a value of one typeto store a value of a di�erent type. We wish to be able to reuse heap spae, but this an be impossible if objetsan ontain only one type of data. With the urrent sheme one an easily write a heapsort program whihoperates entirely in-plae. List ells are large enough to be reused as heap nodes and this allows a heap to bebuilt using ells obtained by destroying the input list. One the heap has been built it an in turn be destroyedand the spae reused to build the output list. In this ase, the amount of memory oupied by a list ell islarger than it needs to be, but the overall amount of store required is less than would be the ase if separatelasses were used to ontain list ells and heap nodes.In the urrent ontext it an be laimed that it is better to have an ine�ient representation about whih wean give onrete guarantees than an e�ient one whih about we an say nothing. Most of the programs whihwe have written so far use a limited number of datatypes so that the overhead introdued by the monolithirepresentation for diamonds is not too severe. However, it is likely that for very large programs this overheadwould beome unaeptably large. One possibility whih we have not yet explored is that it might be possibleto ahieve more e�ient heap usage by using data�ow tehniques to follow the �ow of diamonds through theprogram and detet datatypes whih are never used in an overlapping way. One ould then equip a programwith several smaller diamond lasses whih would represent suh non-overlapping types.These problems ould be avoided by ompiling to some platform other than the JVM (for example toC or to a speialised virtual mahine) where ompation of heap regions would be possible. The Hofmann-Jost algorithm is still appliable in this situation, so it would still be feasible to produe resoure guarantees.However, it was a fundamental deision of the MRG projet to use the JVM, based on the fats that the JVMis widely deployed and very well-known, and that resoure usage is a genuine onern in many ontexts wherethe JVM is used. Our present approah allows us to produe onrete guarantees at the ost of some overhead;we hope that at a later stage a more sophistiated approah (suh as the one suggested above) might allow usto redue the overheads while still obtaining guaranteed resoure bounds.2.5. Remarks. There are various ways in whih Camelot ould be extended. The lak of higher-orderfuntions is inonvenient, but the resoure-aware type systems whih we use are presently unable to deal withhigher-order funtions, partly beause of the fat that these are normally implemented using heap-alloatedlosures whose size may be di�ult to predit. A possible strategy for dealing with this whih we are urrentlyinvestigating is Reynolds' tehnique of defuntionalization [24℄ whih transforms higher-order programs into�rst-order ones, essentially by performing a transformation of the soure ode whih replaes losures withmembers of datatypes. This has the advantage that extra spae required by losures is exposed at the sourelevel, where it is amenable to analysis by the heap-usage inferene tehniques mentioned earlier.3. Objet-oriented extensions. The ore Camelot language as desribed in Setion 2 above enables theprogrammer to write a program with a preditable resoure usage; however, only primitive interation with theoutside world is possible, through ommand line arguments, �le input and printed output. To be able to writea full interfae for a game or utility to be run on a mobile devie, Camelot programs must be able to interfaewith external Java libraries. Similarly, the programmer may wish to utilise devie-spei� libraries, or Java'sextensive lass library.This setion desribes our objet-oriented extension to Camelot. This is primarily intended to allow Camelotprograms to aess Java libraries. It would also be possible to write resoure-erti�ed libraries in Camelot foronsumption by standard Java programs, or indeed use the objet system for OO programming for its own sake,but giving Camelot programs aess to the outside world is the main objetive.In designing an objet system for Camelot, many hoies are made for us, or at least tightly onstrained.We wish to reate a system allowing inter-operation with Java, and we wish to ompile an objet system toJVML. So we are almost fored into drawing the objet system of the JVM up to the Camelot level, and annotseriously onsider a fundamentally di�erent system.On the other hand, the type system is strongly in�uened by the existing Camelot type system. Thereis more sope for hoie, but implementation an beome omplex, and an overly omplex type system is

22 S. Gilmore et al.undesirable from a programmer's point of view. We also do not want to interfere with type systems for resouresas mentioned above.We shall �rst attempt to make the essential features of Java objets visible in Camelot in a simple form,with the view that a simple abbreviation or module system an be added at a later date to make things morepalatable if desired.3.1. Basi Features. We shall view objets as reords of possibly mutable �elds together with relatedmethods, although Camelot has no existing reord system. We de�ne the usual operations on these objets,namely objet reation, method invoation, �eld aess and update, and asting and mathing. As one mightexpet we hoose a lass-based system losely modelling the Java objet system. Consequently we must a-knowledge Java's uses of lasses for enapsulation, and assoiate stati methods and �elds with lasses also.We now onsider these features. The examples below illustrate the new lasses of expressions we add toCamelot.Stati method alls There is no oneptual di�erene between stati methods and funtions, ignoring the useof lasses for enapsulation, so we an treat stati method alls just like funtion alls.java.lang.Math.max a bStati �eld aess Some libraries require the use of stati �elds. We should only need to provide aess toonstant stati �elds, so they orrespond to simple values.java.math.BigInteger.ONEObjet reation We learly need a way to reate objets, and there is no need to deviate from the newoperator. By analogy with standard Camelot funtion appliation syntax (i.e. urried form) we have:new java.math.BigInteger "101010" 2Instane �eld aess To retrieve the value of an instane variable, we writeobjet#fieldwhereas to update that value we use the syntaxobjet#field <- valueassuming that field is delared to be a mutable �eld.It ould be argued that allowing unfettered external aess to an objet's variables is against the spiritof OO, and more to the point inappropriate for our small language extension, but we wish to allow easyinteroperability with any external Java ode.Method invoation Drawing inspiration from the O'Caml syntax, and again using a urried form, we haveinstane method invoation:myMap#put key valueNull values In Java, any method with objet return type may return the null objet. For this reason we adda onstrutisnull ewhih tests if the expression e is a null value.Casts and typease It may be oasionally be neessary to ast objets up to superlasses, for example tofore the intended hoie between overloaded methods. We will also want to reover sublasses, suhas when removing an objet from a olletion. Here we propose a simple notation for up-asting:obj :> ClassThis notation is that of O'Caml, also borrowed by MLj (desribed in [3℄). To handle down-asting weshall extend patterns in the manner of typease (again like MLj) as follows:math obj with o :> C1 -> o.a()| o :> C2 -> o.b()| _ -> obj.()Here o is bound in the appropriate subexpressions to the objet obj viewed as an objet of type C1 orC2 respetively. As in datatype mathes we require that every possible ase is overed; here this meansthat the default ase is mandatory. We also require that eah lass is a sublass of the type of obj, andsuggest that a ompiler warning should be given for any redundant mathes.Unlike MLj we hoose not to allow downasting outside of the new form of math statement, partlybeause at present Camelot has no exeption support to handle invalid down-asts.As usual, the arguments of a (stati or instane) method invoation may be sublasses of the method's argumenttypes, or lasses implementing the spei�ed interfaes.

Extending Camelot With Mutable State and Conurreny 23The following example demonstrates some of the above features, and illustrates the ease of interoperability.Note that the type of the parameter l is spei�ed by a onstraint here. Type inferene does not ross lassboundaries in Camelot.let onvert (l: string list) =math l with [℄ -> new java.util.LinkedList ()| h::t ->let ll = onvert tin let _ = ll#addFirst hin ll3.2. De�ning lasses. One we have the ability to write and ompile programs using objets, we may aswell start writing lasses in Camelot. We must be able to reate lasses to implement allbaks, suh as in theSwing GUI system whih requires us to write stateful adaptor lasses. Otherwise, as mentioned previously, wemay wish to write Camelot ode to be alled from Java, for example to reate a resoure-erti�ed library foruse in a Java program, and de�ning a lass is a natural way to do this. Implementation of these lasses willobviously be tied to the JVM, but the form these take in Camelot has more sope for variation.We allow the programmer to de�ne a lass whih may expliitly sublass another lass, and implement anumber of interfaes. We also allow the programmer to de�ne (possibly mutable) �elds and methods, as wellas stati methods and �elds for the purpose of reating a spei� lass for interfaing with Java. We naturallyallow referene to this.The form of a lass delaration is given below. Items within angular brakets 〈. . .〉 are optional.
classdecl ::= lass cname = 〈scname with〉 body end

body ::= 〈interfaces〉 〈fields〉 〈methods〉

interfaces ::= implement iname 〈interfaces〉

fields ::= field 〈fields〉

methods ::= method 〈methods〉This de�nes a lass alled cname, implementing the spei�ed interfaes. The optional scname gives the nameof the diret superlass; if it is not present, the superlass is taken to be the root of the lass hierarhy, namelyjava.lang.Objet. The lass cname inherits the methods and values present in its superlass, and these maybe referred to in its de�nition.As well as a superlass, a lass an delare that it implements one or more interfaes. These orresponddiretly to the Java notion of an interfae. Java libraries often require the reation of a lass implementing apartiular interfae�for example, to use a Swing GUI one must reate lasses implementing various interfaesto be used as allbaks. Note that at the urrent time it is not possible to de�ne interfaes in Camelot, theyare provided purely for the purpose of interoperability.Now we desribe �eld delarations.
field ::= field x : τ | field mutable x : τ | val x : τInstane �elds are de�ned using the keyword field, and an optionally be delared to be mutable. Stati �eldsare de�ned using val, and are non-mutable. In a sense these mutable �elds are the �rst introdution of side-e�ets into Camelot. While the Camelot language is de�ned to have an array type, this has largely been ignoredin our more formal treatments as it is not fundamental to the language. Mutable �elds, on the other hand,are fundamental to our notion of objet orientation, so we expet any extension of Camelot resoure-ontrolfeatures to objet-oriented Camelot to have to deal with this properly.Methods are de�ned as follows, where 1 ≤ i1, . . . , im ≤ n.

method ::= maker(x1:τ1) . . . (xn:τn) 〈: super xi1 . . . xim
〉 = exp

| method m(x1:τ1) . . .(xn:τn) : τ = exp

| method m() : τ = exp

| let m(x1:τ1) . . . (xn:τn) : τ = exp

| let m() : τ = exp

24 S. Gilmore et al.Again, we use the usual let syntax to delare what Java would all stati methods. Stati methods are simplymonomorphi Camelot funtions whih happen to be de�ned within a lass, although they are invoked usingthe syntax desribed earlier. Instane methods, on the other hand, are atually a fundamentally new additionto the language. We onsider the instane methods of a lass to be a set of mutually reursive monomorphifuntions, in whih the speial variable this is bound to the urrent objet of that lass.We an onsider the methods as mutually reursive without using any additional syntax (suh as andbloks) sine they are monomorphi. ML uses and bloks to group mutually reursive funtions beause itslet-polymorphism prevents any of these funtions being used polymorphially in the body of the others, but thisis not an issue here. In any ase this impliit mutual reursion feels appropriate when we are ompiling to theJava Virtual Mahine, and have to ome to terms with open reursion.In addition to stati and instane methods, we also allow a speial kind of method alled a maker. This isjust what would be alled a onstrutor in the Java world, but as in [8℄ we use the term maker in order to avoidonfusion between objet and datatype onstrutors. The maker term above de�nes a maker of the ontaininglass C suh that if new C is invoked with arguments of type τ1 . . . τn, an objet of lass C is reated, thesuperlass maker is exeuted (this is the zero-argument maker of the superlass if none is expliitly spei�ed),expression exp (of unit type) is exeuted, and the objet is returned as the result of the new expression. Everylass has at least one maker; a lass with no expliit maker is taken to have the maker with no arguments whihinvokes the superlass zero-argument maker and does nothing. This impliit maker is inserted by the ompiler.3.3. Polymorphism. We remarked earlier that stati methods are basially monomorphi Camelot fun-tions together with a form of enapsulation, but it is worth onsidering polymorphism more expliitly. objet-oriented Camelot methods, whether stati or instane methods, are not polymorphi. That is, they have subtypepolymorphism but not parametri polymorphism (generiity), unlike Camelot funtions whih have parametribut not subtype polymorphism. This is not generally a problem, as most polymorphi funtions will involvemanipulation of polymorphi datatypes, and an be plaed in the main program, whereas most methods willbe interfaing with the Java world and thus should onform to Java's subtyping polymorphism.3.4. Translation. As mentioned earlier, the present Camelot ompiler targets the JVM, via the inter-mediate language Grail. Translating the objet-oriented features whih have just been desribed is relativelystraightforward, as the JVM (and Grail) provide what we need. A detailed formal desription of the translationproess an be found in [31℄3.5. Objets and Resoure Types. As desribed earlier, the use of diamond annotations on Camelotprograms in ombination with ertain resoure-aware type systems allows the heap usage of those programsto be inferred, as well as allowing some in-plae update to our. Clearly the presene of mutable objets inobjet-oriented Camelot also provides for in-plae update. However by allowing arbitrary objet reation wealso repliate the unbounded heap-usage problem solved for datatypes. Perhaps more seriously, we are allowingCamelot programs to invoke arbitrary Java ode, whih may use an unlimited amount of heap spae.Firstly onsider the seond problem. Even if we have some way to plae a bound on the heap spae used byour new OO features within a Camelot program, external Java ode may use arbitrary amounts of heap. Thereseem to be a few possible approahes to this problem, none of whih are partiularly satisfatory. We oulddeide to only allow the use of external lasses if they ame with a proof of bounded heap usage. Construtinga resoure-bounded Java lass library or inferring resoure bounds for an existing library would be a massiveundertaking, although perhaps less problemati with the smaller lass libraries used with mobile devies. Thissuggestion seems somewhat unrealisti.Alternatively, we ould simply allow the resoure usage of external methods to be stated by the programmeror library reator. This extends the trusted omputing base in the sense of resoures, but seems a morereasonable solution. The other alternative�onsidering resoure-bound proofs to only refer to the resouresdiretly onsumed by the Camelot ode�seems unrealisti, as one ould easily (and even aidentally) heatby using Java libraries to do some memory-onsuming �dirty work�.The issue of heap-usage internal to objet-oriented Camelot programs seems more tratable, although wedo not propose a solution here. A �rst attempt might mimi the tehniques used earlier for datatypes; perhapswe an adapt the use of diamonds and linear type systems? The use of diamonds for in-plae update is irrelevanthere, and indeed relies on the uniform representation of datatypes by objets of a partiular Java lass. Sinewe are hardly going to represent every Java objet by an objet of one lass we ould not hope to have suh adiret orrelation between diamonds and hunks of storage.

Extending Camelot With Mutable State and Conurreny 25However, we ould imagine an abstrat diamond whih represents the heap storage used by an arbitraryobjet, and require any instane of new to supply one of these diamonds, in order that the total number ofobjets reated is limited. Unfortunately relamation of suh an abstrat diamond would only orrespond tomaking an objet available to garbage olletion, rather than de�nitely being able to re-use the storage. Evenso, suh a system might be able to give a measure of the total number of objets reated and the maximumnumber in ative use simultaneously.4. Using threads in Camelot. Previously the JVM had been used simply as a onvenient run-timefor the Camelot language but the objet-oriented extensions desribed above allow the Java namespae to beaessed from a Camelot appliation. Thus a Camelot appliation an now reate Java objets and invoke Javamethods. Figure 4.1 shows the implementation of a remote input reader in RoundTable, a networked hatappliation written in Camelot. This example lass streams input from a network onnetion and renders it ina display area in the graphial user interfae of the appliation.(* Thread to read from the network, passing data to a display objet *)lass remote = java.lang.Threadwith�eld input : java.io.BufferedReader�eld disp : displaymaker (i : java.io.BufferedReader)(d : display) =let _ = input ← i in disp ← dmethod run() : unit =let line = this#input#readLine()in if isnullobj line then () elselet _ = this#disp#append linein this#run()endFig. 4.1. An extrat from the RoundTable hat appliation showing the OO extensions to CamelotThis example shows the Camelot syntax for method invoation (obj#meth()), �eld aess (obj#field) andmutable �eld update (f <- exp). Both of these are familiar from Objetive Caml.This example also shows that even in the objet-oriented fragment of the Camelot language that the naturalde�nition style for unbounded repetition is to write reursive method alls. The Camelot ompiler onverts tail-alls of instane methods (suh as this#run) into while-loops so that methods implemented as in Figure 4.1run in onstant spae and do not over�ow the Java run-time stak. In ontrast reursive method alls in Javaare not optimised in this way and would lead to the program over�owing the stak.A sreenshot of a window from the RoundTable appliation is shown in Figure 4.2. This shows date-and-time-stamped messages arriving spontaneously in the window. The appliation o�ers the ability to threadmessages by ontent or to sort them by time. The sorting routine is guaranteed by typeheking to run inonstant spae beause addresses of ons ells in the list of messages are re-yled using the free list as desribedin Setion 2.2.
Fig. 4.2. Sreenshot of the Camelot RoundTable appliation

26 S. Gilmore et al.The extension of the Camelot ompiler to support interoperation with Java failitates the implementationof graphial appliations suh as these. The Java APIs used by this appliation inlude the Swing graphialuser interfae omponents, networking, threads and pluggable look-and-feel omponents suh as the Skin look-and-feel shown above.5. Management of threads. In designing a thread management system for Camelot our strongest re-quirement was to have a system whih works harmoniously with the storage management system already inplae for Camelot. One aspet of this is that the resoure onsumption of a single-threaded Camelot programan be omputed in line with the reasoning explained in Setion 1.In moving from one to multiple threads the most important question with respet to memory usage is thefollowing. Should the free list of storage whih an be reused be a single stati instane shared aross all threads;or should eah thread separately maintain its own loal instane of the free list?In the former ase the aessor methods for the free list must be synhronised in order for data struturesnot to beome disordered by onurrent write operations. Synhronisation inurs an overhead of loking andunloking the parent of the �eld when entering and leaving a ritial region. This imposes a run-time penalty.In the latter ase there is no requirement for aess to the free list to be synhronised; eah thread has itsown free list. In this ase, though, the free memory on eah free list is private, and not shared. This means thatthere will be times when one thread alloates memory (with a Java new instrution) while another thread hasunused memory on its loal free list. This imposes a penalty on the program memory usage, and this form ofthread management would lead to programs typially using more memory overall.We have hosen the former sheme; we have a single stati instane of a free list shared aross all threads. Ourprograms will take longer than their optimum run-time but memory performane will be improved. Cruially,preditability of memory onsumption is retained.There are several possible variants on this seond sheme whih we onsidered. They were not right for ourpurposes but might be right for others. One interesting alternative is a hybrid of the two approahes is whereeah thread had a bounded (small) loal free list and �ushes this to the global free list when it beomes full.This would redue the overhead of alls to aess the synhronised global free list, while preventing threads fromkeeping too many unused memory ells loally. This ould be a suitable ompromise between the two extremesbut the analysis of this approah would inevitably be more ompliated than the approah whih we adopted(a single stati free list).A seond alternative would be to implement weak loal free lists. In this onstrution eah thread would haveits own private free list implemented using weak referenes whih are referenes that are not strong enough bythemselves to keep an objet alive if no genuine referenes to it are retained. Weak referenes are typially usedto implement ahes and seondary indexes for data strutures. Other high-level garbage-olleted languagessuh as O'Caml implement weak referenes also. This sheme was not usable by us beause the Camelotompiler also targets small JVMs on handheld devies and the J2ME does not provide the neessary lass(java.lang.ref.WeakReferene).The analysis of memory onsumption of Camelot programs is based on the onsumption of memory by heap-alloated data strutures. The present analysis of Camelot programs is based on a single-threaded arhiteture.To assist with the development of an analysis method for multi-threaded Camelot programs we require thatdata strutures in a multi-threaded Camelot program are not shared aross threads. For example, it is notpossible to hold part of a list in one thread and the remainder in another. This requirement means that thespae onsumption of a multi-threaded Camelot program is obtained as the sum of per-thread spae alloationplus the spae requirements of the threads themselves.At present our type system takes aount of heap alloations but does not take aount of stak growth.Thus Camelot programs an potentially (and sometimes do in pratie) fail at runtime with ajava.lang.StakOverflowError exeption if the programmer overuses the idiom of working with families ofmutually-reursive funtions and methods whih ompute with deeply-nested reursion.Even sophistiated funtional language ompilers for the JVM su�er from this problem and some, suhas MLj [4, 3℄, do not even implement tail-all elimination in ases where the Camelot ompiler does. Severalauthors onsider the absene of support for tail all elimination to be a failing of the JVM [2, 22℄. An approahto eliminating tail alls suh as that used by Funnel [25℄ would be a useful next improvement to the Camelotompiler. Tehniques suh as trampolining have also been shown to work for the JVM [29℄. The prinipalreason why the JVM does not automatially perform tail-all optimisation is that the Java seurity model may

Extending Camelot With Mutable State and Conurreny 27require inspetion of the stak to ensure that a partiular method has su�ient privileges to exeute anothermethod; eliminating tail-alls would lead to the disarding of stak frames whih ontain the neessary seurityinformation. However, Clements and Felleisen have reently proposed another seurity model whih allowssafe tail-all optimisation [7℄; they laim that this requires only a minor hange to the mehanism urrentlyused by the JVM (and other platforms), so there may be some hope that future JVM implementations willsupport proper tail-all optimisation and thus simplify the proess of implementing funtional languages forthe JVM.6. A simple thread model for Camelot. To retain preditability of memory behaviour in Camelot werestrit the programming model o�ered by Java's threads.Firstly, we disallow use of the stop and suspend methods from Java's threads API. These are depreatedmethods whih have been shown to have poor programming properties in any ase. Use of the stop methodallows objets to be exposed in a damaged state, part-way through an update by a thread. Use of suspendfreezes threads but these do not release the objets whih they are holding loks on, thereby often leadingto deadloks. Dispensing with pre-emptive thread interruption means that there is a orrespondene betweenCamelot threads and lightweight threads implemented using �rst-lass ontinuations, all/ and throw, asare usually to be found in multi-threaded funtional programming languages [6, 18℄.Seondly, we require that all threads are run, again for the purposes of supporting preditability of memoryusage. In the Java language thread alloation (using new) is separated from thread initiation (using the startmethod in the java.lang.Thread lass) and there is no guarantee that alloated threads will ever be run atall. In multi-threaded Camelot programs we require that all threads are started at the point where they areonstruted.Finally, we have a single onstrutor for lasses in Camelot beause our type system does not supportoverloading. This must be passed initial values for all the �elds of the lass (beause the thread will initiateautomatially). All Camelot threads exept the main thread of ontrol are daemon threads, whih means thatthe Java Virtual Mahine will not keep running if the main thread exits.let re threadname(args) =let locals = subexps in threadname(args)let threadInstance =new threadname(actuals) in . . .
 lass threadnameHolder (args) = java.lang.Threadwithlet re threadname() =let locals = subexps in threadname()method run() : unit =let _ = this#setDaemon(true)in threadname()endlet threadInstance =new threadnameHolder (actuals) inlet _ = threadInstance#start() in . . .Fig. 6.1. Derived forms for thread reation and use in CamelotThis simpli�ed idiom of thread use in Camelot allows us to de�ne derived forms for Camelot threads whihabbreviate the use of threads in the language. These derived forms an be implemented by lass hoisting,moving a generated lass de�nition to the top level of the program. This translation is outlined in Figure 6.1.7. Threads and (non-)termination. The Camelot programming language is supported not only by astrong, expressive type system but also by a program logi whih supports reasoning about the time and spaeusage of programs in the language. However, the logi is a logi of partial orretness, whih is to say that theorretness of the program is guaranteed only under the assumption that the program terminates. It would

28 S. Gilmore et al.be possible to onvert this logi into a logi of total orretness whih would guarantee termination instead ofassuming it but proofs in suh a logi would be more di�ult to produe than proofs in the partial orretnesslogi.It might seem nonsensial to have a logi of partial orretness to guarantee exeution times of programs(�this program either terminates in 20 seonds or it never does�) but even these proofs about exeution times havetheir use. They are used to provide a bound on the running time of a program so that if this time is exeeded theprogram may be terminated foribly by the user or the operating system beause after this point it seems thatthe program will not terminate. Suh a priori information about exeution times would be useful for shedulingpurposes. In Grid-based omputing environments Grid servie providers shedule inoming jobs on the basis ofestimated exeution times supplied by Grid users. These estimates are sometimes signi�antly wrong, leadingthe sheduler either to foribly terminate an over-running job due to an under-estimated exeution time or toshedule other jobs poorly on the basis of an over-estimated exeution time.Beause of the presene of threads in the language we now have meaningful (impure, side-e�eting) funtionswhih do not terminate so a strong funtional programming approah [27℄ requiring proofs of termination forevery funtion would be inappropriate for our purposes.8. Related work. The ore of the Camelot programming language is a strit, all-by-value �rst-orderfuntional programming language in the ML family extended with expliit memory dealloation ommands andan extended type system whih expresses the ost of funtion appliation in terms of an inrease in the sizeof the alloated memory on the heap. Other authors have addressed a similar programming model with somevariations. Lee, Yang and Yi [17℄ present a stati analysis approah whih is used in applying a soure-leveltransformation to insert expliit free ommands into the program text. Their analysis allows uses of expliitmemory dealloation whih are not expressible in Camelot due to the linearity requirement of the Camelottype system. Vasonelos and Hammond [28℄ present a type system whih is superior to ours in applying tohigher-order funtional programs. Our primary ost omputation is memory alloation whereas their primaryfous is on run-time abstrated as the number of beta-redutions in the abstrat semanti interpretation ofthe funtion term against the operational semantis of the language. Our work di�ers from both of these inonsidering multi-threaded, not only single-threaded programs.We have made referene to MLj, the aspets of whih related to Java interoperability are desribed in [3℄.MLj is a fully formed implementation of Standard ML, and as suh is a muh larger language than we onsiderhere. In partiular, MLj an draw upon features from SML suh as modules and funtors, for example, allowingthe reation of lasses parameterised on types. Suh �exibility omes with a prie, and we hope that therestritions of our system will make the erti�ation of the resoure usage of objet-oriented Camelot programsmore feasible.By virtue of ompiling an ML-like language to the JVM, we have made many of the same hoies that havebeen made with MLj. In many ases there is one obvious translation from high level onept to implementation,and in others the appropriate language onstrut is suggested by the Java objet system. However we have alsomade di�erent hoies more appropriate to our purpose, in terms of transpareny of resoure usage and thedesire for a smaller language. For example, we represent objets as reords of mutable �elds whereas MLj usesimmutable �elds holding referenes.There have been various other attempts to add objet oriented features to ML and ML-like languages.O'Caml provides a lean, �exible objet system with many features and impressive type inferene�a formalisedsubset is desribed in [23℄. As in objet-oriented Camelot, objets are modelled as reords of mutable �elds plusa olletion of methods. Many of the additional features of O'Caml ould be added to objet-oriented Camelotif desired, but there are some ompliations aused when we onsider Java ompatibility. For example, thereare various ways to ompile parameterised lasses and polymorphi methods for the JVM, but making thesefeatures interat leanly with the Java world is more subtle.The power of the O'Caml objet system seems to ome more from the distintive type system employed.O'Caml uses the notion of a row variable, a type variable standing for the types of a number of methods. Thismakes it possible to express �a lass with these methods, and possibly more� as a type. Where we would havea method parameter taking a partiular objet type and by subsumption any subtype, in O'Caml the type ofthat parameter would inlude a row variable, so that any objet with the appropriate methods and �elds ouldbe used. This allows O'Caml to preserve type inferene, but this is less important for our appliation, and doesnot map leanly to the JVM.

Extending Camelot With Mutable State and Conurreny 29A lass mehanism for Moby is de�ned in [8℄ with the priniple that lasses and modules should be orthogonalonepts. Laking a module system, Camelot is unable to take suh an approah, but both Moby and O'Camlhave been a guide to onrete representation. Many other relevant issues are disussed in [21℄, but again lakof a module system�and our desire to avoid this to keep the language small�gives us a di�erent perspetiveon the issues.9. Conlusions and further work. Our ongoing programme of researh on the Camelot funtionalprogramming language has been investigating resoure onsumption and providing stati guarantees of resoureonsumption at the time of program ompilation. Our thread management system provides a layer of abstrationover Java threads. This ould allow us to modify the present implementation to multi-task several Camelotthreads onto a single Java thread. The reason to do this would be to irumvent the ungenerous thread limit onsome JVMs. This extension remains as future work but our present design strongly supports suh an extension.We have disussed a very simple thread pakage for Camelot. A more sophistiated one, perhaps based onThimble [26℄, would provide a muh more powerful programming model.A possibly pro�table extension of Camelot would be to use defuntionalization [24℄ to eliminate mutualtail-reursion. Given a set of mutually reursive funtions F whose results are of type t, we de�ne a datatypes whih has for eah of the funtions in F a onstrutor with arguments orresponding to the funtion'sarguments. The olletion of funtions F is then replaed by a single funtion f: s -> t whose body is amath statement whih arries out the omputations required by the individual funtions in F . In this waythe mutually reursive funtions an be replaed by a single tail-reursive funtion, and we already have anoptimisation whih eliminates reursion for suh funtions. This tehnique is somewhat lumsy, and are isrequired in reyling the diamonds whih are required to ontain members of the datatypes required by s.Another potential problem is that several small funtions are e�etively ombined into one large one, and thereis thus a danger that that 64k limit for JVM methods might be exeeded. Nevertheless, this tehnique doesoverome the problems related to mutual reursion without a�eting the transpareny of the ompilation proessunduly, and it might be possible for the ompiler to perform the appropriate transformations automatially.We intend to investigate this in more detail.Aknowledgements. The authors are supported by the Mobile Resoure Guarantees projet (MRG, projetIST-2001-33149). The MRG projet is funded under the Global Computing pro-ative initiative of the Futureand Emerging Tehnologies part of the Information Soiety Tehnologies programme of the European Commis-sion's Fifth Framework Programme. The other members of the MRG projet provided helpful omments on anearlier presentation of this work. Java is a trademark of SUN Mirosystems.REFERENCES[1℄ D. Aspinall and M. Hofmann, Another type system for in-plae update, in Pro. 11th European Symposium on Program-ming, Grenoble, vol. 2305 of Leture Notes in Computer Siene, Springer, 2002.[2℄ N. Benton, Some shortomings of, and possible improvements to, the Java Virtual Mahine. This is an unpublished notewhih is available on-line at http://researh.mirosoft.om/∼nik/jvmritique.pdf, June 1999.[3℄ N. Benton and A. Kennedy, Interlanguage working without tears: Blending SML with Java, in Proeedings of the 4thACM SIGPLAN Conferene on Funtional Programming, Paris, Sept. 1999, ACM Press.[4℄ N. Benton, A. Kennedy, and G. Russell, Compiling Standard ML to Java byteodes, in Proeedings of the 3rd ACMSIGPLAN Conferene on Funtional Programming, Baltimore, sep 1998, ACM Press.[5℄ L. Beringer, K. MaKenzie, and I. Stark, Grail: a funtional form for imperative mobile ode, in Eletroni Notes inTheoretial Computer Siene, V. Sassone, ed., vol. 85, Elsevier, 2003.[6℄ E. Biagioni, K. Cline, P. Lee, C. Okasaki, and C. Stone, Safe-for-spae threads in Standard ML, Higher-Order andSymboli Computation, 11 (1998), pp. 209�225.[7℄ J. Clements and M. Felleisen, A tail-reursive mahine with stak inspetion, ACM Transations on ProgrammingLanguages and Systems. To appear.[8℄ K. Fisher and J. Reppy, Moby objets and lasses, 1998. Unpublished manusript.[9℄ C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen, The essene of ompiling with ontinuations, in ProeedingsACM SIGPLAN 1993 Conf. on Programming Language Design and Implementation, PLDI'93, Albuquerque, NM, USA,23�25 June 1993, vol. 28(6), ACM Press, New York, 1993, pp. 237�247.[10℄ M. Hofmann, A type system for bounded spae and funtional in-plae update, Nordi Journal of Computing, 7 (2000),pp. 258�289.[11℄ , A type system for bounded spae and funtional in-plae update, Nordi Journal of Computing, 7 (2000), pp. 258�289.[12℄ M. Hofmann and S. Jost, Stati predition of heap spae usage for �rst-order funtional programs, in Pro. 30th ACMSymp. on Priniples of Programming Languages, 2003.

30 S. Gilmore et al.[13℄ , Stati predition of heap spae usage for �rst-order funtional programs, in Pro. 30th ACM Symp. on Priniples ofProgramming Languages, New Orleans, 2003.[14℄ S. Jost, lfd_infer: an implementation of a stati inferene on heap-spae usage., in Proeedings of SPACE'04, Venie,2004. To appear.[15℄ M. Kone£ný, Funtional in-plae update with layered datatype sharing, in TLCA 2003, Valenia, Spain, Proeedings,Springer-Verlag, 2003, pp. 195�210. Leture Notes in Computer Siene 2701.[16℄ , Typing with onditions and guarantees for funtional in-plae update, in TYPES 2002 Workshop, Nijmegen, Proeed-ings, Springer-Verlag, 2003, pp. 182�199. Leture Notes in Computer Siene 2646.[17℄ O. Lee, H. Yang, and K. Yi, Inserting safe memory reuse ommands into ML-like programs, in Proeedings of the 10thAnnual International Stati Analysis Symposium, vol. 2694 of Leture Notes in Computer Siene, Springer-Verlag, 2003,pp. 171�188.[18℄ P. Lee, Implementing threads in Standard ML, in Advaned Funtional Programming, Seond International Shool, Olympia,WA, USA, August 26-30, 1996, Tutorial Text, J. Launhbury, E. Meijer, and T. Sheard, eds., vol. 1129 of Leture Notesin Computer Siene, Springer, 1996, pp. 115�130.[19℄ K. MaKenzie,Grail: a funtional intermediate language for resoure-bounded omputation. LFCS, University of Edinburgh,2002. Available at http://groups.inf.ed.a.uk/mrg/publiations/.[20℄ K. MaKenzie and N. Wolverson, Camelot and Grail: Resoure-aware funtional programming for the JVM, in Trendsin Funtional Programming, Intellet, 2004, pp. 29�46.[21℄ D. MaQueen, Should ML be objet-oriented?, Formal Aspets of Computing, 13 (2002).[22℄ E. Meijer and J. Miller, Tehnial Overview of the Common Language Runtime (or why the JVM is not my favouriteexeution environment). URL: http://dos.msdnaa.net/ark/Webfiles/whitepapers.htm, 2001.[23℄ D. Remy and J. Vouillon, Objetive ML: An e�etive objet-oriented extension to ML, Theory and Pratie of ObjetSystems, 4 (1998), pp. 27�50.[24℄ J. C. Reynolds,De�nitional interpreters for higher-order programming languages, Higher-Order and Symboli Computation,11 (1998), pp. 363�397.[25℄ M. Shinz and M. Odersky, Tail all elimination on the Java Virtual Mahine, in Proeedings of Babel'01, vol. 59 ofEletroni Notes in Theoretial Computer Siene, 2001.[26℄ I. Stark, Thimble � Threads for MLj, in Proeedings of the First Sottish Funtional Programming Workshop, no. RM/99/9in Department of Computing and Eletrial Engineering, Heriot-Watt University, Tehnial Report, 1999, pp. 337�346.[27℄ D. Turner, Elementary strong funtional programming, in Proeedings of the First International Symposium on FuntionalProgramming Languages in Eduation, R.Plasmeijer and P.Hartel, eds., vol. LNCS 1022, Nijmegen, Netherlands, De.1995, Springer.[28℄ P. B. Vasonelos and K. Hammond, Inferring osts for reursive, polymorphi and higher-order funtional programs,in Proeedings of the 15th International Workshop on the Implementation of Funtional Languages, G. Mihaelson andP. Trinder, eds., LNCS, Springer-Verlag, 2003. To appear.[29℄ D. Wakeling, Compiling lazy funtional programs for the Java Virtual Mahine, Journal of Funtional Programming, 9(1999), pp. 579�603.[30℄ N. Wolverson, Optimisation and resoure bounds in Camelot ompilation. Final-year projet report, University of Edin-burgh, 2003. Available at http://groups.inf.ed.a.uk/mrg/publiations/wolverson.ps.[31℄ N. Wolverson and K. MaKenzie, O'Camelot: adding objets to a resoure-aware funtional language, in Proeedings ofTFP2003, Intellet, 2004, pp. 47�62.Edited by: Frédéri LoulergueReeived: June 15, 2004Aepted: June 9, 2005

Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 31�41. http://www.spe.org ISSN 1895-1767© 2005 SWPSE.V.E., AN OBJECT ORIENTED SIMD LIBRARYJOEL FALCOU AND JOCELYN SEROT∗Abstrat. This paper desribes the eve (Expressive Veloity Engine) library, an objet oriented C++ library designed to easethe proess of writing e�ient numerial appliations using AltiVe, the SIMD extension designed by Apple, Motorola and IBM.AltiVe-powered appliations typially show o� a relative speed up of 4 to 16 but need a omplex and awkward programmationstyle. By using various template metaprogramming tehniques, E.V.E. provides an easy to use, STL-like, interfae that allowsdeveloper to quikly write e�ient and easy to read ode. Typial appliations written with E.V.E. an bene�t from a largefration of theorial maximum speed up while being written as simple C++ arithmeti ode.1. Introdution.1.1. The AltiVe Extension. Reently, SIMD enhaned instrutions have been proposed as a solutionfor delivering higher miroproessor hardware utilisation. SIMD (Single Instrution, Multiple Data) extensionsstarted appearing in 1994 in HP's MAX2 and Sun's VS extensions and an now be found in most of miropro-essors, inluding Intel's Pentiums (MMX/SSE/SSE2) and Motorola/IBM's PowerPCs (Altive). They havebeen proved partiularly useful for aelerating appliations based upon data-intensive, regular omputations,suh as signal or image proessing.AltiVe [10℄ is an extension designed to enhane PowerPC1 proessor performane on appliations handlinglarge amounts of data. The AltiVe arhiteture is based on a SIMD proessing unit integrated with thePowerPC arhiteture. It introdues a new set of 128 bit wide registers distint from the existing generalpurpose or �oating-point registers. These registers are aessible through 160 new �vetor� instrutions thatan be freely mixed with other instrutions (there are no restrition on how vetor instrutions an be intermixedwith branh, integer or �oating-point instrutions with no ontext swithing nor overhead for doing so). Altivehandles data as 128 bit vetors that an ontain sixteen 8 bit integers, eight 16 bit integers, four 32 bitintegers or four 32 bit �oating points values. For example, any vetor operation performed on a vetor haris in fat performed on sixteen har simultaneously and is theoretially running sixteen times faster as thesalar equivalent operation. AltiVe vetor funtions over a large spetrum, extending from simple arithmetifuntions (additions, subtrations) to boolean evaluation or lookup table solving.Altive is natively programmed by means of a C API [5℄. Programming at this level an o�er signi�antspeedups (from 4 to 12 for typial signal proessing algorithms) but is a rather tedious and error-prone task,beause this C API is really �assembly in disguise�. The appliation-level vetors (arrays, in variable numberand with variable sizes) must be expliitly mapped onto the Altive vetors (�xed number, �xed size) and theprogrammer must deal with several low-level details suh as vetor padding and alignment. To orretly turn asalar funtion into a vetor-aelerated one, a large part of ode has to be rewritten.Consider for example a simple 3x1 smoothing �lter (Fig. 1.1):void C_filter(har* d, short* r){ for(int i=1; i<SIZE-1; i++)r[i℄ = (d[i-1℄+2*d[i℄+d[i+1℄)/4;} Fig. 1.1. A simple 3x1 gaussian �lter written in standard C.This ode an be rewritten (�vetorized") using Altive vetor funtions. However, this rewriting is nottrivial. We �rst have to look at the original algorithm in a parallel way. The C_filter funtion is based on aniterative algorithm that runs trough eah item of the input data, applies the orresponding operations and writesthe result into the output array. By ontrast, AltiVe funtions operate on a bunh of data simultaneously.We have to reraft the algorithm so that it works on vetors instead of single salar values. This is done by
∗LASMEA, UMR 6602 CNRS / U. Clermont Ferrand, Frane (falou, jserot�lasmea.univ-bplermont.fr).
1PPC 74xx (G4) and PPC 970 (G5). 31

32 J. Falou and J. Serotloading data into AltiVe vetors, shifting these vetors left and right, and performing vetor multipliation andaddition. The resulting ode�whih is indeed signi�antly longer than the original one�is given in Appendix A.We have benhmarked both the salar and vetorized implementation on a 2 GHz PowerPC G5 and obtainedthe results shown in Table 1.1. Both ode were ompiled using g 3.3 using -O3. On this example, a ten foldaeleration an be observed with the AltiVe extension. However, the time spent to rewrite the algorithm in a�vetorized" way and the somehow awkward Altive API an hinder the development of larger sale appliations.Table 1.1Exeution time and relative speed-up for 3x1 �lters.SIZE value C_filter AV_filter Speed Up
16 K 0.209 ms 0.020 ms 10.5
64 K 0.854 ms 0.075 ms 11.4

256 K 3.737 ms 0.322 ms 11.6
1024 K 16.253 ms 1.440 ms 11.32. AltiVe in high level API. As evidened in the previous setion, writing AltiVe-based appliationsan be a tedious task. A possible approah to irumvent this problem is to enapsulate Altive vetors andthe assoiated operations within a C++ lass. Instantiating this lass and using lassi in�x notations willprodue the AltiVe ode. We atually built suh a lass (AVetor) and used it to enode the �ltering exampleintrodued in setion 1.1. The resulting ode is shown below.AVetor<har> img(SIZE);AVetor<short> res(SIZE);res = (img.sr(1)+2*img+img.sl(1))/4;In this formulation, expliit iterations have been replaed by appliation of overloaded operators on AVetorobjets. The sr and sl methods implements the shifting operations. The performane of this ode, however,is very disappointing. With the array sizes shown in Table 1.1, the measured speed-ups never exeed 1. Thereasons for suh behaviour are given below.Consider a simple ode fragment using overloaded operators as shown below:AVetor<har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);r = x + y + z;When a C++ ompiler analyses this ode, it redues the suessive operator alls iteratively, resolving �rsty+z then x+(y+z) where y+z is in fat stored in a temporary objet. Moreover, to atually ompute x+y+z,the involved operations are arried out within a loop that applies the ve_add funtion to every single vetorelement of the array. An equivalent ode, after operator redution and loop expansion is:AVetor<har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);AVetor<har> tmp1(SIZE),tmp2(SIZE);for(i=0;i<SIZE/16);i++) tmp1[i℄ = ve_add(y[i℄,z[i℄);for(i=0;i<SIZE/16);i++) tmp2[i℄ = ve_add(x[i℄,tmp1[i℄);for(i=0;i<SIZE/16);i++) r[i℄ = tmp2[i℄;Fig. 2.1. Expanded ode for overloaded operator ompilationThis ode an be ompared to an �optimal", hand-written Altive ode like the one shown on �gure 2.2. Theode generated by the �naive" AltiVe lass learly exhibits unneessary loops and opies. When expressionsget more omplex, the situation gets worse. The time spent in loop index alulation and temporary objetopies quikly overomes the bene�ts of the SIMD parallelization, resulting in poor performanes.This an be explained by the fat that all C++ ompilers use a dyadi redution sheme to evaluateoperators omposition. Some ompilers2 an output a slightly better ode when ertain optimisations are

2Like Code Warrior or g.

E.V.E., An Objet Oriented SIMD Library 33AVetor<har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);for(i=0;i<SIZE/16);i++) r[i℄ = ve_add(x[i℄,ve_add(y[i℄,z[i℄));Fig. 2.2. Optimal, hand written AltiVe ode for x+y+z omputationturned on. However, large expressions or omplex funtions all an't be totally optimised. Another fator isthe impat of the order of AltiVe instrutions. When writing AltiVe ode, one have to take in aount thefat that ahe lines have to be �lled up to their maximum. The typial way for doing so is to pak the loadinginstrutions together, then the operations and �nally the storing instrutions. When loading, omputing andstoring instrutions are mixed in an unordered way, AltiVe performanes generally drop.The aforementioned problem has already been identi�ed�in [13℄ for example�and is the major inon-venient of the C++ language when it is used for high-level sienti� omputations. In the domain of C++sienti� omputing, it has led to the development of the so-alled Ative Libraries [15, 2, 14, 1℄, whih bothprovide domain-spei� abstrations and dediated ode optimisation mehanisms. This paper desribes howthis approah an be applied to the spei� problem of generating e�ient Altive ode from a high-level C++API.It is organized as follows. Set. 3 explains why generating e�ient ode for vetor expressions is not trivialand introdues the onept of template-based meta-programming. Set. 4 explains how this onept an used togenerate optimised Altive ode. Set. 5 rapidly presents the API of the library we built upon these priniples.Performane results are presented in Set. 6. Set. 7 is a brief survey of related work and Set. 8 onludes.3. Template based Meta Programming. The evaluation of any arithmeti expression an be viewedas a two stages proess:
• A �rst step, performed at ompile time, where the struture of the expression is analysed to produe ahain of funtion alls.
• A seond step, performed at run time, where the atual operands are provided to the sequene offuntion alls and the a�erent omputations are arried out.When the expression struture mathes ertain pattern or when ertain operands are known at ompile time, itis often possible to perform a given set of omputations at ompile time in order to produe an optimised hainof funtion alls. For example, if we onsider the following ode:for(int i=0;i<SIZE;i++){ table[i℄ = os(2*i);} If the size of the table is known at ompile time, the ode ould be optimised by removing the loop entirelyand writing a linear sequene of operations:table[0℄ = os(0);table[1℄ = os(2);// later \dotstable[98℄ = os(196);table[99℄ = os(198);Furthermore, the value os(0), . . . , os(198) an be omputed one and for all at ompile-time, so thatthe runtime ost of suh initialisation boils down to 100 store operations.Tehnially speaking, suh a �lifting� of omputations from runtime to ompile-time an be implementedusing a mehanism known as template-based metaprogramming. The sequel of this setion gives a brief aountof this tehnique and of its entral onept, expressions templates. More details an be found, for example, inVeldhuizen's papers [11, 12, 13℄. We fous here on how this tehnique an be used to remove unneessary loopsand objet opies from the ode produed for the evaluation of vetor based expressions.The basi idea behind expressions templates is to enode the abstrat syntax tree (AST) of an expressionas a C++ reursive template lass and use overloaded operators to build this tree. Combined with an array-like

34 J. Falou and J. Serotontainer lass, it provides a way to build a stati representation of an array-based expression. For example, ifwe onsider an �oat Array lass and an addition funtor add, the expression D=A+B+C ould be represented bythe following C++ type:Xpr<Array,add,Xpr<Array,add,Array>>Where Xpr is de�ned by the following type:template<lass LEFT,lass OP,lass RIGHT>lass Xpr{ publi:Xpr(float* lhs, float* rhs) : mLHS(lhs), mRHS(rhs) {}private:LEFT mLHS;RIGHT mRHS;}; The Array lass is de�ned as below:lass Array{ publi:Array(size_t s) { mData = new float[s℄; mSize = s;}~Array() {if(mData) delete[℄ mData; }float* begin() { return mData; }private:float *mData;size_t mSize;}; This type an be automatially built from the onrete syntax of the expression using an overloaded versionof the '+' operator that takes an Array and an Xpr objet and returns a new Xpr objet:Xpr< Array,add,Array> operator+(Array a, Array b){ return Xpr<T,add,Array>(a.begin(),b.begin());} Using this kind of operators, we an simulate the parsing of the above ode (�A+B+C") and see how thelasses get ombined to build the expression tree:Array A,B,C,D;D = A+B+C;D = Xpr<Array,add,Array> + CD = Xpr<Xpr<Array,add,Array>,add,Array>Following the lassi C++ operator resolution, the A+B+C expression is parsed as (A+B)+C. The A+Bpart gets enoded into a �rst template type. Then, the ompiler redue the X+C part, produing the �nal type,enoding the whole expression.Handling the assignation of A+B+C to D an then be done using an overloaded version of the assignmentoperator:template<lass XPR> Array& Array::operator=(onst XPR& xpr){ for(int i=0;i<mSize;i++) mData[i℄ = xpr[i℄;return *this;}

E.V.E., An Objet Oriented SIMD Library 35The Array and Xpr lasses have to provide a operator[℄ method to be able to evaluate xpr[i℄:int Array::operator[℄(size_t index){ return mData[index℄;}template<lass L,lass OP,lass R>int Xpr<L,OP,R>::operator[℄(size_t index){ return OP::eval(mLHS[i℄,mRHS[i℄);} We still have to de�ne the add lass ode. Simply enough, add is a funtor that exposes a stati methodalled eval performing the atual omputation. Suh funtors an be freely extended to inlude any otherarithmeti or mathematial funtions.lass add{ stati int eval(int x,int y) { return x+y; }} With these methods, eah referene to xpr[i℄ an be evaluated. For the above example, this gives:data[i℄ = xpr[i℄;data[i℄ = add::eval(Xpr<Array,add,Array>,C[i℄);data[i℄ = add::eval(add::apply(A[i℄,B[i℄),C[i℄);data[i℄ = add::eval(A[i℄+B[i℄,C[i℄);data[i℄ = A[i℄+B[i℄+C[i℄;4. Appliation to e�ient AltiVe ode generation. At this stage, we an add AltiVe supportto this meta-programming engine. If we replae the salar omputations and the indexed aesses by vetoroperations and loads, we an write an AltiVe template ode generator. These hanges a�et all the lasses andfuntions shown in the previous setions.The Array lass now provides a load method that return a vetor instead of a salar:int Array::load(size_t index) { return ve_ld(data_,index*16); }The add funtor now use ve_add funtions instead of the standard + operator:lass add{ stati vetor int eval(vetor int x,vetor int y){ return ve_add(x,y); }} Finally, we use ve_st to store results:template<lass XPR> Array& Array::operator=(onst XPR& xpr){ for(size_t i=0;i<mSize/4;i++) ve_st(xpr.load(i),0,mData);return *this;} The �nal result of this ode generation an be observed on �gure 4.1.b for the A+B+C example. Figure 4.1.agives the ode produed by g when using the std::valarray lass.For this simple task, one an easily see that the minimum number of loads operation is three and theminimum number of store operations is one. For the standard ode, we have seven extraneous lwz instrutionsto load pointers, three lsfx to load the atual data and one stfs to store the result. For the optimised ode,we have replaed the salar lsfx with the AltiVe equivalent lvx, the salar fadds with vaddfp and stfsxwith the vetor stvx. Only three load instrutions and one store instrutions, reduing opode ount from 17to 9.

36 J. Falou and J. Serot(a) std::valarray ode (b) optimized odeL253: L117:lwz r9,0(r3) slwi r2,r9,4slwi r2,r12,2 addi r9,r9,1lwz r4,4(r3) lvx v1,r5,r2addi r12,r12,1 lvx v0,r4,r2lwz r11,4(r9) lvx v13,r6,r2lwz r10,0(r9) vaddfp v0,v0,v1lwz r7,4(r11) vaddfp v1,v0,v13lwz r6,4(r10) stvx v1,r2,r8lfsx f0,r7,r2 bdnz L117lfsx f1,r6,r2lwz r0,4(r4)fadds f2,f1,f0lfsx f3,r2,r0fadds f1,f2,f3stfs f1,0(r5)addi r5,r5,4bdnz L253 Fig. 4.1. Assembly ode for a simple vetor operation5. The EVE library. Using the ode generation tehnique desribed in the previous setion, we haveprodued a high-level array manipulation library aimed at sienti� omputing and taking advantage of theSIMD aeleration o�ered by the Altive extension on PowerPC proessors. This library, alled eve (forExpressive Veloity Engine) basially provides two lasses, vetor and matrix�for 1D and 2D arrays �, and arih set of operators and funtions to manipulate them. This set an be roughly divided in four families:1. Arithmeti and boolean operators, whih are the diret vetor extension of their C++ ounterparts.For example:vetor<har> a(64),b(64),(64),d(64);d = (a+b)/;2. Boolean prediates. These funtions an be used to manipulate boolean vetors and use them asseletion masks. For example:vetor <har> a(64),b(64),(64);// [i℄ = a[i℄ if a[i℄<b[i℄, b[i℄ otherwise = where(a < b, a, b);3. Mathematial and STL funtions. These funtions work like their STL or math.h ounterparts.The only di�erene is that they take an array (or matrix) as a whole argument instead of a oupleof iterators. Apart from this di�erene, eve funtions and operators are very similar to their STLounterparts (the interfae to the eve array lass is atually very similar to the one o�ered by the STLvalarray lass. This allows algorithms developed with the STL to be ported (and aelerated) with aminimum e�ort on a PowerPC platform with eve. For example:vetor <float> a(64),b(64);b = tan(a);float r = inner_produt(a, b);4. Signal proessing funtions. These funtions allow the diret expression (without expliit deom-position into sums and produts) of 1D and 2D FIR �lters. For example:matrix<float> image(320,240),res(320,240);filter<3,horizontal> gauss_x = 0.25, 0.5, 0.25;res = gauss_x(image);

E.V.E., An Objet Oriented SIMD Library 37The eve API allows the developer to write a large variety of algorithms as long as these algorithm an beexpressed as a serie of global operation on vetor.6. Performane. Two kinds of performane tests have been performed: basi tests, involving only onevetor operation and more omplex tests, in whih several vetor operations are omposed into more omplexexpressions. All tests involved vetors of di�erent types (8 bit integers, 16 bit integers, 32 bit integers and32 bit �oats) but of the same total length (16 Kbytes) in order to redue the impat of ahe e�ets on theobserved performanes3. They have been onduted on a 2GHz PowerPC G5 with g 3.3.1 and the followingompilation swithes: -faltive -ftemplate-deph-128 -O3. A seletion of performane results is given inTable 6.1. For eah test, four numbers are given: the maximum theoretial speedup4 (TM), the measuredspeedup for a hand-oded version of the test using the native C Altive API (N.C), the measured speedup witha �naive� vetor library�whih does not use the expression template mehanism desribed in Set. 3 (N.V),and the measured speedup with the eve library. Table 6.1Seleted performane resultsTest Vetor type TM N.C N.V EVE1. v3=v1+v2 8 bit integer 16 15.7 8.0 15.42. v2=tan(v1) 32 bit �oat 4 3.6 2.0 3.53. v3=v1/v2 32 bit �oat 4 4.8 2.1 4.64. v3=v1/v2 16 bit integer 8(4) 3.0 1.0 3.05. v3=inner_prod(v1,v2) 8 bit integer 8 7.8 4.5 7.26. v3=inner_prod(v1,v2) 32 bit �oat 4 14.1 4.8 13.87. 3x1 Filter 8 bit integer 8 7.9 0.1 7.88. 3x1 Filter 32 bit �oat 4 4.12 0.1 4.089. v5=sqrt(tan(v1+v2)/os(v3*v4)) 32 bit �oat 4 3.9 0.04 3.9It an be observed that, for most of the tests, the speedup obtained with eve is lose to the one obtainedwith a hand-oded version of the algorithm using the native C API. By ontrast, the performanes of the �naive�lass library are very disappointing (espeially for tests 7-10). This learly demonstrates the e�etiveness of themetaprogramming-based optimisation.Tests 1�3 orrespond to basi operations, whih are mapped diretly to a single AltiVe instrution. In thisase, the measured speedup is very lose to the theoretial maximum. For test 3, it is even greater. This e�etan be explained by the fat that on G5 proessors, and even for non-SIMD operations, the Altive FPU isalready faster than the salar FPU5. When added to the speedup o�ered by the SIMD parallelism, this leadsto super-linear speedups. The same e�et explains the result obtained for test 6. By ontrast, test 4 exhibitsa situation in whih the observed performanes are signi�antly lower than expeted. In this ase, this is dueto the asymmetry of the Altive instrution set, whih does not provide the basi operations for all types ofvetors. In partiular, it does not inlude division on 16 bit integers. This operation must therefore be emulatedusing vetor �oat division. This involves several type asting operations and pratially redues the maximumtheoretial speedup from 8 to 4.Tests 5-9 orrespond to more omplex operations, involving several AltiVe instrutions. Note that fortests 5 and 7, despite the fat that the operands are vetors of 8 bit integers, the omputations are atuallyarried out on vetors of 16 bit integers, in order to keep a reasonable preision. The theoretial maximumspeedup is therefore 8 instead of 16.6.1. Realisti Case Study. In order to show that eve an be used to solve realisti problems, while stilldelivering signi�ant speedups, we have used it to vetorize several omplete image proessing algorithms. Thissetion desribes the implementation of an algorithm performing the detetion of points of interest in grey saleimages using the Harris �lter [7℄.
3I.e. the vetor size (in elements) was 16K for 8 bit integers, 8K for 16 bit integers and 4K for 32 bits integers or �oats.
4This depends on the type of the vetor elements: 16 for 8 bit integers, 8 for 16 bit integers and 4 for 32 bit integers and �oats.
5It has more pipeline stages and a shortest yle time.

38 J. Falou and J. SerotStarting from an input image I(x, y), horizontal and vertial gaussian �lters are applied to remove noiseand the following matrix is omputed:
M(x, y) =

(

(∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(∂I
∂y

)2

)Where (∂I
∂x

) and (∂I
∂y

) are respetively the horizontal and vertial gradient of I(x, y). M(x, y) is �lteredagain with a gaussian �lter and the following quantity is omputed:
H(x, y) = Det(M)− k.trace(M)2, k ∈ [0.04; 0.06]

H is viewed as a measure of pixel interest. Loal maxima of H are then searhed in 3x3 windows and the
nth �rst maxima are �nally seleted. Figure 6.1 shows the result of the detetion algorithm on a video framepituring an outdoor sene.

In this implementation, only the �ltering and the pixel detetion are vetorized. Sorting an array annotbe easily vetorized with the AltiVe instrution set. It's not worth it anyway, sine the time spent in the �nalsorting and seletion proess only aounts for a small fration (around 3%) of the total exeution time of thealgorithm. The ode for omputing M oe�ients and H values is shown in Fig. 6.1. It an be split into threesetions:1. A delarative setion where the needed matrix and filter objets are instantiated. matrix objetsare delared as float ontainers to prevent over�ow when �ltering is applied on the input image and to speedup �nal omputation by removing the need for type asting.2. A �ltering setion where the oe�ients of the M matrix are omputed. We use eve �lter objets,instantiated for gaussian and gradient �lters. Filter support an overloaded * operator that is semantially usedas the omposition operator.3. A omputing setion where the �nal value of H(x, y) is omputed using the overloaded versions ofarithmeti operators.The performanes of this detetor implementation have been ompared to those of the same algorithmwritten in C, both using 320*240 pixels video sequene as input. The tests were run on a 2GHz Power PC G5and ompiled with g 3.3. As the two steps of the algorithm (�ltering and detetion) use two di�erent partsof the E.V.E. API, we give the exeution time for eah step along with the total exeution time.Step Exeution Time Speed UpFiltering 1.4ms 5.21Evaluation 0.45ms 4.23Total Time 1.85ms 4.98The performane of both parts of the algorithm are satisfatory. The �ltering setion speed-up is near 65%of maximum speed-up while the seond part bene�ts from a superlinear aeleration.7. Related Work. Projets aiming at simplifying the exploitation of the SIMD extensions of modernmiro-proessors an be divided into two broad ategories: ompiler-based approahes and library-based ap-proahes.

E.V.E., An Objet Oriented SIMD Library 39// Delarations#define W 320#define H 240matrix<short> I(W,H),a(W,H),b(W,H);matrix<short> (W,H),t1(W,H),t2(W,H);matrix<float> h(W,H);float k = 0.05f;filter<3,horizontal> smooth_x = 1,2,1;filter<3,horizontal> grad_x = 1,0,1;filter<3,vertial> smooth_y = 1,2,1;filter<3,vertial> grad_y = -1,0,1;// Computes matrix M://// | a |// M = | b |t1 = grad_x(I);t2 = grad_y(I);a = (smooth_x*smooth_y)(t1*t1);b = (smooth_x*smooth_y)(t2*t2); = (smooth_x*smooth_y)(t1*t2);// Computes matrix HH = (a*b-*)-k*(a+b)*(a+b);Fig. 6.1. The Harris detetor, oded with eveThe swar (SIMD Within A register, [4℄) projet is an example of the �rst approah. Its goal is to proposea versatile data parallel C language making full SIMD-style programming models e�etive for ommodity mi-roproessors. An experimental ompiler (s) has been developed that extends C semantis and type systemand an target several family of miroproessors. Started in 1998, the projet seems to be in dormant state.Another example of the ompiler-based approah is given by Kyo et al. in [8℄. They desribe a ompiler fora parallel C dialet (1d, One Dimensional C) produing SIMD ode for Pentium proessors and aimed at thesuint desription of parallel image proessing algorithms. Benhmarks results show that speed-ups in therange of 2 to 7 (ompared with ode generated with a onventional C ompiler) an be obtained for low-levelimage proessing tasks. But the parallelization tehniques desribed in the work�whih are derived from the oneused for programming linear proessor arrays�seems to be only appliable to simple image �ltering algorithmsbased upon sweeping a horizontal pixel-updating line row-wise aross the image, whih restrits its appliability.Moreover, and this an be viewed as a limitation of ompiler-based approahes, retargeting another proessormay be di�ult, sine it requires a good understanding of the ompiler internal representations.The vast ode optimiser [3℄ has a spei� bak-end for generating Altive/Power PC ode. This ompilero�ers automati vetorization and parallelization from onventional C soure ode, automatially replaing loopswith inline vetor extensions. The speedups obtained with vast are laimed to be losed to those obtained withhand-vetorized ode. vast is a ommerial produt.There have been numerous attempts to provide a library-based approah to the exploitation of SIMDfeatures in miro-proessors. Apple velib [6℄, whih provides a set of Altive-optimised funtions for signalproessing, is an example. But most of these attempts su�er from the weaknesses desribed in Set. 2; namely,they annot handle omplex vetor expressions and produe ine�ient ode when multiple vetor operationsare involved in the same algorithm. MaSTL [9℄ is the only work we are aware of that aims at eliminating theseweaknesses while keeping the expressivity and portability of a library-based approah. MaSTL is atuallyvery similar to eve in goals and design priniples. This C++ lass library provides a fast valarray lass

40 J. Falou and J. Serotoptimised for Altive and relies on template-based metaprogramming tehniques for ode optimisation. Theonly di�erene is that it only provides STL-ompliant funtions and operators (it an atually be viewed asa spei� implementation of the STL for G4/G5 omputers) whereas eve o�ers additional domain-spei�funtions for signal and image proessing.8. Conlusion. We have shown how a lassial tehnique�template-based metaprogramming�an be ap-plied to the design and implementation of an e�ient high-level vetor manipulation library aimed at sienti�omputing on PowerPC platforms. This library o�ers a signi�ant improvement in terms of expressivity overthe native C API traditionally used for taking advantage of the SIMD apabilities of this proessor. It allows de-velopers to obtain signi�ant speedups without having to deal with low level implementation details. Moreover,The eve API is largely ompliant with the STL standard and therefore provides a smooth transition path forappliations written with other sienti� omputing libraries. A prototype version of the library an be down-loaded from the following URL: http://wwwlasmea.univ-bplermont.fr/Personnel/Joel.Falou/eng/eve.We are urrently working on improving the performanes obtained with this prototype. This involves, forinstane, globally minimizing the number of vetor load and store operations, using more judiiously Altive-spei� ahe manipulation instrutions or taking advantage of fused operations (e. g. multiply/add). Finally, itan be noted that, although the urrent version of eve has been designed for PowerPC proessors with Altive,it ould easily be retargeted to Pentium 4 proessors with MMX/SSE2 beause the ode generator itself (usingthe expression template mehanism) an be made largely independent of the SIMD instrution set.REFERENCES[1℄ The BOOST Library. http://www.boost.org/.[2℄ The POOMA Library. http://www.odesourery.om/pooma/.[3℄ VAST. http://www.psrv.om/vast_altive.html/.[4℄ The SWAR Home Page http://shay.en.purdue.edu/~swar Purdue University[5℄ Apple, The AltiVe Instrutions Referenes Page. http://developer.apple.om/hardware/ve.[6℄ Apple, VeLib framework. http://developer.apple.om/hardware/ve/vetor_libraries.html[7℄ C. Harris and M. Stephens, A ombined orner and edge detetor. In 4th Alvey Vision Conferene, 1988.[8℄ S. Kyo and S. Okasaki and I. Kuroda, An extended C language and a SIMD ompiler for e�ient implementation ofimage �lters on media extended miro-proessors. in Proeedings of Aivs 2003 (Advaned Conepts for Intelligent VisionSystems), Ghent, Belgium, Sept. 1998[9℄ G. Low, Ma STL. http://www.pixelglow.om/mastl/.[10℄ I. Ollman, AltiVe Veloity Engine Tutorial. http://www.simdteh.org/altive. Marh 2001.[11℄ T. Veldhuizen, Using C++ Template Meta-Programs. In C++ Report, vol. 7, p. 36-43,1995.[12℄ , Expression Templates. In C++ Report, vol. 7, p. 26-31, 1995.[13℄ , Tehniques for Sienti� C++. http://osl.iu.edu/ tveldhui/papers/tehniques/.[14℄ , Arrays in Blitz++. In Dr Dobb's Journal of Software Tools, p. 238-44, 1996.[15℄ T. Veldhuizen and D. Gannon, Ative Libraries: Rethinking the roles of ompilers and libraries Pro. of the SIAMWorkshop on Objet Oriented Methods for Inter-operable Sienti� and Engineering Computing. SIAM Press, 1998

E.V.E., An Objet Oriented SIMD Library 41Appendix A. A simple 3x1 gaussian �lter written with the Altive native C API .void AV_filter(har* img, short* res){ vetor unsigned har zu8,t1,t2,t3,t4;vetor signed short x1h,x1l,x2h;vetor signed short x2l,x3h,x3l;vetor signed short zs16 ,rh,rl,v0,v1,shift;// Generate onstantsv0 = ve_splat_s16(2);v1 = ve_splat_s16(4);zu8 = ve_splat_u8(0);zs16 = ve_splat_s16(0);shift = ve_splat_s16(8);for(int j = 0; j< SIZE/16 ; j++){ // Load input vetorst1 = ve_ld(j*16, img); t2 = ve_ld(j*16+16, img);// Generate shifted vetorst3 = ve_sld(t1,t2,1); t4 = ve_sld(t1,t2,2);// Cast to shortx1h = ve_mergeh(zu8,t1); x1l = ve_mergel(zu8,t1);x2h = ve_mergeh(zu8,t3); x2l = ve_mergel(zu8,t3);x3h = ve_mergeh(zu8,t4); x3l = ve_mergel(zu8,t4);// Atual filteringrh = ve_mladd(x1h,v0,zs16);rl = ve_mladd(x1l,v0,zs16);rh = ve_mladd(x2h,v1,rh);rl = ve_mladd(x2l,v1,rl);rh = ve_mladd(x3h,v0,rh);rl = ve_mladd(x3l,v0,rl);rh = ve_sr(rh,shift);rl = ve_sr(rl,shift);// Pak and store result vetort1 = ve_paksu(rh,rl);ve_st(t1,j,out);}}Edited by: Frédéri LoulergueReeived: June 26, 2004Aepted: June 5, 2005

Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 43�69. http://www.spe.org ISSN 1895-1767© 2005 SWPSEXTERNAL MEMORY IN BULK-SYNCHRONOUS PARALLEL ML∗FRÉDÉRIC GAVA†Abstrat. A funtional data-parallel language alled BSML was designed for programming Bulk-Synhronous Parallel algo-rithms, a model of omputing whih allows parallel programs to be ported to a wide range of arhitetures. BSML is based on anextension of the ML language with parallel operations on a parallel data struture alled parallel vetor. The exeution time an beestimated. Dead-loks and indeterminism are avoided. For large sale appliations where parallel proessing is helpful and wherethe total amount of data often exeeds the total main memory available, parallel disk I/O beomes a neessity. In this paper, wepresent a library of I/O features for BSML and its formal semantis. A ost model is also given and some preliminary performaneresults are shown for a ommodity luster.Key words. Parallel Funtional Programming, Parallel I/O, Semantis, BSP.1. Introdution. Some problems require performane that an only be provided by massively parallelomputers. Programming these kind of omputers is still di�ult. Many important omputational appliationsinvolve solving problems with very large data sets [44℄. Suh appliations are also referred as out-of-oreappliations. For example astronomial simulation [47℄, rash test simulation [10℄, geographi informationsystems [32℄, weather predition [52℄, omputational biology [17℄, graphs [40℄ or omputational geometry [11℄and many other sienti� problems an involve data sets that are too large to �t in the main memory andtherefore fall into this ategory. For another example, the Large Hadron Collider of the CERN laboratoryfor �nding traes of exoti fundamental partiles (web page at lh-new-homepage.web.ern.h), when startsrunning, this instrument will produes about 10 Petabytes a month. The earth-simulator, the most powerfulparallel mahine in the top500 list, has 1 Petabyte of total main memory and 100 Petabytes of seondarymemories. Using the main memory is not enough to store all the data of an experiment.Using parallelism an redue the omputation time and inrease the available memory size, but for hal-lenging appliations, the memory is always insu�ient in size. For instane, in a mesh deomposition of amehanial problem, a sientist might want to inrease the mesh size. To inrease the available memory size, atrivial solution is to use the virtual memory mehanism present in modern operating systems. This has beenestablished as a standard method for managing external memory. Its main advantage is that it allows theappliation to aess to a large virtual memory without having to deal with the intriaies of bloked seondarymemory aesses. Unfortunately, this solution is ine�ient if standard paging poliy is employed [7℄. To get thebest performanes, the algorithms must be restrutured with expliit I/O alls on this seondary memory.Suh algorithms are generally alled external memory (EM) algorithms and are designed for large ompu-tational problems in whih the size of the internal memory of the omputer is only a small fration of the sizeof the problem ([55, 53℄ for a survey). Parallel proessing is an important issue for EM algorithms for the samereasons that parallel proessing is of pratial interest in non-EM algorithm design. Existing algorithm anddata strutures were often unsuitable for out-of-ore appliations. This is largely due to the need of loality ondata referenes, whih is not generally present when algorithms are designed for internal memory due to thepermissive nature of the PRAM model: parallel EM algorithms [54℄ are �new� and do not work optimally andorretly in �lassial� parallel environments.Delarative parallel languages are needed to simplify the programming of massively parallel arhitetures.Funtional languages are often onsidered. The design of parallel programming languages is a tradeo� betweenthe possibility to express the parallel features that are neessary for preditable e�ieny (but with programsthat are more di�ult to write, prove and port) and the abstration of suh features that are neessary tomake parallel programming easier (but whih should not hinder e�ieny and performane predition). Onthe one hand the programs should be e�ient but without the prie of non portability and unpreditabilityof performanes. The portability of ode is needed to allow ode reuse on a wide variety of arhitetures.The preditability of performanes is needed to guarantee that the e�ieny will always be ahieved, whateverarhiteture is used.
∗This work is supported by the ACI Grid program from the Frenh Ministry of Researh,under the projet Caraml(http://www.araml.org)
†Laboratory of Algorithms, Complexity and Logi (LACL), University of Paris XII, Val-de-Marne, 61 avenue du Général deGaulle, 94010 Créteil edex � Frane, gava�univ-paris12.fr 43

44 F. Gava

Fig. 2.1. The BSP model of omputationAnother important harateristi of parallel programs is the omplexity of their semantis. Deadloksand non-determinism often hinder the pratial use of parallelism by a large number of users. To avoid theseundesirable properties, there is a trade-o� between the expressiveness of the language and its struture whihould derease the expressiveness.We are urrently exploring the intermediate position of the paradigm of algorithmi skeletons [6, 42℄ inorder to obtain universal parallel languages where the exeution ost an easily be determined from the soureode. In this ontext, ost means the estimate of parallel exeution time. This last requirement fores the useof expliit proesses orresponding to the proessors of the parallel mahine. Bulk-Synhronous Parallel ML orBSML is an extension of ML for programming Bulk-Synhronous Parallel algorithms as funtional programswith a ompositional ost model. Bulk-Synhronous Parallel (BSP) omputing is a parallel programming modelintrodued by Valiant [46, 50℄ to o�er a high degree of abstration like PRAM models and yet to allow portableand preditable performane on a wide variety of arhitetures with a realisti ost model based on a struturedparallelism. Deadloks and indeterminism are avoided. BSP programs are portable aross many parallel arhi-tetures. Suh algorithms o�er preditable and salable performanes ([38℄ for a survey) and BSML expressesthem with a small set of primitives taken from the on�uent BSλ alulus [37℄. Suh operations are implementedas a library for the funtional, with a strit evaluation strategy, programming language Objetive Caml [33℄.We refer to [27℄ for more details about the hoie of this strategy for massively parallel omputing.Parallel disk I/O has been identi�ed as a ritial omponent of a suitable high performane omputer.Researh in EM algorithms has reently reeived onsiderable attention. Over the last few years, omprehensiveomputing and ost models that inorporate disks and multiple proessors have been proposed [35, 55, 54℄, butnot with all the above elements. [14, 16℄ showed how an EM mahine an take full advantage of parallel disk I/Oand multiple proessors. This model is based on an extension of the BSP model for I/O aesses. Our researhaims at ombining the BSP model with funtional programming. We naturally need to also extend BSML withI/O aesses for programming EM algorithms. This paper is the follow-up to our work on imperative featuresof our funtional data-parallel language [22℄.This paper desribes a further step after [21℄ towards this diretion. The remainder of this paper is organizedas follows. First we review the BSP model in Setion 2 and, then, brie�y present the BSML language. Insetion 3 we introdue the EM-BSP model and the problems that appear in BSML. In setion 4, we then givenew primitives for our language. In setion 5, we desribe the formal semantis of our language with persistentfeatures. Setion 6 is devoted to the formal ost model assoiated to our language and Setion 7 to somebenhmarks of a parallel program. We disuss related work in setion 8 and we end with onlusions and futureresearh (setion 9).2. Funtional Bulk-Synhronous Parallel ML.2.1. Bulk-Synhronous Parallelism. A BSP omputer ontains a set of proessor -memory pairs, aommuniation network allowing inter-proessor delivery of messages and a global synhronization unit whih

External Memory in Bulk-synhronous Parallel ML 45exeutes olletive requests of a synhronization barrier. For the sake of oniseness, we refer to [5, 46℄ for moredetails. In this model, a parallel omputation is subdivided into supersteps (Figure 2.1) at the end of whih abarrier synhronization and a routing are performed. After that, all requests for data posted during a preedingsuperstep are ful�lled. The performane of the mahine is haraterized by 3 parameters expressed as multiplesof the loal proessing speed r:(i) p is the number of proessor-memory pairs;(ii) l is the time required for a global synhronization and(iii) g is the time for olletively delivering a 1-relation, a ommuniation phase where every proessorreeives/sends at most one word. The network an deliver an h-relation in time g × h for any arity h.These parameters an easily be obtained using benhmarks [28℄. The exeution time of a superstep s is thusthe sum of the maximal loal proessing time, the maximal data delivery time and the global synhronizationtime, i.e, Time(s) = maxi:processor ws
i + maxi:processor hs

i ∗ g + l where ws
i= loal proessing time on proessor

i during superstep s and hs
i =max{hs

i+, hs
i−} where hs

i+ (resp. hs
i−) is the number of words transmitted (resp.reeived) by proessor i during superstep s. The exeution time ∑s Time(s) of a BSP program omposed of Ssupersteps is therefore the sum of 3 terms:

tcomp + tcomm + L where

tcomp =
∑

s maxi ws
i

tcomm = H × g where H =
∑

s maxi hs
i

L = S × l.In general tcomp, H and S are funtions of p and of the size of data n, or of more omplex parameters like dataskew and histogram sizes. To minimize exeution time, the BSP algorithm design must jointly minimize thenumber S of supersteps and the total volume h (resp. tcomp) and imbalane hs (resp. tcomm) of ommuniation(resp. loal omputation). Bulk Synhronous Parallelism and the Coarse-Grained Multiomputer (CGM),whih an be seen as a speial ase of the BSP model are used for a large variety of appliations. As statedin [13℄ �A omparison of the proeedings of the eminent onferene in the �eld, the ACM Symposium onParallel Algorithms and Arhitetures between the late eighties and the time from the mid-nineties to todayreveals a startling hange in researh fous. Today, the majority of researh in parallel algorithms is within theoarse-grained, BSP style, domain�.bsp_p: unit→int bsp_l: unit→�oat bsp_g: unit→�oatmkpar: (int→α)→αparapply: (α→β)par→αpar→β partype α option = None | Some of αput: (int→α option)par→(int→α option)parat: αpar→int→α Fig. 2.2. The Core Bsmllib Library2.2. Bulk-Synhronous Parallel ML. BSML does not rely on SPMD programming. Programs areusual �sequential� Objetive Caml (OCaml) programs [33℄ but work on a parallel data struture. Some of theadvantages are simpler semantis and better readability. The exeution order follows the reading order in thesoure ode (or, at least, the results are suh as seems to follow the exeution order). There is urrently noimplementation of a full BSML language but rather a partial implementation as a library for OCaml (web pageat http://bsmllib.free.fr/).The so-alled BSMLlib library is based on the elements given in Figure 2.2. They give aess to the BSPparameters of the underling arhiteture: bsp_p() is p the stati number of proesses (this value does nothange during exeution), bsp_g() is g the time for olletively delivering a 1-relation and bsp_l() is l thetime required for a global synhronization barrier.There is an abstrat polymorphi type αpar whih represents the type of p-wide parallel vetors of objetsof type α one per proessor. BSML parallel onstruts operate on parallel vetors. Those parallel vetors arereated by mkpar so that (mkpar f) stores (f i) on proess i for i between 0 and p− 1:mkpar f = (f 0) (f 1) · · · (f i) · · · (f (p−1))We usually write f as fun pid→e to show that the expression e may be di�erent on eah proessor. Thisexpression e is said to be loal, i.e, a usual ML expression. The expression (mkpar f) is a parallel objet and

46 F. Gavait is said to be global. A usual ML expression whih is not within a parallel vetor is alled repliate, i.e,idential to eah proessor. A BSP algorithm is expressed as a ombination of asynhronous loal omputations(�rst phase of a superstep) and phases of global ommuniation (seond phase of a superstep) with globalsynhronization (third phase of a superstep). Asynhronous phases are programmed with mkpar and applysuh that (apply (mkpar f) (mkpar e)) stores ((f i) (e i)) on proess i:apply f0 f1 · · · fi · · · fp−1 v0 v1 · · · vi · · · vp−1

= (f0 v0) (f1 v1) · · · (fi vi) · · · (fp−1 vp−1)Let us onsider the following expression:let vf=mkpar(fun pid x→x+pid)and vv=mkpar(fun pid→2∗pid+1)in apply vf vvThe two parallel vetors are respetively equivalent to:fun x→x + 0 fun x→x + 1 · · · fun x→x + i · · · fun x→x + (p− 1)and
0 3 · · · 2× i + 1 · · · 2× (p− 1) + 1The expression apply vf vv is then evaluated to:
0 4 · · · 2× i + 2 · · · 2× (p− 1) + 2Readers familiar with BSPlib [28℄ will observe that we ignore the distintion between a ommuniation requestand its realization at the barrier. The ommuniation and synhronization phases are expressed by put.Consider the expression: put(mkpar(fun i→fsi)) (∗). To send a value v from proess j to proess i, thefuntion fsj at proess j must be suh that (fsj i) evaluates to Some v. To send no value from proess j toproess i, (fsj i) must evaluate to None. The expression (∗) evaluates to a parallel vetor ontaining a funtionfdi of delivered messages on every proess i. At proess i, (fdi j) evaluates to None if proess j sent no messageto proess i or evaluates to Some v if proess j sent the value v to the proess i.The full language would also ontain a synhronous projetion operation at. (at ve n) returns the nthvalue of the parallel vetor ve: at v0 · · · vn · · · vp−1 n = vnat expresses ommuniation and synhronization phases. Without it, the global ontrol annot take into aountdata omputed loally. Global onditional is neessary for expressing algorithms like: Repeat Parallel IterationUntilMax of loal errors < ǫ. The nesting of par types is prohibited and the projetion should not be evaluatedinside the sope of a mkpar. Our type system enfores these restritions [23℄.2.3. Examples.2.3.1. Often Used Funtions. Some useful funtions an be de�ned by using only the primitives. Forexample the funtion repliate reates a parallel vetor whih ontains the same value everywhere. The primitiveapply an be used only for a parallel vetor of funtions whih take only one argument. To deal with funtionswhih take two arguments we need to de�ne the apply2 funtion.let repliate x = mkpar(fun pid→x)let apply2 vf v1 v2 = apply (apply vf v1) v2It is also ommon to apply the same sequential funtion at eah proess. This an be done using the parfunfuntions. They only di�er in the number of arguments to apply:let parfun f v = apply(repliate f) vlet parfun2 f v1 v2 = apply(parfun f v1) v2let parfun3 f v1 v2 v3 = apply(parfun2 f v1 v2) v2

External Memory in Bulk-synhronous Parallel ML 47It is also ommon to apply a di�erent funtion on a proess. applyat n f1 f2 v applies funtion f1 at proess nand funtion f2 at other proesses:let applyat n f1 f2 v =apply(mkpar(fun i→if i=n then f1 else f2)) v2.3.2. Communiation Funtion. Our example is the lassial omputation of the pre�x of a list. Herewe make the hypothesis that the elements of the list are distributed to all the proesses as lists. Eah proessorperforms a loal redution, then sends its partial result to the following proessors and �nally loally reduesits partial result with the sent values. Take for example the following expression:san_list_diret e (+) [1; 2] [3; 4] [5]It will be evaluated to:
[e + 1; e + 1 + 2] [e + 1 + 2 + 3; e + 1 + 2 + 3 + 4;] [e + 1 + 2 + 3 + 4 + 5]for a pre�x of three proessors and where e is the neutral element (here 0). To do this, we need �rst theomputation of the pre�x of a parallel vetor:(∗ san_diret:(α→α→α)→α→α par→α par ∗)let san_diret op e vv =let mkmsg pid v dst=if dst<pid then None else Some v inlet pros_lists=mkpar(fun pid→from_to 0 pid) inlet reeivedmsgs=put(apply(mkpar mkmsg) vv) inlet values_lists= parfun2 List.map(parfun (ompose noSome) reeivedmsgs) pros_lists inapplyat 0 (fun _ →e) (List.fold_left op e) values_listswhere

List.map f [v0; . . . ; vn] = [(f v0); . . . ; (f vn)]List.fold_left f e [v0; . . . ; vn] = f (· · · (f (f e v0) v1) · · ·) vnfrom_to n m = [n; n + 1; n + 2;. . . ; m]noSome (Some v) = vompose f g x = (f (g x)).Then, we an diretly have the pre�x of lists using some generi san:let san_wide san seq_san_last map op e vv =let loal_san=parfun (seq_san_last op e) vv inlet last_elements=parfun fst loal_san inlet values_to_add=(san op e last_elements) inlet pop=applyat 0 (fun x y→y) op inparfun2 map (pop values_to_add) (parfun snd loal_san)let san_wide_diret seq_san_last map op e vv =san_wide san_diret seq_san_last map op e vvlet san_list san op e vl =san_wide san seq_san_last List.map op e vl(∗ san_list_diret:(α→α→α)→α→α list par→α list par ∗)let san_list_diret op e vl = san_list san_diret op e vlwhere seq_san_last f e [v0; v1; . . . ; vn] = (last, [(f e v0); f(f e v0) v1; . . . ; last]) wherelast = f (· · · (f (f e v0) v1) · · ·) vn. The BSP ost formula of the above funtion (assuming op has a onstantost cop) is thus 2×N × cop × r + (p− 1)× s× g + l where s denotes the size in words of a value ompute bythe san and N the length of the biggest list held at a proess. We have thus the time to ompute the partialpre�x, the time to send the partial results, time to perform the global synhronization and the time to �nishthe pre�x.

48 F. Gava
�

�
	

�

�
	

�

�
	

�

�
	

�

�
	P/M P/M P/M P/M P/MDiskD−1

Disk0

Internal BusCPUMemory
@ �NetworkRouter Fig. 3.1. A BSP omputer with external memories2.4. Advantages of Funtional BSP Programming. One important bene�t of the BSP model is theability to aurately predit the exeution time requirements of parallel algorithms. Communiations are learlyseparated from synhronization, i. e., this avoids deadloks and it an be performed in any order, providedthat the information is delivered at the beginning of the next superstep. This is ahieved by onstrutinganalytial formulas that are parameterized by a few values whih aptured the omputation, ommuniationand synhronization performane of the parallel system.The larity, abstration and formal semantis of funtional language make them desirable vehiles foromplex software. The funtional approah of this parallel model allows the re-use of suitable tehniques fromfuntional languages beause a few number of parallel primitives is needed. Primitives of the BSML languagewith a strit strategy are derived from a on�uent alulus [37℄ so parallel algorithms are also on�uent andkeep the advantages of the BSP models: no deadlok, e�ient implementation using optimized ommuniationalgorithms, stati ost formulas and ost previsions. The lazy evaluation strategy of pure funtional languageis not suited for the need of the massively parallel programmer. Lazy evaluation has the unwanted property ofhiding omplexity from the programmer [27℄. The strit strategy of OCaml makes the BSMLlib a better toolfor high performane appliations beause programs are transparent in the sense of making omplexity expliitin the syntax.Also, as in funtional languages, we ould easily prove and ertify funtional implementation of suh algo-rithms with a proof assistant [1, 4℄ as in [20℄. Using the extration possibility of the proof assistant, we ouldgenerate a erti�ed implementation to be used independently of the sequential or parallel implementation ofthe BSML primitives.3. External Memory.3.1. The EM-BSP model. Modern omputers typially have several layers of memories whih inludethe main memory and ahes as well as disks. We restrit ourselves to the two-level model [54℄ beause thespeed di�erene between disks and the main memory is muh more signi�ant than between other layers ofmemories. [16℄ extended the BSP model to inlude seondary loal memories. The basi idea is simple and itis illustrated in Figure 3.1. Eah proessor has, in addition to its loal memory, an external memory (EM) inthe form of a set of disks. This idea is applied to extend the BSP model to its EM version alled EM-BSP byadding the following parameters to the standard BSP parameters:(i) M is the loal memory size of eah proessor;(ii) D is the number of disk drives of eah proessor;(iii) B is the transfer blok size of a disk drive, and(iv) G is the ratio of loal omputational apaity (number of loal omputation operations) divided byloal I/O apaity (number of bloks of size B that an be transferred between the loal disks and memory)per unit time.In many pratial ases, all proessors have the same number of disks and, thus, the model is restrited tothat ase (although the model forbids di�erent memory sizes). The disk drives of eah proessor are denoted by

D0,D1, . . . ,DD−1. Eah drive onsists of a sequene of traks whih an be aessed by diret random aess. Atrak stores exatly one blok of B words. Eah proessor an use all its D disk drives onurrently and transfer
D × B words from/to the loal disks to/from its loal memory in a single I/O operation being at ost G. Insuh an operation, only one trak per disk is permitted to be aessed without any restrition and eah trakis set on eah disk. Note that an operation involving fewer disk drives inurs the same ost. Eah proessor is

External Memory in Bulk-synhronous Parallel ML 49assumed to be able to store in its loal main memory at least some bloks from eah disk at the same time,i. e., M >> DB.Like omputation on the BSP model, the omputation of the EM-BSP model proeeds in a suession ofsupersteps. The ommuniation osts are the same as for the BSP model. The EM-BSP model allows multipleI/O operations during the omputation phase of the superstep. The total ost of eah superstep is thus de�ned as
tcomp,io + tcomm +L where tcomp,io is the omputational ost and additional I/O ost harged for the supersteps,i.e, tcomp,io =

∑

s maxi(w
s
i +ms

i) where ms
i is the I/O ost inurred by proessor i during superstep s. We referto [16℄ to have the EM-BSP omplexity of some lassial BSP algorithms.3.2. Examples of EM algorithms. Our �rst example is the matrix inversion whih is used by manyappliations as a diret method to solve linear systems. The omputation of the inverse of a matrix A anbe derived from its LU fatorization. [8℄ presents the LU fatorization by bloks. For this parallel out-of-orefatorization, the matrix is divided in bloks of olumns alled superbloks. The width of the superblok isdetermined by the amount of physial available memory: only bloks of the urrent superblok are in the mainmemory, the others are on disks. The algorithm fatorize the matrix from left to right, superblok by superblok.Eah time a new superblok of the matrix is fethed in the main memory (alled the ative superblok), allprevious pivoting and update of a history of the right-looking algorithm are applied to the ative superbloks.One the last superblok is fatorized, the matrix is re-read to apply the remaining row pivoting of the reursivephases. Note that the omputation is done data in plae, the matrix has been �rst distributed on proessorsand thus, for load balaning, a yli distribution of the data is used.[9℄ presents PRAM algorithms using external-memory for graph problems as bionneted omponents of agraph or minimum spanning forest. One of them is the 3-oloring of a yle applied to �nding large independentssets for the problem of list ranking (determine, for eah node v of a list, the rank of v de�ne as the number oflinks from v to the end of the list). The methods for solving it is to update sattered suessor and predeessorolors as needed after re-oloring a group of nodes of the list without sorting or sanning the entire list. Asbefore, the algorithms works group by groups with only one group in the main memory.The last example is the multi-string searh problem whih onsists of determining whih of k pattern stringsour in another string. Important appliations on biologial databases make use of very large text olletionsrequiring speialized nontrivial searh operations. [19℄ desribes an algorithm for this problem with a onstantnumber of supersteps and based on the distribution of a proper data struture among the proessors and thedisks to redue and balane the ommuniation ost. This data struture is based on a bind tree built on thesu�xes of the strings and the algorithm works on longest ommon pre�x on suh trees and by lexiographiorder. The algorithm takes advantage of disks by only keeping a part of a bind tree in the main memory andby olleting subpart of trees during the supersteps.4. External Memory in BSML.4.1. Problems by Adding I/O in BSML. The main problem by adding external memory and so I/Ooperators to BSML is to keep safe the fat that in the global ontext, the repliate values, i.e, usual OCamlvalues repliate on eah proessor, are the same. Suh values are dediated to the global ontrol of the parallelalgorithms. Take for example the following expression:let han=open_in "�le.dat" inif (at (mkpar(fun pid→(pid mod 2)=0)) (input_value han))then san_diret (+) 0 (repliate 1)else (repliate 1)It is not true that the �le on eah proessor ontains the same value. In this ase, eah proessor reads on itsseondary memory a di�erent value. We would have obtained an inoherent result beause eah proessor reads adi�erent integer on the hannel han and some of them would exeute san_diret whih need a synhronization.Others would exeute repliate whih does not need a synhronization. This breaks the on�uent result of theBSML language and the BSP model of omputation with its global synhronizations. If this expression hadbeen evaluated with the BSMLlib library, we would have a breakdown of the BSP omputer beause at is aglobal synhronous primitive. Note that we also have this kind of problems in the BSPlib [28℄ where the authorsnote that only the I/O operations of the �rst proessor are �safe�. Another problem omes from side-e�etsthat an our on eah proessor. Take for example the following expression:

50 F. Gava
�

�
	

�

�
	

�

�
	

�

�
	

�

�
	P/M P/M P/M P/M P/MDisk0 DiskDg−1NetworkRouter Fig. 4.1. A BSP omputer with shared diskslet a=mkpar(fun i→if i=0 then(open_in "�le.dat");()else ())in (open_out "�le.dat")where () is an empty value. If this expression had been evaluated with the BSMLlib library, only the �rstproessor would have opened the �le in a read mode. After, eah proessor opened the �le with the same namein a write mode exept the �rst one. This �le has already been opened in read mode. We would also have aninoherent result beause the �rst proessor raised an exeption whih is not aught at all by other proessesin the global ontext. This problem of side-e�ets ould also be ombined with the �rst problem if there is no�le at the beginning of the omputation. Take for example the following expression:let han=open_out "�le.dat" inlet x=mkpar(fun i→if i=0 then (ouput_value 0) else ()) inouput_value 1; lose ha;let han=open_in "�le.dat" inif (at (mkpar(fun pid→(pid mod 2)=0)) (input_value han))then san_diret (+) 0 (repliate 1)else (repliate 1)The �rst proessor adds the integers 1 and 2 on its �le and other proessors add the integer 2 on their �les. Asin the �rst example, we would have a breakdown of the BSP omputer beause the integer read would not bethe same and at is a global synhronous primitive.4.2. The proposed solution. Our solution is to have two kinds of �les: global and loal ones. In thisway, we have two kinds of I/O operators. Loal I/O operators do not have to our in the global ontext andglobal I/O ones do not have to our loally. Loal �les are in loal �le systems whih are presents in eahproessor as in the EM-BSP model. Global �les are in a global �le system. These �les need to be the same fromthe point of view of eah node. The global �le system is thus in shared disks (as in Figure 4.1) or as a opy ineah proessor. They thus always give the same values for the global ontext. Note that if they are only shareddisks and not loal ones, the loal �le systems ould be in di�erent diretories, one per proessor in the global�le system.An advantage of having shared disks is the ase of some algorithms whih do not have distributed data atthe beginning of the omputation. As those whih sort, the list of data to sort is in a global �le at the beginningof the program and in another global �le at the end. On the other hand, in the ase of a distributed global �lesystem, the global data are also distributed and programs are less sensitive to the problem of faults. Thus, wehave two important ases for the global �le system whih ould be seen as a new parameter of the EM-BSPmahine: have we shared disks or not?In the �rst ase, the ondition that the global �les are the same for eah proessor point of view requiressome synhronizations for some global I/O operators as reated, opened or deleted a �le. For example, it isimpossible or un-deterministi for a proessor to reate a �le in the global �le system if at the same time anotherproessor deleted it. On the other hand, reading (resp. writing) values from (resp. to) �les do not need anysynhronization. All the proessors read the same values in the global �le and only one of the proessors needsto really write the value on the shared disks. In the ase of a global output operator only one of the proessorswrites the value and in the ase of a global input operator the value is �rst read from the disks by a proessorand then is read by other proessors from the operating system bu�ers. In this way, for all global operators,there is not a bottlenek of the shared disks.In the seond ase, all the �les, loal and global ones, are distributed and no synhronization is needed atall. Eah proessor reads/writes/deletes et. in its own �le system. But at the beginning, the global �le systemneeds to be empty or repliated to eah proessor and the global and loal �le systems in di�erent diretories.

External Memory in Bulk-synhronous Parallel ML 51Note that many modern parallel mahines have onurrent shared disks. Suh disks are always onsideredas user disks, i.e, disks where the users put the data needed for the omputations whereas loal disks are onlygenerally used for the parallel omputations of programs. For example, the earth simulator has 1,5 Petabytesfor users as mass storage disks and a speial network to aess them. If there are no shared disks, NFS orsalable low level libraries as in [36℄ are able to simulate onurrent shared disks. Note also that if they are onlyshared disks, loal disks ould be simulated by using di�erent diretories for the loal disks of the proessors(one diretory for one proessor).

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 0 2000 4000 6000 8000 10000 12000 14000

Size in words of the values on each disk

Write or read values

 1.4e-05

 1.45e-05

 1.5e-05

 1.55e-05

 1.6e-05

 1.65e-05

 1.7e-05

 1.75e-05

 1.8e-05

 1.85e-05

 3900 3950 4000 4050 4100 4150 4200 4250 4300

Size in words of the values on each disk

Write or read values

Fig. 4.2. Benhmarks of EM parameters4.3. Our new model. After some experiments to determine the EM-BSP parameters of our parallelmahine, we have found that operating systems do not read/write data in a onstant time but in a linear timedepending on the size of the data. We also notie that there is an overhead depending on the size of the bloks,i. e., if we have n× (DB) < s < (n + 1)×DB, where s is the size in words of the data, there is n + 1 overheads

52 F. Gavato read/write this value from/to the D onurrent disks. Figure 4.2 gives the results of this experiment on aPC with 3 disks, eah disk with bloks of 4096 words (seonds are plotted on the vertial axis). This programwas run 10000 times and the average was taken. Suh results are not altered if we derease the number of disks.Our proposed solution gives the proessors aess to two kinds of �les: global and loal ones. By this way,our model alled EM2-BSP extends the BSP model to its EM2 version with two kinds of external memories,loal and global ones. Eah loal �le system will be on loal onurrent disks as in the EM-BSP model. Theglobal one will be on onurrent shared disks (as in Figure 4.1) if they exist or repliate on the loal disks. TheEM2-BSP model is thus able to take into aount the time to read the data and to distributed them into theproessors. The following parameters are thus adding to the standard BSP parameters:(i) M is the loal memory size of eah proessor;(ii) Dl is the number of independent disks of eah proessor;(iii) Bl is the transfer blok size of a loal disk;(iv) Gl is the time to read or write in parallel one word on eah loal disk;(v) Ol is the overhead of the onurrent loal disks;(vi) Dg is the number of independent shared disks (or global disks);(vii) Bg is the transfer blok size of a global disk;(viii) Gg is the time to read or write in parallel one word on eah global disk and(ix) Og is the overhead of the onurrent global disks.Of ourse, if there are no shared disks or no loal disks: Dl = Dg, Bl = Bg, Gl = Gg and Ol = Og. A proessoris able to read/write n words to its loal disks in time ⌈ n
Dl⌉ ×Gl + ⌈n+1

DlBl⌉ ×Ol and n words to the global disksin time ⌈ n
Dg⌉ ×Gg + ⌈ n+1

DgBg⌉ ×Og.As in the EM-BSP model, the omputation of the EM2-BSP model proeeds in a suession of supersteps.The ommuniation osts are the same as for the EM-BSP model and multiple I/O operations are also allowedduring the omputation phase of a superstep.Note that Gg is not g even if proessors aess to the shared disks by the network (in ase of some parallelmahines): g is the time to perform a 1-relation and Gg is the time to read/write D words on the sharedonurrent disks. It ould depend on g in some parallel mahine as lusters but it ould depend on many otherhardware parameters if, for example, there is a speial network to aess to the shared onurrent disks.4.4. New Primitives. In this setion we desribe the ore of our I/O library, i. e., the minimal set ofprimitives for programming EM2-BSP algorithms. This library will be inorporated in the next release of theBSMLlib. This I/O library is based on the elements given in Figure 4.3. As in the BSMLlib library, we havefuntions to aess to the EM2-BSP parameters of the underlining arhiteture. For example, embsp_lo_D()is Dl the number of loal disks and glo_shared() gives if the global �le system is shared or not. Sine wehave two �le systems, we need two kinds of names and two kinds of abstrat types of output hannels (resp.input hannels): glo_out_hannel (resp. glo_in_hannel) and lo_out_hannel (resp. lo_in_hannel) toread/write values from/to global or loal �les.We an open a named �le for writing. The primitive returns a new output hannel on that �le. The �le istrunated to zero length if it already exists. Either it is reated or the primitive will raise an exeption if the �leould not be opened. For this, we have two kinds of funtions for global and loal �les: (glo_open_out F)whih opens the global �le F in write mode and returns a global hannel positioned at the beginning of that�le and (lo_open_out f) whih opens the loal �le f in write mode and returns a loal hannel positionedat the beginning of that �le. In the same manner, we have two funtions, glo_open_in and lo_open_infor opening a named �le in read mode. Suh funtions return new loal or global input hannels positioned atthe beginning of the �les. In the ase of global shared disks, a synhronization ours for eah global �open�.With this global synhronization, eah proessor ould signal to the other ones if it managed to open the �lewithout errors or not and eah proessor would raise an exeption if one of them has failed to open the �le.Now, with our hannels, we an read/write values from/to the �les. This feature is generally alled per-sistene. To write the representation of a strutured value of any type to a hannel (global or loal), we usedthe following funtions: (glo_output_value Cha v) whih writes the repliate value v to the opened global�le and (lo_output_value ha v) whih loally writes the loal value v to the opened loal �le. The objetan be then read bak, by the reading funtions: (glo_input_value Cha) (resp. (lo_input_value ha))whih returns from the global hannel Cha (resp. loal hannel ha) the repliate value Some v (resp. loalvalue) or None if there is no more value in the opened global �le (resp. loal �le). This is the end of the �le.

External Memory in Bulk-synhronous Parallel ML 53EM2-BSP parametersembsp_lo_D:unit→int embsp_lo_B:unit→int embsp_lo_G:unit→�oatembsp_glo_D:unit→int embsp_glo_B:unit→int embsp_glo_G:unit→�oatembsp_lo_O:unit→�oat embsp_glo_O:unit→�oat glo_shared:unit→boolGlobal I/O primitives Loal I/O primitivesglo_open_out:glo_name→glo_out_hannelglo_open_in:glo_name→glo_in_hannelglo_output_value:glo_out_hannel→α→unitglo_input_value:glo_in_hannel→α optionglo_lose_out:glo_out_hannel→unitglo_lose_in:glo_in_hannel→unitglo_delete:glo_name→unitglo_seek:glo_in_hannel→int→unit
lo_open_out: lo_name→lo_out_hannello_open_in:lo_name→lo_out_hannello_output_value:lo_out_hannel→α→unitlo_input_value:lo_in_hannel→α optionlo_lose_out:lo_out_hannel→unitlo_lose_in:lo_in_hannel→unitlo_delete:lo_name→unitlo_seek:lo_in_hannel→int→unitFrom loal to globalglo_opy:int→lo_name→glo_name→unitFig. 4.3. The Core I/O Bsmllib LibrarySuh funtions read the representation of a strutured value and we refer to [34℄ about having type safety inhannels and reading them in a safe way. We also have (glo_seek Cha n) (resp. lo_seek) whih allows topositioned the hannel at the nth value of a global �le (resp. loal �le). The behavior is unspei�ed if any ofthe above funtions is alled with a losed hannel.Note that only loal or repliate values ould be written on loal or global �les. Nesting of parallel vetorsis prohibited and thus lo_output_value ould only write loal values. It is also impossible to write on ashared global �le a parallel vetor of values (global values) beause these values are di�erent on eah proessorand glo_output_value is an asynhronous primitive. Suh values ould be written in any order and ouldbe mixed with other values. This is why only loal and repliate values should be read/write from/to disks (seesetion 6 for more details).After, read/write values from/to hannels, we need to lose them. As previously, we need four kinds offuntions: two for the input hannels (loal and global ones) and two for the output hannels. For example,(glo_lose_out Cha), loses the global output hannel Cha whih had been reated by glo_open_out. Theglo_delete and lo_delete primitives delete a global or a loal �le if it is �rst losed.The last primitive opies a loal �le from a proessor to the global �le system. It is thus a global primitive.(glo_opy n f F) opies the �le f from the proessor n to the global �le system with the name F. This primitiveould be used at the end of a BSML program to opy the loal results from loal �les to the global (user) �lesystem. It is not a ommuniation primitive beause used as a ommuniation primitive, glo_opy has a moreexpensive ost than any ommuniation primitive (see setion 6). In the ase of a distributed global �le system,the �le is dupliated on all the global �le systems of eah proessor and thus all the data of the �le are allput into the network. On the ontrary, in the ase of global shared disks, it is just a opy of the �le beause,aess to the global shared disks is generally slower than putting values into the network and read them bakby another proessor.Using these primitives, the �nal result of any program would be the same (but naturally without the sametotal time, i. e., without the same osts) with shared disk or not. Now, to better understand how these newprimitives work, we desribe a formal semantis of our language with suh persistent features.5. High Order Formal Semantis.5.1. Mini-BSML. Reasoning on the omplete de�nition of a funtional and parallel language suh asBSML, would have been omplex and tedious. In order to simplify the presentation and to ease the formalreasoning, this setion introdues a ore language as a mini programming language. It is an attempt to tradebetween integrating the prinipal features of persistene, funtional, BSP language and being simple. The

54 F. Gavaexpressions of mini-BSML, written e possibly with a prime or subsript, have the following abstrat syntax:
e ::= x variables | c onstants

| op operators | fun x→ e abstration
| (e e) appliation | let x = e in e binding
| (e, e) pairs | if e then e else e onditional
| (mkpar e) parallel vetor | (apply e e) parallel appliation
| (put e) ommuniation | (at e e) projetion
| f �le names or hannelsIn this grammar, x ranges over a ountable set of identi�ers. The form (e e′) stands for the appliation of afuntion or an operator e, to an argument e′. The form fun x → e is the so-alled and well-known lambda-abstration that de�nes the �rst-lass funtion of whih the parameter is x and the result is the value of e.Constants c are the integers, the booleans, the number of proesses p and we assume having a unique valuefor the type unit: (). The set of primitive operations op ontains arithmeti operations, pair operators, testfuntion isn of the n onstrutor whih plays the role of the None onstrutor in OCaml, �xpoint to de�nednatural iteration funtions and our I/O operators: openr (resp. openw) to open a �le as a hannel in readmode (resp. write mode), loser (resp. losew) to lose a hannel in read mode (resp. write mode), read,write to read or write in a hannel, delete to delete a �le and seek to hange the reading position. All thoseoperators are distinguished with a subsript whih is l for a loal operator and g for a global one. We also haveour parallel operators: mkpar, apply, put and at. We also have two kinds of �le systems, the loal and theglobal ones, de�ned with (possibly with a prime):

• f for a �le name;
• fw for a write hannel, fr for a read hannel and gξ

k for a hannel pointed on the kth value of a �lewhere ξ is the name of the hannel;
• ?f

vn.
..

v0
is a �le where ? is , r or w for a lose �le or an open �le in read or write mode and where

v0, . . . , vn the values hold in the �le.When a �le is opened in read mode, it ontains the name [ga
n, . . . , gz

m] of the hannels that pointed to it and theposition of these hannels. Before presenting the dynami semantis of the language, i. e., how the expressionsof mini-BSML are omputed to values, we present the values themselves and the simple ML types [39℄ of thevalues. There is one semantis per value of p, the number of proesses of the parallel mahine. In the following,the expressions are extended with the parallel vetors: 〈e, . . . , e〉 (nesting of parallel vetors is prohibited; ourstati analysis enfores this restrition [23℄). The values of mini-BSML are de�ned by the following grammar:
v ::= fun x → e funtional value | c onstant

| op primitive | (v, v) pair value
| 〈v, . . . , v〉 p-wide parallel vetor value | f �le names or hannelsand the simple ML types of values are de�ned by the following grammar:

τ ::= κ base type (bool, int, unit, �le names or hannels) | α type variables
| τ1 → τ2 type of funtional values from τ1 to τ2 | τ1 ∗ τ2 type for pair valuesWe note ⊢ v : τ to say that the value v has the type τ and we refer to [39℄ for an introdution to the types ofthe ML language and to [23℄ for those of BSML.5.2. High Order Semantis. The dynami semantis is de�ned by an evaluation mehanism that relatesexpressions to values. To express this relation, we used a small-step semantis. It onsists of a prediatebetween an expression and another expression de�ned by a set of axioms and rules alled steps. The small-step semantis desribes all the steps of the language from an expression to a value. We suppose that weevaluate only expressions that have been type-heked [23℄ (nesting of parallel vetors has been prohibited).Unlike in a sequential omputer with a sequential programming language, a unique �le system (a set of �les)for persistent operators is not su�ient. We need to express the �le system of all our proessors and ourglobal �le system. We assume a �nite set N = {0, . . . , p − 1} whih represents the set of proessor namesand we write i for these names and ⋊⋉ for the whole parallel omputer. Now, we an formalize the �les foreah proessor and for the network. We write {fi} for the �le system of proessor i with i ∈ N . We assumethat eah proessor has a �le system as an in�nite mapping of �les whih are di�erent at eah proessor. Wewrite {f} = {{f0}, . . . , {fp−1}} for all the loal �le systems of our parallel mahine and {F} for our global �le

External Memory in Bulk-synhronous Parallel ML 55
(bsp_p ()) ⇀

δ
p

(fst (v1, v2)) ⇀
δ

v1if true then e1 else e2 ⇀
δ

e1

(isn n) ⇀
δ

true
(�x op) ⇀

δ
op (+ (n1, n2)) ⇀

δ
n with n = n1 + n2

(snd (v1, v2)) ⇀
δ

v2if false then e1 else e2 ⇀
δ

e2

(isn v) ⇀
δ

false if v 6= n
(�x (fun x→ e)) ⇀

δ
e[x← (�x (fun x→ e))]Fig. 5.1. Funtional δ-rulessystem. The persistent version of the small-steps semantis has the following form: {F}/e/{f}⇀ {F ′}/e′/{f ′}.We note ∗

⇀, for the transitive and re�exive losure of ⇀, e. g., we note {F0}/e0/{f
0}

∗
⇀ {F}/v/{f} for

{F0}/e0/{f0} ⇀ {F1}/e1/{f1} ⇀ {F2}/e2/{f2} ⇀ . . . ⇀ {F}/v/{f}. To de�ne the relation ⇀, we beginwith some rules for two kinds of redutions:(i) e/{fi}
i

⇀ e′/{f ′
i} whih ould be read as �with the initial loal �le system {fi}, at proessor i, theexpression e is redued to e′ with the �le system {f ′

i}";(ii) {F}/e/{f}
⋊⋉
⇀ {F ′}/e′/{f} whih ould be read as �with the initial global �le system {F} and withthe initial set of loal �le systems, the expression e is redued to e′ with the global �le system F ′ and with thesame set of loal �le systems".To de�ne these relations, we begin with some axioms for the funtional head redution ε

⇀:
(fun x→ e) v

ε
⇀ e[x← v] and let x = v in e

ε
⇀ e[x← v]We write e[x ← v] for the expression obtained by substituting all the free ourrenes of x in e by v. Freeourrenes of a variable are de�ned as a lassial and trivial indutive funtion on our expressions. Thisfuntional head redution has two versions. First, a loal redution, ε

⇀
i
, of just the proessor i and seond, aglobal redution, ε

⇀
⋊⋉
, of the whole parallel mahine:

e
ε
⇀ e′

e / {fi}
ε
⇀
i

e′ / {fi}
(1)

e
ε
⇀ e′

{F} / e / {f}
ε
⇀
⋊⋉
{F} / e′ / {f}

(2)For primitive operators we also have some axioms, the δ-rules. The funtional δ-rules ⇀
δ
are given in Figure 5.1.First, we have funtional δ-rules whih ould be used by one proessor i, ⇀

δi

or by the parallel mahine, ⇀
δ⋊⋉

. Asin the funtional head redution, we have two di�erent ases for using funtional δ-rules:
e⇀

δ
e′

e / {fi}⇀
δi

e′ / {fi}
(3)

e⇀
δ

e′

{F} / e / {f}⇀
δ⋊⋉

{F} / e′ / {f}
(4)Suh redutions, whih are not persistent redutions, do not hange and do not need the �les. Only persistentoperators hange and need them.

{F} / (mkpar v) / {f} ⇀
δ≎

{F} / 〈(v 0), . . . , (v (p − 1))〉 / {f}

{F}/(apply 〈v0, . . . , vp−1〉 〈v′0, . . . , v′p−1
〉) / {f} ⇀

δ≎

{F}/〈(v0 v′
0
), . . . , (vp−1 v′p−1

)〉/{f}

{F} / (at 〈. . . , vn, . . .〉 n) / {f} ⇀
δ≎

{F} / vn / {f} if Ac(vn) 6= True
{F} / (put 〈v0, . . . , vp−1〉) / {f}⇀

δ≎

{F} / (mkfun (〈send (init v0 p), . . . , send (init vp−1 p)〉)) / {f}

{F} / 〈send [v0

0 , .., vp−1

0
], . . . , send [v0

p−1, .., vp−1

p−1
]〉 / {f}

⇀
δ≎

{F} / 〈[v0

0 , .., v0

p−1], . . . , [vp−1

0
, .., vp−1

p−1
]〉 / {f} if ∀n, m ∈ 0, . . . , p− 1 Ac(v

m
n) 6= Truewhere mkfun = apply (mkpar (fun j t i→ if (and (≤(0, i), <(i,p))) then (aess t i) else n))Fig. 5.2. Parallel δ-rules

56 F. GavaSeond, for the parallel primitives, we naturally have δ-rules but we do not have those δ-rules on a singleproessor but only for the parallel mahine (Figure 5.2). For simple reasons it is impossible for a proessor tosend a hannel to another proessor. This seond proessor does not have to read in this hannel beause itould be seen as a hidden ommuniation. In this way, we have to test if the sent values ontain hannels ornot. To do this, we used a trivial indutive funtion Ac whih tells whether an expression ontains a hannelor not. Note that this work is done when OCaml serializes values. This raises an exeption when an abstratdatum like a hannel has been found. The evaluation of a put primitive proeeds in two steps. In a �rst step,eah proessor reates a pure funtional array of values. Thus, we need a new kind of expression, arrays written
[e, . . . , e]. init and aess operators are used to manipulate these funtional arrays:aess [v0, . . . , vn, . . . , vm] n ⇀

δ
vn and init f m ⇀

δ
[(f 0), . . . , (f (m−1))]In the seond step, the send operations exhange these arrays. For example, the value at the index j of thearray held at proess i is sent to proess j and is stored at index i of the result. The funtion mkfun onstrutsa parallel vetor of funtions from the resulting vetor of arrays.

(openr f)/{f ′, . . . , f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

far / {f ′, . . . , rf vn.
..

v0

[ga
0
], . . . , f ′′}

(openr f)/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gz], . . . , f ′′}
io
⇀
δ

fξr / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz , gξ
0
], . . . , f ′′}

(openw f)/{f ′, . . . , f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

fξw / {f ′, . . . ,wf ∅, . . . , f ′′}

(openwl f)/{f ′, . . . , f ′′}
io
⇀
δ

fξw / {f ′, . . . ,wf ∅, . . . , f ′′} if f /∈{f ′, . . . , f ′′}

(loser fξr)/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gξ
k
, . . . , gz], . . . , f ′′}

io
⇀
δ

() / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz], . . . , f ′′}

(loser fξr)/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gz], . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz], . . . , f ′′}

(loser fξr)/{f ′, . . . , rf vn.
..

v0

[gξ
k
], . . . , f ′′}

io
⇀
δ

() / {f ′, . . . , f vn.
..

v0

, . . . , f ′′}

(loser fξr)/{f ′, . . . , f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , f vn.
..

v0

, . . . , f ′′}

(losew fξw/{f ′, . . . , ?f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , f vn.
..

v0

, . . . , f ′′} where ?=w or ?=
(readτ fξr)/{f ′, . . . , rf .

..
vk.
..

[ga, .., gξ
k
, . . . , gz], . . . , f ′′}

io
⇀
δ

vk / {f ′, . . . , rf .
..

vk.
..

[ga, .., gξ
m, . . . , gz], . . . , f ′′}if ⊢ vk : τ and m = k + 1. vk is the kth value of f

(readτ fξr)/{f ′, . . . , rf vn.
..

v0

[ga, .., gξ
k
, . . . , gz], . . . , f ′′}

io
⇀
δ
n / {f ′, . . . , rf vn.

..
v0

[ga, .., gξ
k
, . . . , gz], . . . , f ′′}if k > n

(seek fξr k)/{f ′, . . . , rf vn.
..

v0

[ga, .., gξ
m, . . . , gz], . . . , f ′′}

io
⇀
δ
n / {f ′, . . . , rf vn.

..
v0

[ga, .., gξ
k
, . . . , gz], . . . , f ′′}

(write (v, fξw))/{f ′, . . . ,wf
.
.., . . . , f ′′}

io
⇀
δ
()/{f ′, . . . ,wf

v
.
.. , . . . , f ′′} if Ac(vn) 6= True

(delete f)/{f ′, . . . , f .
.., . . . , f ′′}

io
⇀
δ

()/{f ′, . . . , f ′′}Fig. 5.3. δ-rules of the persistent operatorsThird, we omplete our semantis by giving the δ-rules io
⇀
δ
of the I/O operators given in Figure 5.3. Theopen operation opens a �le (in read or write mode) and returns a new hannel, pointing to this �le, to aessto the values of the �le or write values in this �le. Opening a �le in write mode, gives an empty �le. If possible,readτ gives the value of type τ ontained in the �le from the hannel. If no more value ould be read thenreadτ returns an empty value. The write operation writes a new value into the �le using the hannel. delete

External Memory in Bulk-synhronous Parallel ML 57
Γ ::= []
| Γ e
| v Γ
| let x = Γ in e
| (Γ, e)
| (v, Γ)
| if Γ then e else e
| (mkpar Γ)
| (apply Γ e)
| (apply v Γ)
| (put Γ)
| (at Γ e)
| (at v Γ)

Γi
l

::= Γi
l

e
| v Γi

l
| let x = Γi

l
in e

| (Γi
l
, e)

| (v, Γi
l
)

| if Γi
l
then e else e

| (mkpar Γi
l
)

| (apply Γi
l

e)
| (apply v Γi

l
)

| (put Γi
l
)

| (at Γi
l

e)
| (at v Γi

l
)

| 〈e, . . . ,

i
z}|{

Γl , e, . . . , e〉

Γl ::= []
| Γl e
| v Γl

| let x = Γl in e
| let re g x = Γl in e
| (Γl, e)
| (v, Γl)
| if Γl then e else e
| (send Γl)
| [Γl, e1, . . . , en]
| [v0,Γl, . . . , en]
| . . .
| [v0, v1, . . . , Γl]Fig. 5.4. Context of evaluationdeletes a �le from the �le system if it has been fully losed. lose loses a hannel or do nothing if the hannelhas been �rst losed. All those rules ould be distinguished with a subsript (l or g) for the loal or the globaloperators. Thus, we need two kinds of redutions, one for the loal redution io

⇀
δi

and another one for the globalredution io
⇀
δ⋊⋉

:
e / {fi}

io
⇀
δ

e′ / {f ′
i}

e / {fi}
io
⇀
δi

e′ / {f ′
i}

(5)
e / {F}

io
⇀
δ

e′ / {F ′}

{F} / e / {f}
io
⇀
δ⋊⋉

{F ′} / e′ / {f}
(6)First, for a single proessor i suh persistent operations work on the loal �le system of the proessor i wherethey are exeuted. Seond, for the whole parallel mahine, we have the same operations exept for the global�le system. The speial operator opy⋊⋉ opies one �le of one proessor into the global �le system:

{F ′, .., F ′′}/(opy i f F)/{f0, . . . , fi, . . . , fp−1}
io
⇀
δ⋊⋉

{F ′, .., F ′′, F vn.
..

v0

}/()/{f0, . . . , fi, . . . , fp−1}if F /∈{F ′, .., F ′′} and fi = {f ′, . . . , f vn.
..

v0

, . . . , f ′′}Now, the omplete de�nitions of our two kinds of redutions are:
i

⇀ =
ε
⇀
i
∪ ⇀

δi

∪
io
⇀
δi

and ⋊⋉
⇀ =

ε
⇀
⋊⋉
∪ ⇀

δ⋊⋉

∪ ⇀
δ≎

∪
io
⇀
δ⋊⋉5.3. Contexts of evaluation. It is easy to see that we annot always make a head redution. We haveto redue �in depth� in the sub-expressions. To de�ne this deep redution, we de�ne two kinds of ontexts,i.e, expressions with a hole noted [] that have the abstrat syntax given in Figure 5.4. The hole gives whereexpressions ould be redued. In this way, the ontexts give the order of evaluation of the arguments of theonstrution of the language, i.e, the strategy of the language.The Γ ontext is used to de�ne a global redution of the parallel mahine. For example:

Γ = let x = [] in mkpar (fun pid→ e)The redution will our at the hole to �rst ompute the value of x. The Γi
l ontext is used to de�ne inwhih omponent i of a parallel vetor the redution is done, i.e., whih proessor i redues its loal expression.This ontext uses the Γl ontext whih de�nes a loal redution on a proessor i. Note that, in this way, thehole is always inside a parallel vetor. For example, the following ontext: Γi

l = apply v 〈v0, e1, . . . , Γl〉 and
Γl = openrl [] is used to de�ne that the last proessor �rst omputes the argument of the openrl primitive.Now we an redue �in depth� in the sub-expressions. To de�ne this deep redution, we use the inferenerules of the loal ontext rule:

e / {fi}
i

⇀ e′ / {f ′
i}

{F} / Γi
l
(e) / {f}⇀ {F} / Γi

l
(e′) / {f ′}

where
{f} = {{f0}, . . . , {fi}, . . . , {fp−1}}
{f ′} = {{f0}, . . . , {f ′

i}, . . . , {fp−1}}
(7)

58 F. GavaSo, we an redue the parallel vetors and the ontext gives the name of the proessor where the expression isredued. The global ontext rule is:
{F} / e / {f}

⋊⋉
⇀ {F ′} / e′ / {f}

{F} / Γ(e) / {f}⇀ {F ′} / Γ(e′) / {f}
(8)We an remark that the ontext gives an order to evaluate an expression but not for the parallel vetors and thisrule is not deterministi. It is not a problem beause the BSλ-alulus is on�uent [37℄. We an also notie thatour two kinds of ontexts used in the rules exlude eah other by onstrution beause the hole in a Γi

l ontextis always in a omponent of a parallel vetor and never for a Γ one. Thus, we have a rule to redue globalexpressions and another one to redue usual expressions within the parallel vetors and we have the followingresult of on�uene:Theorem 5.1. if {F}/e/{f}
∗
⇀ {F1}/v1/{f1} and {F}/e/{f}

∗
⇀ {F2}/v2/{f2} then v1 = v2, F1 = F2and f1 = f2.Proof. (Sketh of) The BSML language is known to be on�uent [37℄. With our two kinds of �le systems,it is easy to see that a global rule never modi�es a loal �le system and never a loal rule modi�es the globalone. To be more formal, the global (resp. loal) �les are always the same before and after a loal (resp. global)redution. Thus, the global values are the same on all the proessors as proof of on�uent of the BSML languageneeded. All the δ-rules working on �les are deterministi (loal and global ones). So, the BSML language withparallel I/O features is on�uent.We refer to appendix 9 for a full proof. Note that the semantis is not deterministi. Several rules an beapplied at the same time, parallelism omes from ontext rules.6. Formal Cost Model. A formal ost model an be assoiated to redutions in the BSML language.�ost terms� are de�ned and eah rule of the semantis is assoiated to a ost rule on ost terms. Given the weakall-by-value strategy, i.e., arguments to funtions and operators need to be values (see setion 5), a program isalways redued in the �same way�. As stated in [41℄, �Eah evaluation order has its advantages and disanvatages,but strit evaluation is learly superior in at least one area: ease of reasoning about asymptoti omplexity�.In this ase, osts an be assoiated with terms rather than redutions. It is the way we hoose to ease thedisussion about the ompositional nature of the ost model of our language and the ost of our I/O primitives.6.1. Costs of the Parallel Operators. No order of redution is given between the di�erent omponentsof a parallel vetor and their evaluations are done in parallel. The ost in this ase is independent from the orderof redution. We will not desribe the osts of the evaluation of loal terms, i. e., funtional terms. They arethe same as those of a strit funtional language (OCaml for example) but we give the osts of the evaluationof global and I/O operations.The ost model assoiated to our programs follows the EM2-BSP ost model. We noted C(e) the ost termassoiated to an expression, S(v) the size in words of a serialized value v and ⊕ for the sum of ost with thefollowing rules:

c⊕ 〈◦c0, . . . , cp−1◦〉 = 〈◦c + c0, . . . , c + cp−1◦〉
c1 ⊕ c2 = c2 ⊕ c1

〈◦c1
0, . . . , c

1
p−1◦〉 ⊕ 〈◦c

2
0, . . . , c

2
p−1◦〉 = 〈◦c1

0 + c2
0, . . . , c

1
p−1 + c2

p−1◦〉where c, c1 c2 are ost terms and 〈◦c0, . . . , cp−1◦〉 is the ost term assoiated to a parallel vetor. Suh rules saythat the ost of repliate terms ould be inside or outside a parallel vetor ost term and when we have the ostterm of a full-evaluated superstep, this ost ould also be inside or outside a parallel vetor ost term. This is nota problem beause, using the BSP model of omputation, at the end of a superstep, we take the maximal of theosts. + and × are lassial ost addition and multipliation using the EM2-BSP parameters (g, l, r, Gl et.).We also noted ⊎ for the maximal ost of parallel vetor ost terms with this rules: ⊎ 〈◦c0, . . . , cn, . . . , cp−1◦〉 = cnif cn is the maximal ost of the omponent of the parallel vetor ost term. We also noted ⊕p−1
i=0 hi for themaximal of sent/reeived words. The EM2-BSP osts of the parallel primitives are given in Figure 6.1. The ostof a program e is thus ⊎(C(e)) the maximal time for a proessor to perform all the supersteps of the program.Let us explain suh formal rules with more details and more �readable notations�.If the omputational and I/O time for the evalution of the funtional parameter e of mkpar is wall (itis a repliate funtion and thus omputed by all the proessors) and if the sequential evaluation time of eah

External Memory in Bulk-synhronous Parallel ML 59
C(mkpar e) C(e)⊕ 〈◦C((f 0)), . . . , C((f (p− 1)))◦〉 if e

∗
⇀ f

C(apply e1 e2) C(e1)⊕ C(e2)⊕ 〈◦C((f0 v0)), . . . , C((fp−1 vp−1))◦〉if { e1
∗
⇀ 〈f0, . . . , fp−1〉

e2
∗
⇀ 〈v0, . . . , vp−1〉

C(put e)

⊎

(C(e)⊕ 〈◦
p−1
∑

j=0

C((f0 j)), . . . ,
p−1
∑

j=0

C((fp−1 j))◦〉)⊕ (
p−1
⊕

i=0

hi)× g ⊕ lwhere

if e
∗
⇀ 〈f0, . . . , fp−1〉if ∀i, j ∈ {0, . . . , p− 1} (fi j)

∗
⇀ vi

jand hi =
⊕

(
p−1
∑

j=0

S(vi
j),

p−1
∑

j=0

S(vj
i))

C(at e1 e2)

⊎

(C(e1)⊕ C(e2))⊕ (p− 1)× S(vn)× g ⊕ lif { e2
∗
⇀ n

e1
∗
⇀ 〈v0, . . . , vn, . . . , vp−1〉Fig. 6.1. Costs of our parallel operatorsomponent of the parallel vetor is wi + mi (omputational time and I/O time) then, the parallel evaluationtime of the parallel vetor is 〈◦wall + w0 + m0, . . . , wall + wp−1 + mp−1◦〉, i.e, it is a loal omputation.Provided the two arguments of the parallel appliation are parallel vetors of values, and if wi (resp.

mi) is the omputational time (resp. I/O time) of (fi vi) at proessor i, the parallel evaluation time of
(apply 〈f0, . . . , fp−1〉 〈v0, . . . , vp−1〉) is 〈◦wall +w0+m0, . . . , wall +wp−1+mp−1◦〉 where wall is the omputationaland I/O time to reate the two parallel vetors.The evaluation of put 〈f0, . . . , fp−1〉 requires a full superstep. Eah proessor evaluates the p loal terms
(fi j), 0 ≤ j < p leading to p2 sending values vj

i (�rst phase of the superstep). If the value vj
i of proessor iis di�erent from None, it is sent to proessor j (ommuniation phase of the superstep). One all values havebeen exhanged, a synhronization barrier ours. So, the parallel evaluation time is:

max
0≤i<p

(wi + mi + wall)⊕ max
0≤i<p

(hi × g)⊕ lwhere wi (resp. mi) is the omputation time (resp. I/O time) of (fi j), hi is the number of words transmitted(or reeived) by proessor i and wall is the omputation time to reate the parallel vetor 〈f0, . . . , fp−1〉.The evaluation of a global projetion (at 〈v0, . . . , vp−1〉 n) where n is an integer value also requires a fullsuperstep. First the proessor n sends the value vn to all other proessors and then a synhronization barrierours. The parallel evaluation time is thus the time to send this data, the time for ompute n and the maximalloal omputation and I/O time to reate the parallel vetor 〈v0, . . . , vp−1〉.6.2. Cost of I/O operators. Our I/O operators have naturally some omputational and I/O osts.We also made sure that arguments of the I/O operators be evaluated �rst (weak all-by-value strategy). Asexplained in the EM2-BSP model, eah transfer from (resp. to) the loal external memory to (resp. from) themain memory has the ost ⌈ n
Dl⌉ × Gl + ⌈n+1

DlBl⌉ × Ol (resp. ⌈ n
Dg⌉ × Gg + ⌈ n+1

DgBg⌉ × Og for the global externalmemory) for n words. Note that, in the ase of an empty �le, the value to be read would be an empty valuewith an empty size. Thus the ost would just be the overhead. In this way, we have the ost of the �operatingsystem I/O alls�. Depending on whether the global �le system is shared or not, the global I/O operators havedi�erent osts and some barrier synhronizations are needed (Figure 6.2).Loal operators are asynhronous operators. They belong to the �rst phase of a superstep. In the aseof a distributed global �le system, a global operator has the same ost as a loal operator. But, in the aseof global shared disks, global operators are synhronous operators beause they modify the global behaviourof the EM2-BSP omputer. The two exeptions are glo_output_value and glo_input_value whih areasynhronous global operators beause only one proess really has to write this repliate value (whih is thus thesame on eah proessor) or eah proessor read this value. The reading of this value ould be done in any order.Di�erent hannels are positioned at di�erent plaes in the �le but read the same value for the same position. Forexample, opening a global �le needs a synhronization beause glo_output_value and glo_input_value

60 F. GavaOperator Costlo_open_in (resp. out) onstant time tlor (resp. tlow)(lo_output_value v) ⌈size(v)
Dl ⌉×Gl + ⌈size(v)+1

DlBl ⌉×Ollo_input_value ⌈size(v)
Dl ⌉×Gl + ⌈size(v)+1

DlBl ⌉×Ol where v is the readed valuelo_lose_in (resp. out) onstant time tlcr (resp. tlcw)lo_delete onstant time tldglo_open_in {

(p− 1)× g + tgor + l If global �le system shared
tlor Otherwiseglo_open_out {

(p− 1)× g + tgor + l If global �le system shared
tlow Otherwise(glo_output_value v)

{

⌈size(v)
Dg ⌉×Gg + ⌈size(v)+1

DgBg ⌉×Og If shared
⌈size(v)

Dl ⌉×Gl + ⌈size(v)+1
DlBl ⌉×Ol Otherwiseglo_input_value

⌈size(v)
Dg ⌉×Gg + ⌈size(v)+1

DgBg ⌉×Og If shared
⌈size(v)

Dl ⌉×Gl + ⌈size(v)+1
DlBl ⌉×Ol Otherwiseand where v is the readed valueglo_lose_in {

(p− 1)× g + tgcr + l If global �le system shared
tlcr Otherwiseglo_lose_out {

(p− 1)× g + tgcw + l If global �le system shared
tlcw Otherwiseglo_delete {

(p− 1)× g + tgd + l If global �le system shared
tld Otherwise(glo_opy F f)

⌈size(F)
Dg ⌉×Gg+⌈size(F)

DgBg ⌉×Og+⌈size(F)
Dl ⌉×Gl+⌈size(F)

DlBl ⌉×Ol+lIf global �le system shared
(⌈size(F)

Dl ⌉×Gl+⌈size(F)
DlBl ⌉×Ol)×2+size(F)×g+lFig. 6.2. Formal osts of our I/O operatorsare asynhronous operators and a proessor ould never write in a global �le when another reads in this �le oropens it in read mode. With this barrier of synhronization, all the proessors open (resp. lose) the �le andthey ould ommuniate to eah other whether they managed to open (resp. lose) that �le without errors ornot. In this way, p− 1 booleans are sent on the network and a global exeption will be raised if there are anyproblems.6.3. Formal Cost Composition. The osts (parallel evaluation time) above are ontext independents.This is why our ost model is ompositional. The ompositional nature of this ost model relies on the abseneof nesting of parallel vetors (our stati analysis enfores this ondition [23℄) and the fat of having two kindsof �le systems. A global I/O operator whih aesses a global �le and whih ould make some ommuniationsand synhronizations never ours loally. If the nesting was not forbidden, for a parallel vetor v and a sanfuntion, the following expression (mkpar (fun i → if i=0 then (san e (+) v) else v)) would be a orretone. The main problem is the meaning of this expression.We said that (mkpar f) evaluates to a parallel vetor suh that proessor i holds value (f i). In the aseof our example, this means that proessor 0 should hold the value of (san e (+) v). Sine the semantisof the language is on�uent, it is possible to evaluate (san e (+) v) loally. But in this ase, proessor 0would not have all the needed values. We ould hoose that another proessors broadast there own values toproessor 0 and then proessor 0 evaluates (san e (+) v) loally. The exeution time will not follow the formula

External Memory in Bulk-synhronous Parallel ML 61given by the above ost model beause the broadasting of these values need additional ommuniations anda synhronization. Thus, we have additional osts whih are ontext dependent. The ost of this expressionwill then depend on its ontext. The ost model will no be ompositional. This preliminary broadast is notneeded if (san e (+) v) ould be not under a mkpar. Furthermore, the above solution would imply the useof a sheduler for eah proessor to know, at every time, if the proessor need the values of other proessors ornot. Suh onstraints make the ost formulas very di�ult to write.As explained above, if the global �le system is shared, only one proess has to atually write a value toa global �le. In this way, if this value is di�erent on eah proessor (ase of a parallel vetor of values) thenproessors would asynhronously write di�erent values on a shared �le and we will not be able to reonstrutthis value. The on�uene of the language would be lost. In the ase of a distributed global �le system, thisproblem does not our beause eah proessor writes the value on a di�erent �le system. Programs would notbe portables beause they would be arhiteture dependent. The ompositional nature of the ost model is alsolost beause the �nal results would depend on the EM2-BSP arhiteture and not on the program. This is whyit is forbidden to write global values to keep safe the ompositional nature of the ost model. Note that thesemantis forbids a parallel operator or a parallel persistent operator to be used inside a parallel vetor and alsoforbid a loal persistent operator to be used outside a parallel vetor.7. Experiments.7.1. Implementation. The glo_hannel and lo_hannel are abstrat types and are implemented asarrays of hannels, one hannel per disk. The urrent implementation used the thread failities of OCaml towrite (or read) on the D-disks of the omputers: we reate D-threads whih write (or read) on the D hannels.Eah thread has a part of the data represented as a sequene of bytes and write it in parallel with other threads.To do this, we need to serialize our values, i.e., transform our values into a sequene of bytes to be written ona �le and deoded bak into a data struture. The module Marshal of OCaml provides this feature.In the ase of global shared disks, one of the proessors is seleted to really write the value, in our �rstimplementation, eah of them in turn. To ommuniate booleans, we used the primitives of ommuniation ofBSML. A total exhange of the booleans indiates if the proessors has well opened/losed the �le or not. Theglobal and the loal �le systems are in di�erent diretories that are parameters of the language. The globaldiretory is supposed to be mounted to aess to the shared disks or is in di�erent diretories in the ase of adistributed global �le system. Therefore, global operators aessed to the global diretory and loal operatorsaessed to the loal diretories. In the ase of shared disks without loal disks, for example, using the libraryin a sequential mahine as a PC, loal operators use the �pid� of the proessor to distinguish the loal �les ofthe di�erent proessors.7.2. Example of funtions using our library. Our example is the lassial omputation of the pre�xof a list. Here we make the hypothesis that the elements of the list are distributed on all the proesses as �leswhih ontain sub-parts of the initial list. Eah �le is ut out on sub-lists with Dl×Bl

s
elements where s isthe size of an element. We now desribe the algorithm. We �rst real the sequential OCaml ode part of ouralgorithm:let isn=funtion None→true | _→false(∗ seq_san_last:(α→α→α)→α→α list→α ∗α list∗)let seq_san_last op e l =let re seq_san' last l au = math l with[℄→(last,(List.rev au))| hd::tl→(let new_last = (op last hd)in seq_san' new_last tl (new_last::au))in seq_san' e l [℄where List.rev [v0; v1; . . . ; vn] = [vn; . . . ; v1; v0]. To ompute the pre�x of a list, we �rst loally ompute thepre�x of the loal lists loated on the loal �les. For this, we used the following ode:(∗ seq_san_list_io:(α→α→α)→α→lo_name→lo_name→α ∗)let seq_san_list_io op e name_in name_tmp=let ha_in =lo_open_in name_in in

62 F. Gavalet ha_tmp=lo_open_out name_tmp inlet re seq_san' last =let blok=(lo_input_value ha_in) inif (isn blok) then lastelse let blok2=(seq_san_last op last (noSome blok)) inlo_output_value ha_tmp (snd blok2);seq_san' (fst blok2) inlet res=seq_san' e inlo_lose_in ha_in;lo_lose_out ha_tmp;resThe loal �le is opened as well as another temporary �le. For all the sub-lists of the �le, we ompute the pre�xand the last elements of these pre�xes. Then, we write these pre�xes to the temporary �le and we lose the two�les. Seond, we ompute the parallel pre�x of the last elements of eah pre�x of that �le. Third, we add thosevalues to the temporary pre�xes.(∗ add_last:(α→α→α)−α→lo_name→lo_name→unit ∗)let add_last op e name_tmp name_out =let ha_tmp=lo_open_in name_tmp inlet ha_out=lo_open_out name_out inlet re seq_add () =let blok = (lo_input_value ha_tmp) inif (isn blok) then () elselo_output_value ha_out(List.map (op e)(noSome blok));seq_add () inseq_add ();lo_lose_in ha_tmp;lo_lose_out ha_out; lo_delete name_tmpThe operating of this funtion is similar to seq_san_list_io and the full funtion is thus the omposition ofthe above funtions.(∗san:(α→α→α)→α→lo_name→lo_name→lo_name→unit par∗)let san_list_diret_io op e name_in name_tmp name_out =let lasts=parfun (seq_san_list_io op e name_in)(repliate name_tmp) inlet tmp_values=san_diret op lasts inparfun3 (add_last op) tmp_values(repliate name_tmp) (repliate name_out)For example of the use of global �les, we give the ode of the distribution of the sub-lists to the proessors: foreah blok of the initial list, one proessor writes it to its loal �le.(∗ distribut:glo_name→lo_name→unit ∗)let distribut name_in name_out =let ha_in=glo_open_in name_in inlet ha_outs=parfun lo_open_in (repliate name_out) inlet re distri m =let blok=glo_input_value ha_in inif (isn blok) then () else(apply2 (mkpar (fun pid→if pid=m then lo_output_valueelse (fun a b→())))ha_outs (repliate (noSome blok)));distri ((m+1) mod (bsp_p())) indistri 0;parfun lo_lose_out ha_outs;glo_lose_in ha_inWe have the following ost formula for the I/O san-list version using a diret san algorithm:
(p− 1)× s× g + 4×N × (Bl ×Gl + Ol) + 2× r ×N × (Dl ×Bl) + T 1 + lif we read sub-lists of the �les by blok of size DlBl where s denotes the size in words of a element, N is the

External Memory in Bulk-synhronous Parallel ML 63

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of floats

Computation of the prefix

BSML
predicted BSML

BSML-IO
predicted BSML-IO

 0

 100

 200

 300

 400

 500

 600

 700

 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

Number of floats

Computation of the prefix

BSML
predicted BSML

BSML-IO
predicted BSML-IO

Fig. 7.1. Benhmarks of pre�x omputationsmaximal length of a �le on a proess and where T 1 the time to open and lose the �les. We have the time toread the loal �les, write the temporary results of the temporary �les, ompute the loal san, read the loaltempory �les and write the �nal result in the �nal �les. The ost formula of the distribution is:

p×N × (⌈
DlBl

Dg
⌉ ×Gg + ⌈

DlBl

DgBg
⌉ ×Og) + N × (Bl ×Gl + Ol) + 2× l + T 2If shared global �le system

p×N × (Bl ×Gl + Og) + N × (Bl ×Gl + Ol) + T 2 Otherwisewhere T 2 the time to open and lose the �les. We have the time to read the data on the global �le (read byblok of size DlBl) and to write them on the loal �les. We also have two barriers of synhronization due toglo_open_in and glo_lose_in. The ost formula for a global distributed �le system is simpler than this

64 F. Gavawith shared disks but having a distributed �le system makes the hypothesis that the global �les are repliatedon all the proessors.7.3. Benhmarks. Preliminary experiments have been done on a luster with 6 Pentium IV nodes inter-onneted with a Gigabit Ethernet network to show a performane omparison between a BSP algorithm usingonly the BSMLlib and the orresponding EM2-BSP algorithm using our library. The BSP algorithm reads thedata from a global �le and keeps them in the main memories. The EM2-BSP algorithm distributed the data asin the above setion. Figure 7.1 summarizes the timings. These programs were run 100 times and the averagewas taken. Only the loal omputation has been taken into aount beause the luster do not have a trueshared disk but a simulated shared disk using NFS. Therefore, the distribution of the data is very slow: Ggdepends on g and the distribution of the two di�erent algorithms takes approximately the same time.The luster has the following EM2-BSP parameters:
p = 6 nodes
r = 469 M�ops/s
g = 28 �ops
l = 22751 �ops Dl = 1 bytes

Bl = 4096 bytes
Gl = 1.2 �ops
Ol = 100 �ops Dg = 1 bytes

Bg = 4096 bytes
Gg = 33.33 �ops
Og = 120 �opsusing the MPI implementation of the BSMLlib and with 256 Mbytes of main memory per node. The BSPparameters have been obtained by using the bsmlprobe desribed in [5℄ and the I/O parameters have beenobtained by using benhmarks as those of the Figure 4.2. The predited performanes using those parametersare also given. We have used �oats as elements with e = 0, op = + and we have approximately 140 �oats inone blok and thus the lists are ut out on sub-lists with 140 elements.For small lists and thus for a small number of data the overhead for the external memory mapping makesthe BSML program outperform the EM2-BSML one. However, one the main memory is all utilized, theperformane of the BSML program degenerates (ost of the paging mehanism to have a virtual memory). TheEM2-BSML program ontinues �smoothly� and learly outperforms the BSML ode. Note that there is a stepbetween the preditions of the performanes and the true performanes. This is due to the garbage olletor ofthe OCaml language. In the ML family, the abstrat mahine manages the resoures and the memory, unlike inC or C++ where the programmer has to alloate and de-alloate the data of the memory. Using I/O operatorsand thus a less naive algorithm ahieved a salability improvement for a big number of data.8. Related Work. With few exeptions, previous authors foused on a uniproessor EM model. TheParallel Disk Model (PDM) introdued by Vitter and Shriver [54℄ is used to model a two-level memory hierarhyonsisting of D parallel disks onneted to v ≥ 1 proessors via a shared memory or a network. The PDMost measure is the number of I/O operations required by an algorithm where items an be transferred betweeninternal memory and disks in a single I/O operation. While the PDM aptures omputation and I/O osts,it is designed for a spei� type of ommuniation network where a ommuniation operation is expeted totake a single unit of time, omparable to a single CPU instrution. BSP and similar parallel models aptureommuniation and omputational osts for a more general lass of interonnetion networks, but do not aptureI/O osts. [8℄ presents an out-of-ore parallel algorithm for inversions of big matries. The algorithm only usedbroadasts as primitive of ommuniation with a ost as the BSP ost of a diret broadast. The I/O osts aresimilar to ours: linear ost (and not onstant ost) to read/write from/to the parallel disks.Some other parallel funtional languages like SAC [25℄, Eden [31℄ or GpH [49℄ o�er some I/O features butwithout any ost model [30℄. Parallel EM algorithms need to be arefully hand-rafted to work optimally andorretly in EM environments. I/O operators in SAC have been written for shared disks without formal seman-tis and the programmer is responsible for underterministi results of suh operations. In parallel extensionsof the Haskell language (web page http://haskell.org) like Eden and Gph, the safety and the on�uene ofI/O operators are ensured by the use of monads [56℄ and loal external memories. Using shared disks is notspei�ed in the semantis of these languages. These parallel languages also authorize proessor to exhangedhannels and give the possibility to read/write to/from them. It inreases the expressiveness of the languagesbut dereases the ost predition of the programs. Too many ommuniations are hidden. It also makes thesemantis di�ult to write [3℄. [24℄ presents a dynami semantis of a mini funtional language with a all-by-value strategy but I/O operators do not work on �les. The semantis used a unique input entry (standardinput) and a unique output. [18℄ develops a language for reasoning about onurrent pure funtional I/O. Theyprove that under ertain onditions the evaluation of this language is deterministi. But the �les are only loal�les and no formal ost model is given.

External Memory in Bulk-synhronous Parallel ML 65In [12℄ the authors foused on optimization of some parallel EM sort algorithms using ahe performanesand the several layers of memories of the parallel mahines. But they used low level languages and the largenumber of parameters in this model introdue a hardly tratable omplexity. In [15℄ the authors have imple-mented some I/O operations to test their models but in a low level language and low level data. In the samemanner, [26℄ desribes an I/O library of an EM extension of its ost model whih is a speial ase of the BSPmodel but also for a low level language. To our knowledge, our library is the �rst for an extension of the BSPmodel with I/O features alled EM2-BSP and for a parallel funtional language with a formal semantis anda formal ost model. This ost model and our library ould be used for large and parallel Data Base as in [2℄where the authors used the BSP ost model to balane the ommuniations and the loal omputations.9. Conlusions and Future Works. The Bulk-Synhronous Parallel ML allows diret mode BSP pro-gramming and the urrent implementation of BSML is the BSMLlib library. But for some appliations wherethe size of the problem is very signi�ant, external memories are needed. In this paper we have presented anexternal memory extension of BSP model named EM2-BSP and a way to extend the BSMLlib for I/O aesses inthese external memories. The ost model of these new primitives and a formal semantis as persistent featureshave been investigated and some benhmarks have been done. This library is the follow-up to our work onimperative features of our funtional data-parallel language [22℄.There are several possible diretions for future works. The �rst diretion is the implementation of persistentprimitives using speial parallel I/O libraries as desribed in [29℄. For example, low level libraries for sharedRAID disks ould be used for a fault tolerane implementation of the global I/O primitives.A omplementary diretion is the implementation of BSP algorithms [13, 38, 45℄ and their transformationsinto EM2-BSP algorithms as desribed in [16℄. We will design a new library of lassial programs as in theBSMLlib library to be used with large omputational problems. We also have extended the model to inludeshared disks. To validate the ost model of these programs, we need a benhmark suite in order to automatiallydetermine the EM parameters. This is ongoing work. We are also working on a result of simulation of a sharedexternal memory as those of the main memory in the BS-PRAM of [48℄.A semanti investigation of this framework is another diretion of researh. To ensure safety and a om-positional ost model whih allow ost analysis of the programs, two kinds of persistent primitives are needed,global and loal ones. Suh operators need our in their ontext (loal or global) and not in another one. Weare urrently working on a �ow analysis [43℄ of BSML to avoid this problem statially and to forbid nesting ofparallel vetors. Stati ost analysis as in [51℄ is also another diretion of researh.Aknowledgments The author wishes to thanks the anonymous referees of the Pratial Aspets of High-Level Parallel Programming workshop (PAPP 2004), Frédéri Loulergue, Anne Benoï¿½ and Myztzu Modardfor their omments. REFERENCES[1℄ The Coq Proof Assistant (version 8.0). Web pages at oq.inria.fr, 2004.[2℄ M. Bamha and M. Exbrayat, Pipelining a Skew-Insensitive Parallel Join Algorithm, Parallel Proessing Letters, 13 (2003),pp. 317�328.[3℄ J. Berthold and R. Loogen, Analysing dynami hannels for topology skeletons in eden, Teh. Rep. 0408, Institut fürInformatik, Lübek, September 2004. (IFL'04 workshop), C. Grelk and F. Huh eds.[4℄ Y. Bertot and P. Castéran, Interative Theorem Proving and Program Development, Springer, 2004.[5℄ R. Bisseling, Parallel Sienti� Computation. A strutured approah using BSP and MPI, Oxford University Press, 2004.[6℄ G.-H. Botorog and H. Kuhen, E�ient high-level parallel programming, Theoretial Computer Siene, 196 (1998),pp. 71�107.[7℄ E. Caron, O. Cozette, D. Lazure, and G. Utard, Virtual memory management in data parallel appliations, in HPCNEurope, 1999, pp. 1107�1116.[8℄ E. Caron and G. Utard, On the performane of parallel fatorization of out-of-ore matries, Parallel Computing, 30(2004), pp. 357�375.[9℄ Y.-J. Chiang, M. T. Goodrih, E. F. Grove, D. E. Vengroff, and J. S. Vitter, External-memory Graphs Algorithms,in ACM-SIAM Symp on Disrete Algorithms, 1995, pp. 139�149.[10℄ J. Clinkemaillie, B. Elsner, G. Lonsdale, S. Meliiani, S. Vlahoutsis, F. de Bruyne, and M. Holzner,Performane issues of the parallel pam-rash ode, Superomputer Appliations and High Performane Computing, 11(1997), pp. 3�11.[11℄ A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos, Randomized External Memory Algorithms forGeometri Problems, in ACM Annual Conf on Computational Geometry, 1998, pp. 259�268.[12℄ C. Cérin and J. Hai, eds., Parallel I/O for Cluster Computing (Hardbak), Kojan Page Siene, hermes spenton ed., 2002.[13℄ F. Dehne, Speial issue on oarse-grained parallel algorithms, Algorithmia, 14 (1999), pp. 173�421.

66 F. Gava[14℄ F. Dehne, W. Dittrih, and D. Huthinson, E�ient external memory algorithms by simulating oarse-grained parallelalgorithms, Algorithmia, 36 (2003), pp. 97�122.[15℄ F. Dehne, W. Dittrih, D. Huthinson, and A. Maheshwari, Parallel virtual memory, in 10th Annual ACM-SIAMSymposium on Disrete Algorithms, Baltimore, MD, 1999, pp. 889�890.[16℄ , Bulk synhronous parallel algorithms for the external memory model, Theory of Computing Systems, 35 (2003),pp. 567�598.[17℄ W. Dittrih and D. Huthinson, Bloking in Parallel Multisearh Problems, Theory of Computing Systems, 34 (2001),pp. 145�189.[18℄ M. Dowse and A. Butterfield, A language for reasoning about onurrent funtional I/O, Teh. Rep. 0408, Institut fürInformatik, Lübek, September 2004. (IFL'04 workshop), C. Grelk and F. Huh eds.[19℄ P. Ferragina and F. Luio, String searh in oarse-grained parallel omputers, Algorithmia, 24 (1999), pp. 177�194.[20℄ F. Gava, Formal Proofs of Funtional BSP Programs, Parallel Proessing Letters, 13 (2003), pp. 365�376.[21℄ , Parallel I/O in Bulk Synhronous Parallel ML, in The International Conferene on Computational Siene (ICCS2004), Part III, M. Bubak, D. van Albada, P. Sloot, and J. Dongarra, eds., LNCS, Springer Verlag, 2004, pp. 339�346.[22℄ F. Gava and F. Loulergue, Semantis of a Funtional Bulk Synhronous Parallel Language with Imperative Features, inParallel Computing: Software Tehnology, Algorithms, Arhitetures and Appliations, Proeeding of the 10th ParCoConferene, G. Joubert, W. Nagel, F. Peters, and W. Walter, eds., Dresden, 2004, North Holland/Elsevier, pp. 95�102.[23℄ , A Stati Analysis for Bulk Synhronous Parallel ML to Avoid Parallel Nesting, Future Generation Computer Systems,21 (2005), pp. 665�671.[24℄ A. Gordon and R. L. Crole, A sound metalogial semantis for input/output e�ets, Mathematial Strutures in ComputerSiene, 9 (1999), pp. 125�188.[25℄ C. Grelk and S.-B. Sholz, Classes and objets as basis for I/O in SAC, in Proeedings of IFL'95, Gothenburg, Sweden,1995, pp. 30�44.[26℄ J. Gustedt, Towards realisti implementations of external memory algorithms using a oarse grained paradigm, Teh. Rep.4719, INRIA, 2003.[27℄ G. Hains, Parallel funtional languages should be strit, in Workshop on General Purpose Parallel Computing. World Com-puter Congress, B. Perhson and I. Simon, eds., vol. 1, IFIP, North-Holland, September 1994, pp. 527�532.[28℄ J. Hill, W. MColl, and al., BSPlib: The BSP Programming Library, Parallel Computing, 24 (1998), pp. 1947�1980.[29℄ H. Jin, T. Cortes, and R. Buyya, eds., High Performane Mass Storage and Parallel I/O, IEEE Press, wiley-intersiene ed., 2002.[30℄ P. T. K. Hammond and all, Comparing parallel funtional languages: Programming and performane, Higher-order andSymboli Computation, 15 (2003).[31℄ U. Klusik, Y. Ortega, and R. Pena, Implementing EDEN: Dreams beomes reality, in Proeedings of IFL'98, K. Ham-mond, T. Davie, and C. Clak, eds., vol. 1595 of LNCS, Springer-Verlag, 1999, pp. 103�119.[32℄ M. V. Kreveld, J. Nievergelt, T. Roos, and P. W. (editor), Algorithms Foundations of Geographis InformationSystems, in International Symposium on High Performane Computing, no. 1340 in Leture Notes in Computer Siene,Springer, 1997.[33℄ X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon, The Objetive Caml System release 3.08, 2004. webpages at www.oaml.org.[34℄ X. Leroy and M. Mauny, Dynamis in ML, Journal of Funtional Programming, 3 (1993), pp. 431�463.[35℄ Z. Li, P. H. Mills, and J. H. Reif, Models and resoure metris for parallel and distributed omputation, ParallelAlgorithms and Appliations, 9 (1995), pp. 35�59.[36℄ W. B. Ligon and R. B. Ross, Beowulf Cluster Computing with Linux, T. Sterling, mit press ed., November 2001, h. PVFS:Parallel Virtual File System, pp. 391�430.[37℄ F. Loulergue, G. Hains, and C. Foisy, A Calulus of Funtional BSP Programs, Siene of Computer Programming, 37(2000), pp. 253�277.[38℄ W. F. MColl, Salability, portability and preditability: The BSP approah to parallel programming, Future GenerationComputer Systems, 12 (1996), pp. 265�272.[39℄ R. Milner, A theory of type polymorphism in programming, Journal of Computer and System Sienes, 17 (1978), pp. 348�375.[40℄ K. Munagala and A. Ranade, I/O Complexity of Graph Algorithms, in ACM-SIAM Symposium on Disrete Algorithms,1999, pp. 687�694.[41℄ C. Okasaki, Purely Funtional Data-Strutures, Cambridge University Press, 1998.[42℄ S. Pelagatti, Strutured Development of Parallel Programs, Taylor & Franis, 1998.[43℄ F. Pottier and V. Simonet, Information Flow Inferene for ML, ACM Transations on Programming Languages andSystems, 25 (2003), pp. 117�158.[44℄ J. M. D. Rosario and A. Choudhary, High performane I/O for massively parallel omputers: Problems and prospets,IEEE Computer, 27 (1994), pp. 59�68.[45℄ J. F. Sibeyn and M. Kaufmann, BSP-Like External-Memory Computation, in Pro. 3rd Italian Conferene on Algorithmsand Complexity, vol. 1203 of LNCS, Springer-Verlag, 1997, pp. 229�240.[46℄ D. B. Skilliorn, J. M. D. Hill, and W. F. MColl, Questions and Answers about BSP, Sienti� Programming, 6(1997), pp. 249�274.[47℄ R. Thakur, E. Lusk, and W. Gropp, I/O haraterization of a portable astrophysis appliation on the ibm sp and intelparagon, Teh. Rep. MCS-P534-0895, Argonne National Laboratory, Otober 1995.[48℄ A. Tiskin, The bulk-synhronous parallel random aess mahine, Theoretial Computer Siene, 196 (1998), pp. 109�130.[49℄ P. Trinder and all., GPH: An Arhiteture-independent Funtional Language, IEEE transations on Software Engineerig,(1999).[50℄ L. G. Valiant, A bridging model for parallel omputation, Communiations of the ACM, 33 (1990), p. 103.

External Memory in Bulk-synhronous Parallel ML 67[51℄ P. B. Vasonelos and K. Hammond, Inferring ost equations for reursive, polymorphi and higher-order funtionalprograms, in IFL'02, LNCS, Springer Verlag, 2003, pp. 110�125.[52℄ D. E. Vengroff and J. S. Vitter, Supporting I/O-e�ient Sienti� Computation in TPIE, in IEEE Symposium onParallel and Distributed Computing, 1995.[53℄ J. Vitter, External memory algorithms, in ACM Symp. Priniples of Database Systems, 1998, pp. 119�128.[54℄ J. Vitter and E. Shriver, Algorithms for parallel memory, two -level memories, Algorithmia, 12 (1994), pp. 110�147.[55℄ J. S. Vitter, External memory algorithms and data strutures: Dealing with massive data, ACM Computing Surveys, 33(2001), pp. 209�271.[56℄ P. Wadler, Comprehending monads, Mathematial Strutures in Computer Siene, 2 (1992), pp. 461�493.

68 F. GavaAppendix A. Proof of the on�uene.Lemma A.1. If e/{fi}
i

⇀ e1/{f1
i } and e/{fi}

i
⇀ e2/{f2

i } then e1= e2 and {f1
i }={f

2
i }. Proof. By ase ofthe rules of �gures 5.1, 5.3 and by onstrution of rules (1), (3) and (5).Lemma A.2. If {F}/e/{f}

⋊⋉
⇀ {F1}/e1/{f1} and {F}/e/{f}

⋊⋉
⇀ {F2}/e2/{f2} then e1 = e2, {f} =

{f1} = {f2} and {F1} = {F2}.Proof. By ase of the rules of �gures 5.2, 5.3 and by onstrution of rules (2), (4) and (6).Lemma A.3. If e = Γi
l(e1) then 6 ∃ e2 as e = Γ(e2); If e = Γ(e1) then 6 ∃ e2 as e = Γi

l(e2). Proof. Byde�nition, the hole [] is inside a parallel vetor in the ase of a Γi
l ontext and outside a parallel vetor in theother ase. By onstrution, ontexts exluded eah other.Definition A.4. We noted ⇒

⋊⋉
the redution ⇀ only using the rule (8) and ⇒

i
the redution ⇀ only usingthe rule (7).Lemma A.5. If {F}/Γi

l(e)/{f} ⇒
i
{F1}/Γi

l(e
1)/{f1} and {F}/Γi

l(e)/{f} ⇒
i
{F2} /Γi

l(e
2)/{f2} then

e1 = e2, {f1} = {f2} and {F} = {F1} = {F2}.Proof. By appliation of lemma A.1 and by de�nition of rule (7).Lemma A.6. If {F}/Γ(e)/{f} ⇒
⋊⋉
{F1}/Γ(e1)/{f1} and {F}/Γ(e)/{f} ⇒

⋊⋉
{F2}/ Γ(e2)/{f2} then e1 = e2,

{f} = {f1} = {f2} and {F1} = {F2}.Proof. By appliation of lemma A.2 and by de�nition of rule (8).Definition A.7. We noted {F}/e/{f} ⇒
l
{F}/e1/{f ′} the redution {F}/e/{f}

∗
⇒
i
{F}/e1/{f ′} ∀ i andwhere 6 ∃ e2 ∧ Γi

l as e1 = Γi
l(e2) and where e2 is not a value.Lemma A.8. If Γi

l(e1) = Γj
l (e2) and {F}/Γi

l(e1)/{f} ⇒
i
{F}/Γi

l(e3)/{f3} and {F}/Γj
l (e2)/{f} ⇒

j

{F}/Γj
l (e4)/{f

4} then ∃ Γ′j
l ∧ Γ′i

l as Γi
l(e3) = Γ′j

l (e2) and Γj
l (e4) = Γ′i

l(e1) where {F}/Γ′j
l (e

2)/{f3} ⇒
j

{F}/Γ′j
l (e5)/{f5} and {F}/Γ′i

l(e1)/{f4} ⇒
i
{F}/ Γ′i

l(e6)/{f6} and where Γ′j
l (e5) = Γ′i

l(e6) and {f5} = {f6}.Proof. It is easy to see that a ⇒
i
redution only modify an expression of the ith omponent of a parallel vetorand the ith �le system. Suh redution is determinist by lemma A.5 and thus we have that if two redutionsappear in two di�erent omponents of a parallel vetor then suh redutions ould be done in any order andgive the same �nal result.Lemma A.9. If {F}/e/{f} ⇒

l
{F}/e1/{f1} and {F}/e/{f} ⇒

l
{F}/e2/{f2} then e1 = e2 and {f1} =

{f2}.Proof. By indution on the two redution ⇒
l
and using lemma A.8 to �re-stik� together di�erent paths of thederivations: parallel redutions ould be done in any order.Definition A.10. ⇒ = ⇒

⋊⋉
∪ ⇒

lLemma A.11. If {F}/e/{f}
∗
⇒ {F1}/v1/{f1} and {F}/e/{f}

∗
⇒ {F2}/v2/{f2} then v1 = v2, {f1} =

{f2} and {F1} = {F2}.Proof. By indution of the derivation and by using lemma A.3: for the two indutive ases, we have thetwo following ases: if {F ′}/e′/{f ′} ⇒
⋊⋉
{F ′′}/e′′/{f ′} then the redution is deterministi by lemma A.6 else

{F ′}/e′/{f ′} ⇒
l
{F ′}/e′′/{f ′′} and then the redution is also deterministi by lemma A.9.Lemma A.12. If {F}/e/{f} ⇒

i
{F}/e1/{f1} then {F}/e1/{f1}

∗
⇒
i
{F}/e2/{f2} and where e2 is a value

External Memory in Bulk-synhronous Parallel ML 69or {F}/e2/{f
2} ⇒

⋊⋉
{F ′}/e3/{f

2}.Proof. By indution and using lemma A.3 for eah steps of the derivation.Lemma A.13. if {F}/e/{f}
∗
⇀ {F ′}/v/{f ′} then {F}/e/{f}

∗
⇒ {F ′}/v/{f ′}. Proof. By indution ofthe derivation. If the rule (8) is used, we are in the ase of a global redution and then we have a ⇒

⋊⋉
redution.Else if the rule (7) is used, we are in the ase of a loal redution and we have by lemma A.12 that we have a

⇒
l
redution.Theorem A.14. on�uene of the semantisProof. if {F}/e/{f}

∗
⇀ {F1}/v1/{f1} and {F}/e/{f}

∗
⇀ {F2}/v2/{f2} then {F}/e/{f}

∗
⇒ {F1}/v1/{f1} and

{F}/e/{f}
∗
⇒ {F2}/v2/{f2} by lemma A.13 and then v1 = v2, {f1} = {f2} and {F1} = {F2} by lemma A.11.Edited by: Frédéri LoulergueReeived: June 3, 2004Aepted: June 5, 2005

Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 71�81. http://www.spe.org ISSN 1895-1767© 2005 SWPSPETRI NETS AS EXECUTABLE SPECIFICATIONS OF HIGH-LEVEL TIMED PARALLELSYSTEMSFRANCK POMMEREAU∗Abstrat. We propose to use high-level Petri nets as a model for the semantis of high-level parallel systems. This modelis known to be useful for the purpose of veri�ation and we show that it is also exeutable in a parallel way. Exeuting a Petrinet is not di�ult in general but more ompliated in a timed ontext, whih makes neessary to synhronise the internal time ofthe Petri net with the real time of its environment. Another problem is to relate the exeution of a Petri net, whih has its ownsemantis, to that of its environment; i. e., to properly handle input/output.This paper presents a parallel algorithm to exeute Petri nets with time, enforing the even progression of internal time withrespet to that of the real time and allowing the exhange of information with the environment. We de�ne a lass of Petri netssuitable for a parallel exeution mahine whih preserves the step sequene semantis of the nets and ensures time onsistentexeutions while taking into aount the soliitation of its environment. The question of the e�ient veri�ation of suh nets hasbeen addressed in a separate paper [14℄, the present one is more foused on the pratial aspets involved in the exeution of somodelled systems.Key words. Petri nets, parallelism, real-time, exeution mahines.1. Introdution. Petri nets are widely used as a model of onurreny, whih allows to represent theourrene of independent events. They an be as well a model of parallelism, where the simultaneity of theevents is more important. Indeed, when we onsider their step sequene semantis, an exeution is representedby a sequene of steps, eah of them being the simultaneous ourrenes of some transitions. Within thissemantis, the exeution of a step may be replaed by that of any of its linearisation (total or partial). This anbe viewed as possible exeutions of the same program on parallel mahines with di�erent numbers of proessors.In this ontext, the hoie of exeuting one step or another beomes a question of sheduling (this is usuallysolved non-deterministially by the Petri net semantis). Petri nets are thus suitable for speifying and verifyingsystems in models for whih the portability is an important onern.Our main goal in this paper is to show that Petri nets are also suitable for the exeution of the modelledsystems. We thus onsider high-level Petri nets for modelling high-level parallel systems, with the aim to allowboth veri�ation and exeution of the spei�ation. The question of the e�ient veri�ation of suh nets hasbeen addressed in a separate paper [14℄, the present one is more foused on the pratial aspets involved inthe exeution of so modelled systems.There are at least two reasons for having exeutable spei�ations. First, it allows for prototyping andtesting at early stage of the design: there may be no need to have an implementation in order to see howthe program behaves when its model an already be exeuted. Seond, if the exeution of the spei�a-tion an be made (or happens to be) e�ient enough, there is no need to onsider any further implemen-tation. This ompletely saves from the risk of introduing errors on the way from spei�ation to imple-mentation: the veri�ed model and the exeuted program are exatly the same objet. It may be objetedthat Petri nets are suitable for modelling but really not for programming. This is true. However, Petrinets like those used in this paper are widely used has a semantial domain for parallel programming lan-guages or proess algebra with onurrent semantis. For instane, the semantis of the parallel languageB(PN)2 [3℄ is de�ned in terms of Petri nets similar to those used in this paper. It features most usuallyexpeted high-level onstruts for programming languages, in partiular: nested delaration of typed vari-ables and FIFO ommuniation hannels; ommuniation through shared variables or hannels; atomi a-tions; ontrol �ow onstruts inluding parallelism; proedures with parameters passed by value or by refereneand allowing reursive and parallel alls [10℄; exeptions whose propagation an arry arbitrary value [11℄;or Ada-like tasking with suspend/resume or abort apability [12℄. Moreover, it an be easily extended withreal-time onstruts using the same approah to timed system as presented in the following, see [13, � 7.3℄.Another example is the Causal Time Calulus de�ned in [14℄ whih is a proess algebra with timing fea-tures having a step based semantis. Both these formalisms ould be applied to massively parallel problems,allowing to leave Petri nets in the bakground while working with muh more pleasant and onvenient nota-tions.
∗LACL, université Paris 12 � 61, avenue du général de Gaulle � 94010 Créteil, Frane �pommereau�univ-paris12.fr71

72 F. PommereauExeuting a Petri net is not di�ult when we onsider it alone, i. e., in a losed world. But as soon as thenet is embedded in an environment, the question beomes more ompliated. The �rst problem omes when thenet is timed: we have to ensure that its time referene mathes that of the environment. The seond problem isto allow an exhange of information between the net and its environment. Both these questions are addressedin this paper.The ausal time approah is a way to introdue timing features in an otherwise untimed model [7℄, inpartiular Petri nets. The idea behind ausal time is to use the expressive power of the model in order to givean expliit representation of loks in the modelled systems. In the ase of high-level Petri nets, it is possible tointrodue ounters and a distinguished tik transition whose role is to simultaneously inrement them. Theseounters thus beome the timing referene and an be used as lok-wathes by the proesses as in [15, 6, 13, 14℄.It was shown in [6, 14℄ that the ausal time approah is highly relevant sine it is simple to put into pratie andallows for e�ient veri�ation through model heking. This paper shows that this approah is also relevantwhen onrete exeution are onsidered. For the purpose of veri�ation, the hypothesis of the losed world isassumed: the Petri net whih models a system is onsidered alone, without any referene to something externalto it. The situation di�ers if we onsider the exeution of suh a Petri net in an environment whih has itsown time referene. Indeed, the tik transition of a Petri net may ausally depend on the progression of othertransitions in the net, whih results in the so alled deadline paradox [7℄: �tik is disabled until the systemprogresses�. In a losed world, this statement is logially equivalent to �the system is fored to progress beforethe next tik�, whih solves the deadline paradox. But, in the ase of an open world, one may wonder how evenis the progression of the ausal time with respet to that of the real time, whih is the time imposed by theenvironment.Moreover, if the Petri net has to ommuniate with its environment, one may ask how the net an reeiveinformation from the environment and send bak appropriate responses. Produing output is rather simplesine the net is not disturbed; but reading input (i. e., hanging the behaviour of the net in reation to thehanges in the environment) is more di�ult and may not be always possible.In this paper, we de�ne a parallel exeution mahine whose role is to run a Petri net with a tik transitionin suh a way that the tiks our evenly with respet to the real time. We show that this an be ensuredunder reasonable assumptions about the Petri net. The other role of the mahine is to allow the ommuniationbetween the Petri net and the environment and we will identify favourable situations, very easy to obtain inpratie, in whih the reation to a message is ensured within a short delay. An important property of ourexeution mahine will be that it will preserve the step sequene semantis of the Petri net: this mahine anbe seen as an implementation of the Petri net exeution rule inluding additional onstraints related to theenvironment (real time and ommuniation).In the perspetive of diret exeution of the modelled systems, it beomes natural to provide parallelexeutions of the model of a parallel system. So, our goal in proposing a parallel exeution mahine is morerelated to a question of onsisteny than to that of speedup. The question of the speed of our exeution mahinewill thus be intentionally left out of the topis of this paper. However, our de�nitions will leave enough freespae to investigate in this diretion and we will ome bak to this disussion at the end of the paper.1.1. Exeution mahines. De�ning an exeution mahine is the usual way to show that an abstratmodel, de�ned under assumptions whih may be onsidered as unrealisti, an be used for onrete exeutions.For instane, the family of synhronous languages (e. g., Esterel [2℄), relies on the synhronous hypothesis whihstates that the reation to a signal is instantaneous. This leads to onsider an in�nitely fast omputer in theabstrat model. Several exeution mahines for these languages have been de�ned (see, e. g., [1, 5℄); in allases, the solution to remove the synhronous hypothesis makes use of a ompilation stage whih produes�nite automata in whih a whole hain of ation/reation is ollapsed on a single transition. This allows aorret implementation of the instantaneous reation assuming a omputer fast enough with respet to thedelays that the environment an observe. However, this breaks the ausality relation between events andleads to rejet some systems whih may be onsidered on the abstrat level but are onretely impossible toimplement.Similar onerns arise in the ase of Petri nets with ausal time; in partiular, we have to rejet systemswhih allow runs of unbounded length between two onseutive tiks. (Suh behaviours are often alled Zenoruns.) Conerning the question of reating to the soliitation of the environment, it is easy to introdue spei�onstruts in a Petri net in order to ensure that a signal will be always taken into aount very e�iently,

Petri Nets As Exeutable Spei�ations 73provided that the environment is not �too demanding�. This is to say that we will need a omputer fast enoughwith respet to its environment, exatly like for synhronous languages.1.2. Organisation of the paper. The sequel is organised as follows. The setion 2 introdues the basinotions related to Petri nets and their semantis. The setion 3 then de�nes the lass of Petri nets we areinterested in and gives the assumptions whih must be onsidered in order to allow their real-time exeution.The setion 4 shows how suh nets an be ompiled into a form suitable for their exeution. Then, the setion 5de�nes the exeution mahine itself. We �nally onlude in the setion 6, introduing disussions about thee�ieny of an implementation.2. Basi de�nitions about Petri nets. This setion brie�y introdues the lass of Petri nets and therelated notions that will be used in the following.2.1. Multisets. A multiset over a set X is a funtion µ : X → N. We denote by mult(X) the set of all�nite multisets µ over X , i. e., suh that∑x∈X µ(x) <∞. We write µ ≤ µ′ if the domain X of µ is inluded inthat of µ′, and if µ(x) ≤ µ′(x), for all x ∈ X . An element x ∈ X belongs to µ, denoted x ∈ µ, if µ(x) > 0. Thesum and di�erene of multisets, and the multipliation by a non-negative integer are respetively denoted by +,
− and ∗ (the di�erene is de�ned only when the seond argument is smaller or equal to the �rst one). A subsetof X may be treated as a multiset over X , by identifying it with its harateristi funtion, and a singletonset an be identi�ed with its sole element. A �nite multiset µ over X may be written as ∑x∈X µ(x) ∗ x or
∑

x∈X µ(x)∗{x}, as well as in extended set notation, e. g., {a1, a1, a2} denotes a multiset µ suh that µ(a1) = 2,
µ(a2) = 1 and µ(x) = 0 for all x ∈ X \ {a1, a2}.2.2. Labelled Petri nets. Let S be a set of ations symbols, D a �nite set of data values (or just values)and V a set of variables. For A ⊆ S and X ⊆ D ∪ V, we denote by A⊗X the set {a(x) | a ∈ A, x ∈ X}. Then,we de�ne A

df

= S⊗(D∪V) as the set of ations (with parameters). These four sets are assumed pairwise disjoint.Definition 2.1. A labelled marked Petri net is a tuple N = (S, T, ℓ, M) where:
• S is a nonempty �nite set of plaes;
• T is a nonempty �nite set of transitions, disjoint from S;
• ℓ de�nes the labelling of plaes, transitions and ars, i. e., elements of (S × T) ∪ (T × S), as follows:� for s ∈ S, the labelling is ℓ(s) ⊆ D whih de�nes the tokens that the plae is allowed to arry (oftenalled the type of s),� for t ∈ T , the labelling is ℓ(t)

df

= α(t)γ(t) where α(t) ∈ A and γ(t) is a boolean expression alledthe guard of t,� for (x, y) ∈ (S × T) ∪ (T × S), the labelling is ℓ(x, y) ∈ mult(D ∪ V) whih denotes the tokens�owing on the ar during the exeution of the attahed transition. The empty multiset ∅ denotesthe absene of ar;
• M is a marking funtion whih assoiates to eah plae s ∈ S a multiset in mult(ℓ(s)) representing thetokens held by s.Notie that α(t) ould be a �nite multiset of ations. This would be a trivial extension but would leadto more ompliated de�nitions; we hoose to restrit ourselves to single ations in order to streamline thepresentation.We adopt the standard rules about representing Petri nets as direted graphs with the following simpli�a-tions: the names of some nodes (espeially plaes) may not be given; the two omponents of transition labels aredepited separately; true guards are omitted as well as brakets around sets; ars may be labelled by expressionsas a shorthand (see the example given in the �gure 2.1).

0 0,...,η

t τ(x)

x + 1 x

0 0,...,η

t τ(x)
y = x + 1

y xFig. 2.1. On the left, a Petri net whih atually denotes that given on the right, with η ≥ 0, {0, . . . , η} ⊆ D, {x, y} ⊆ V and
τ ∈ S.

74 F. Pommereau2.3. Step sequene semantis. A binding is a funtion σ : V → D whih assoiates onrete values tothe variables appearing in a transition and its ars. We denote by σ(E) the evaluation of the expression Ebound by σ.Let (S, T, ℓ, M) be a Petri net, and t ∈ T one of its transitions. A binding σ is enabling for t at M if theguard evaluates to true, i. e., σ(γ(t)) = ⊤, and if the evaluation of the annotations on the adjaent ars respetsthe types of the plaes, i. e., for all s ∈ S, σ(ℓ(s, t)) ∈ mult(ℓ(s)) and σ(ℓ(t, s)) ∈ mult(ℓ(s)).A step orresponds to the simultaneous exeution of some transitions, it is a multiset
U = {(t1, σ1), . . . , (tk, σk)}suh that ti ∈ T and σi is an enabling binding of ti, for 1 ≤ i ≤ k. U is enabled if the marking is su�ient toallow the �ow of tokens required by the exeution of the step, i. e., for all s ∈ S

M(s) ≥
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)).It is worth noting that if a step U is enabled at a marking, then so is any sub-step U ′ ≤ U . A step U enabledby M may be exeuted, leading to the new marking M ′ de�ned for all s ∈ S by
M ′(s)

df

= M(s) −
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)) +
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(t, s)).This is denoted by M [U〉M ′ and this notation naturally extends to sequenes of steps. The empty step, denotedby ∅, is always enabled and we have M [∅〉M . A marking M ′ is reahable from a marking M if their exists asequene of steps ω suh that M [ω〉M ′; we will say in this ase that M enables ω. Notie that M is reahablefrom itself through a sequene of empty steps.The step sequene semantis is de�ned as the set ontaining all the sequenes of steps enabled by a net. Thissemantis is based on transitions identities but the relevant information is generally the labels of the exeutedtransitions. The labelled step assoiated to a step U is de�ned as ∑(t,σ)∈U U((t, σ)) ∗ σ(α(t)), whih allows tonaturally de�ne the labelled step sequene semantis of a Petri net. In the sequel we will onsider only thissemantis and omit the word �labelled�.2.4. Safety. A Petri net (S, T, ℓ, M) is safe if any marking M ′ reahable from M is suh that, for all s ∈ Sand all d ∈ ℓ(s), M ′(s)(d) ≤ 1, i. e., any plae holds at most one token of eah value. The lass of safe Petrinets (inluding models abbreviating them) is very interesting:
• from a theoretial point of view, safe Petri nets never have auto-onurreny of transitions, whih allowsfor e�ient veri�ation tehniques [8℄;
• from a pragmatial point of view, safe Petri nets orresponds to the lass of �nite state Petri nets (asshown in [4℄, bounded Petri nets an be redued to safe Petri nets while preserving their onurrentsemantis), whih orrespond to realisti systems, i. e., those that an be implemented on a onreteomputer;
• from a pratial point of view, this lass was shown expressive enough to model most interestingproblems from the real world. For instane, the semantis proedures, exeptions or tasks preemptionin the language B(PN)2 do not require more than safe Petri net.Another nie property of safe Petri nets, diretly related to our purpose, is that they have �nitely manyreahable markings, eah of whih enabling �nitely many steps whose sizes are bounded by the number oftransitions in the net. For all these reasons, as in the previous works about ausal time [15, 6, 13, 14℄, werestrit ourselves to safe Petri nets.3. Petri nets with ausal time: CT-nets. We are now in position to de�ne the lass of Petri nets weare atually interested in; it onsists in safe Petri nets, with several restritions, for whih we will de�ne somespei� voabulary related to the ourrene of tiks. We assume that there exists τ ∈ S, used in the labellingof the tik transition.Definition 3.1. A Petri net with ausal time (CT-net) is a safe labelled Petri net N

df

= (S, T, ℓ, M) inwhih there exists a unique tτ ∈ T , alled the tik transition of N , suh that:
• α(tτ) ∈ {τ} ⊗ (D ∪ V);

Petri Nets As Exeutable Spei�ations 75
• α(t) /∈ {τ} ⊗ (D ∪V) for all t ∈ T \ {tτ};
• tτ has at least one inoming ar labelled by a singleton.A tik-step is a step U of N whih involves the tik transition, i. e., suh that τ(d) ∈ U for a d ∈ D.Thanks to the safety and the last restrition on tτ , any tik-step ontains exatly one ourrene of thetik transition. On the other hand, one may notie that this de�nition is very liberal and allows to de�ne netsin whih the tik transition is not tight to inrement ounters but may produe any other e�et not relatedto time. Fortunately, we do not need a more restritive de�nition, whih lets us free to experiment di�erentapproahes in the future.The �gure 3.1 shows a toy CT-net that will be used as a running example. In this net, the role of thetik transition tτ is to inrement a ounter loated in the top-right plae. When the transition t1 is exeuted,it resets this ounter and piks in the top-left plae a value whih is bound to the variable m. This value istransmitted to the transition t2 whih will be allowed to exeute when at least m tiks will have ourred. Thus,

m spei�es the minimum number of tiks between the exeution of t1 and that of t2. At any time, the transition
t3 may randomly hange the value of this minimum while emitting a visible ation u(x) where x is the newvalue. Notie that the maximum number of tiks between the exeution of t1 and that of t2 is enfored by thetype of the plae onneted to tτ whih spei�es that only tokens in {0, . . . , η} are allowed (given η > 0).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

••
•

m

m

0
y c

c

xy n + 1n

m mFig. 3.1. An example of a CT-net, where η > 0, {a1, a2, u, τ} ⊆ S, {c, n, m, x, y} ⊆ V and {0, . . . , η} ∪ {•} ⊆ D.Assuming η ≥ 5, a possible exeution of this CT-net is:
{τ(0)} {u(2)} {a1(2)} {τ(0), u(1)} {τ(1)} {u(5)} {τ(2)} {τ(3)} {a2(4), u(0)} {τ(4)} .3.1. Tratability. A CT-net (S, T, ℓ, M) is tratable if there exists an integer δ ≥ 2 suh that, for allmarking M ′ reahable from M , any sequene of at least δ nonempty steps enabled by M ′ ontains at least twotik-steps. In other words, the length of an exeution between two onseutive tiks is bounded by δ whosesmallest possible value is alled the maximal distane between tiks.This notion of tratable nets is important beause it allows to distinguish those nets whih an be exeutedon a realisti mahine: indeed, an intratable net may have potentially in�nite runs between two tiks (soalled Zeno runs), whih annot be exeuted on a �nitely fast omputer without breaking the evenness of tiksourrenes.For example, the CT-net of our running example is intratable beause the transition t3 an be exeutedin�nitely often between two tiks: in the exeution given above, the step {u(5)} ould be repeated an arbitrarynumber of times. In the rest of this paper, we restrit ourselves to tratable CT-nets.3.2. Input and output. The ommuniation between a CT-net and its environment is modelled usingsome of the ations in transitions labels. We distinguish for this purpose two �nite disjoint subsets of S: Siis the set of input ation symbols and So is that of output ations symbols. We assume that τ /∈ Si ∪ So. Wealso distinguish a nonempty set Dio ⊆ D representing the values allowed for input and output. Intuitively, thedistinguished symbols orrespond to ommuniation ports on whih values from Dio may be exhanged betweenthe exeution mahine and its environment. Thus the exeution of a transition labelled by ao(do) ∈ So ⊗Dio isseen as the sending of the value do on the output port ao. Conversely, if the environment sends a value di ∈ Dioon the input port ai ∈ Si, the net is expeted to exeute a step ontaining the ation ai(di). In general, weannot ensure that suh a step is enabled, in the worst ase, it may happen that no transition has ai in its label.Fortunately, we show now that a net an easily be designed in order to ensure that suh an input message isalways orretly handled.

76 F. PommereauA naive way to ahieve this result is to use self-loops, like the transition t3 in the �gure 3.1. In this example,if we assume u ∈ Si and {0, . . . , η} ⊇ Dio , any requested ommuniation on u an always be handled. Unfor-tunately, self-loops lead to intratable nets sine suh transitions an always be arbitrarily repeated (rememberthe step {u(5)} above). Atually, a self-loop indiates that the CT-net is expeted to be able to respond in-stantaneously to all the messages that the environment would send on the orresponding port, whih is not arealisti assumption. Indeed, if the number of suh messages sent in a given amount of real time is not bounded,then a �nitely fast omputer annot avoid to miss some of them. So, in the following, we assume that theenvironment may not produe more than one message on eah input port between two tiks, whih will lead tothe notion of tik-reativeness. This assumption is equivalent to say that we require the CT-net to be exeutedon a omputer fast enough with respet to its environment; so, this is atually one of the lassial onditionsthat must be assumed while de�ning an exeution mahine.Let A ⊆ Si be a nonempty set of input ation symbols, we denote by req(A) the set of potential requests on
A, whih ontains all the sets of the form {a1(d1), . . . , ak(dk)} where {a1, . . . , ak} ⊆ A and (d1, . . . , dk) ∈ Dio

kfor all k ≥ 1. Eah element of req(A) is potentially a step of a CT-net.A CT-net (S, T, ℓ, M) is one-reative to A ⊆ Si i�: either, it enables only the empty step; or, there existsa step U ′ /∈ req(A) suh that M [U ′〉M ′′ and, for all U ∈ req(A), we have M [U〉M ′ and the CT-net (S, T, ℓ, M ′)is one-reative to A \ {a ∈ A | ∃d ∈ Dio , a(d) ∈ U}. Intuitively, this indutive de�nition states that, for allinput port ai ∈ Si, the CT-net an reat to any request on a as soon as it omes, after what it may miss them.On the other hand, the CT-net is never fored to exeute an ation involving an input port in A (thanks to thestep U ′). At any time, the CT-net may terminate its exeution with a deadlok.A CT-net (S, T, ℓ, M) is tik-reative to A ⊆ Si i� it is one-reative to A and, for all sequene of steps
U1 · · ·Uk suh that Uk is a tik-step and M [U1 · · ·Uk〉M ′, then the CT-net (S, T, ℓ, M ′) is tik-reative to A.This de�nition is also indutive and states that a tik-reative CT-net is almost like a one-reative net exeptthat its apability to reat is fully restored after eah tik. This guarantees that one message on a may alwaysbe handled between two tiks, whih exatly mathes our assumption. It turns out that it is easy to transform areative CT-net with self-loops into a tik-reative one. It is enough to add one plae for eah self-loop with thetype {◦, •} and marked with •, and ars suh that eah ourrene of the self-loop onsumes the • and replaeit with a ◦, so it annot our twie; on the other hand, eah ourrene of the tik-transition must reset to •the token in the added plaes. This way, self-loops annot be repeated with at least one tik in between. Aswe an see, it is easy to onstrut a tik-reative net; for instane, the �gure 3.2 shows a modi�ed version ofour running example whih is tik-reative to {u} and tratable (now, the step {u(5)} ould not be repeated atwill).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

•
◦,•

••
•

m

m

0
y c

c

z

•◦

•
xy n + 1n

m mFig. 3.2. The tik-reative version of the running example, where z ∈ V and {◦, •} ⊂ D.3.3. Consisteny. We denote by U [a] the number of ourrenes of the ation symbol a in a step U , i. e.,
U [a]

df

=
∑

a(x)∈U U(a(x)). A step U is onsistent if U [a] ≤ 1 for all a ∈ Si ∪ So. A CT-net is onsistent ifits step sequene semantis only involve onsistent steps. Inonsistent steps are those during the exeution ofwhih several ommuniations take plae on the same port. Sine the transitions exeuted by a single step oursimultaneously, this means that several values may be sent or reeived on the same port at the same time. Thisis ertainly something whih is not realisti and so, we restrit ourselves to onsistent CT-nets in the following.The nets given in the �gures 3.1 and 3.2 are both onsistent. But, assuming a2 ∈ Si ∪ So, it would not bethe ase if we would replae u(x) by a2(x) in the label of the transition t3 sine we ould have and exeutionwith the step {a2(4), a2(0)} whih is not onsistent.

Petri Nets As Exeutable Spei�ations 774. Compilation of CT-nets: CT-automata. The aim of this setion is to show how to transform atratable and onsistent CT-net into a form more suitable for the exeution mahine. This orresponds to aompilation produing an automaton (non-deterministi in general), alled a CT-automaton, whose states arethe reahable markings of the net and whose transitions orrespond to the steps allowing to reah one markingfrom another. It should be remarked that this ompilation is not stritly required but allows to simplify thingsa lot, in partiular in an implementation of the mahine: with respet to its orresponding CT-net, a CT-automaton has no notion of markings, bindings, enabling, et., whih results in a muh simpler model. Anotherreason to introdue this ompilation stage is that it an be used to hek if the net of interest is really a safe,tratable and onsistent CT-net; moreover, it is an almost neessary step to ompute the value of δ (the maximaldistane between tiks) whih will be used during the exeution. So, as we annot avoid a omputation at leastequivalent to this ompilation stage, we turn it into an advantage for the exeution whih an be made muhsimpler and more e�ient.In order to reord only the input and output ations in a step U of a CT-net, we de�ne the set of the visibleations in U by ⌊U⌋ df

= U ∩ (((Si ∪ So) ⊗ Dio) ∪ ({τ} ⊗ D)). Beause of the onsisteny, ⌊U⌋ ould not be amultiset.Definition 4.1. Let N = (S, T, ℓ, M) be a tratable and onsistent CT-net, the CT-automaton of N is the�nite automaton A(N)
df

= (SA, TA, sA) where:
• SA is the set of states de�ned as the set of all the reahable markings of N ;
• the set of transitions is TA ⊆ SA × LA × SA, where LA

df

= {A ⊆ ((Si ∪ So) ⊗ Dio) ∪ ({τ} ⊗ D)}, andis de�ned as the set of all the triples (M ′, A, M ′′) suh that M ′, M ′′ ∈ SA and there exists a nonemptystep U of N suh that M [U〉M ′ and A = ⌊U⌋;
• sA

df

= M ∈ SA is the initial state of A(N), i. e., the initial marking of N .The following holds by de�nition but should be stressed sine it states that a CT-net and the orrespondingCT-automaton have exatly the same exeutions.Proposition 4.2. Let N
df

= (S, T, ℓ, M) be a tratable and onsistent CT-net, M ′ be a reahable markingof N and (SA, TA, M)
df

= A(N).1. If M ′[U〉M ′′ for a nonempty step U then (M ′, ⌊U⌋, M ′′) ∈ TA.2. Conversely, if (M ′′, A, M ′′′) ∈ TA then there exists a nonempty step U suh that M ′′[U〉M ′′′ and
⌊U⌋ = A.As an example, the �gure 4.1 shows the CT-automaton whih orresponds to the tratable version of ourrunning example (given in the �gure 3.2). For the sake of ompatness, we assumed η

df

= 1 (the automaton for
η = 2 has 105 states and this number grows to 277 for η = 3). Moreover, we assumed {a1, a2, u} ⊆ Si ∪ So.5. The exeution mahine. We now desribe the exeution mahine. In order to ommuniate with theenvironment, a symbol ao ∈ So is onsidered as a port on whih a value d ∈ Dio may be written, whih is denotedby a← d (more generally, this is used for any assignment). Similarly, a symbol ai ∈ Si is onsidered as a porton whih suh a value, denoted by ai?, may be read; we assume that ai? = ∅ /∈ Dio when no ommuniationis requested on ai. Moreover, in order to indiate to the environment if a ommuniation have been properlyhandled, we also assume that eah a ∈ Si may be marked �aepted� (denoting that the ommuniation has beenorretly handled), �refused� (denoting that the ommuniation ould not been handled), �erroneous� (denotingthat a ommuniation on this port was possible but with another value, or that a ommuniation was expetedbut not requested) or not marked, whih is represented by �no mark�. We also use the notation ai ← markwhen an input port is being marked.Let (SA, TA, sA) be a CT-automaton and let ∆ be a onstant amount of time; we will see later on how ∆is de�ned sine it depends on the de�nition of the exeution mahine. We will use three variables:

• Θ is a time orresponding to the ourrenes of tiks;
• s ∈ SA is the urrent state;
• I ⊆ Si is the set of ports on whih the environment asks a ommuniation.The behaviour of the mahine is desribed by the algorithm given on the left of the �gure 4.2 where theexeution of a step (line 13) is detailed on the right of the �gure. Several aspets of this algorithm should beommented:
• the statement �now� evaluates to the urrent time when it is exeuted;
• the �for all� loops are parallel loops;
• the exeution of the line 8 an be parallelised also (see below);

78 F. Pommereau
0

1

2 3

4 56

7 8

9

1011 1213

14 15 16

17

1819 20 21

22

23 24

25 26

27

u(0) u(1)

a1(0) τ(0)

a1(0)

τ(0)

a1(1)

a1(0)
u(0) u(1) u(0)

u(1)
a1(1)

u(1) a2(0) u(0)
a1(0) a1(1) u(1) u(0)

a2(0)
τ(0) u(1) u(0) τ(0)

a2(0) τ(0) τ(0)

τ(0) a2(1) u(0)

u(1) u(0)

u(1)

a2(1) τ(0)

a2(1)

u(0) u(1)a2(1)
u(0)

u(1)

u(0) u(1)a2(1)
a2(1)

u(0)

u(1)

a2(1)

a2(1)

u(0),a2(1)
u(1),a2(1)

u(0),a2(1)

u(1),a2(1)

u(0),a2(1)

u(1),a2(1)

u(0),a2(1)
u(1),a2(1)

Fig. 4.1. The CT-automaton of the CT-net given in the �gure 3.2 (with η
df

= 1), the initial state is numbered 0 and �lled inblak.1: s← sA2: Θ← now3: while s has suessors do4: for all a ∈ Si do5: a← �no mark�6: end for7: I ← {a ∈ Si | a? 6= ∅}8: hoose a transition (s, A, s′)9: if A is a tik-step then10: wait until now = Θ + ∆11: Θ← now12: end if13: exeute(A, I)14: s← s′15: end while

proedure exeute(A, I) :17: for all a(d) ∈ A (a 6= τ) do18: if a ∈ So then19: a← d20: else if a ∈ Si and a? = d then21: a← �aepted�22: else23: a← �erroneous�24: end if25: I ← I \ {a}26: end for27: for all a ∈ I do28: a← �refused�29: end forFig. 4.2. The main loop of the exeution mahine (on the left) and the exeution of a step A with respet to requested inputsgiven by I (on the right).
• eah exeution of the �while� loop performs a bounded amount of work, in partiular the followingnumbers are bounded: the number of ports; the number of transitions outgoing from a state; thenumber of ations in eah step. Assuming that hoosing a transition requires a �xed amount of time(see below), ∆ is the maximum amount of time required to exeute the �while� loop δ − 1 times;
• no tik is expliitly exeuted but its ourrene atually orresponds to the exeution of the line 11.

Petri Nets As Exeutable Spei�ations 79Proposition 5.1. The algorithm presented in the �gure 4.2 ensures an even ourrene of the tiks.Proof. Let θ be the value assigned to Θ when the line 2 is exeuted. A number of transitions (at most
δ − 2) is exeuted until a tik transition is hosen. All together, the duration of these exeutions requires is
D ≤ ∆ so the line 10 waits during ∆−D. Thus, the line 11, whih orresponds to the tik, is exeuted at time
θ + D + (∆−D) = θ + ∆. By indution, we obtain that tiks are exeuted at times θ + k∆ for k ≥ 1.5.1. Choosing a transition. We still have to de�ne how a transition may be hosen, in a �xed amountof time, in order to mark �aepted� as muh as possible input ports in the set I of requested ommuniations.In order to de�ne a riterion of maximality, we assume that there exists a total order on Si. This orrespondsto a priority between the ports: when several ommuniations are requested but not all are possible, we �rsthoose to serve those on the ports with the highest priorities. Then, given I, we de�ne a partial order ≺ onthe transitions outgoing from a state and the mahine hooses one of the smallest transitions aording to ≺.This hoie may be random or driven by a sheduler. For instane, we may hoose to exeute steps as large aspossible, or steps no larger than the number of proessors, et. The de�nition of a sheduling strategy is out ofthe sope of this paper; we just need to assume that the time needed to hoose a transition is bounded (whihshould hold in the reasonable ases).For eah step A appearing on a transition outgoing from the urrent state, we de�ne a vetor VA ∈ {0, 1, 2}Siwhih represents the marks on the input ports after A would be exeuted: the value 0 stands for �aepted�or �no mark�, the value 1 for �refused� and the value 2 for �erroneous�. Thus, the value of VA(a) an be foundusing the following table, where d and d′ are distint values in Dio :

A[a] = 0 a(d) ∈ A a(d′) ∈ A

a? = d 1 0 2

a? = ∅ 0 2 2Then, A1 ≺ A2 if VA1
< VA2

aording to the lexiographi order on these vetors.Again, it is lear that building these vetors and hoosing the smallest one is feasible in a �xed amount oftime sine the number of transitions outgoing from a state is bounded. This is also feasible in parallel: all the
VA's an be omputed in parallel (as well as all their omponents) and the seletion of the smallest one is alogarithmi redution.Notie that if ≺ allows to de�ne a total order on steps, it is not the ase for the transitions sine severaltransitions may be labelled by the same step. For instane, assuming u /∈ Si ∪ So, the running example wouldgive a CT-automaton similar to that of the �gure 4.1 but in whih all the ations u(0) or u(1) would have beendeleted. In this ase, the state 13 would have two outgoing transitions labelled by ∅ and three labelled by a2(1).Proposition 5.2. Let a ∈ Si be an input ation symbol and N be a CT-net whih is tik-reative to R ∋ a.Then, the exeution of A(N) will never mark a as �erroneous� nor �refused�.Proof. Let s be the urrent state of A(N) and (s, A, s′) be the transition hosen by the exeution mahine.There are three ases.(1) If a? = ∅, then it may be marked �erroneous� or not marked. In the former ase, this means that
a(d) ∈ A for a d ∈ Dio . Then, if A = {a(d)}, beause of the tik-reativeness, there must exist a transition
(s, U ′, s′′) whih does not involve a (tik-reativeness never fores the ourrene of an input ation), otherwise,the transition (s, A′, s′′) with A′ df

= A \ {a(d)} must exists (sine it orresponds to a sub-step). In both ases,we have (s, U ′, s′′) ≺ (s, A, s′) or (s, A′, s′′) ≺ (s, A, s′) hene a ontradition with the fat that (s, A, s′) washosen. So, a must be not marked in this ase.(2) If a? = d 6= ∅ and the ommuniation on a is marked �refused�, this means that A[a] = 0. The tik-reativeness ensures that there must exist a transition (s, A ∪ {a(d)}, s′′) (by assumption, a annot have beenrequested before sine the previous tik), hene again a ontradition. So, a must be marked �aepted� in thisase.(3) If a? = d 6= ∅ and the ommuniation on a is marked �erroneous�, this means that a(d′) ∈ A for a
d′ ∈ Dio \ {d}. But there must exist a transition (s, (A ∪ {a(d)}) \ {a(d′)}, s′′) (tik-reativeness allows theourrene for any value in Dio), hene again a ontradition. So, a is also marked �aepted� here.Then, the next result shows that a ommuniation requested on a port to whih the CT-net is tik-reativeis always orretly handled (i. e., aepted) within the urrent �while� loop, whih is the best response timethat one an expet from the presented algorithm.

80 F. PommereauProposition 5.3. Let a ∈ Si be an input ation symbol and N be a CT-net whih is tik-reative to R ∋ a.If a? = d 6= ∅ before the exeution of the line 7 in the �gure 4.2, then a is marked �aepted� after the line 13has exeuted.Proof. Diretly follows from how the mahine hooses a transition and from the proposition 5.2.6. Conluding remarks. We de�ned a parallel exeution mahine whih shows the adequay of ausaland real time by allowing time-onsistent exeutions of ausally timed Petri nets (CT-nets) in a real-timeenvironment. We also shown that it was possible to ensure that the mahine e�iently reats to the soliitationof its environment by designing CT-nets having the property of tik-reativeness, whih is easy to onstrut. Inorder to obtain these results, several restritions have been adopted:
• only safe Petri nets are onsidered;
• the nets must be tratable, i. e., they are not allowed to have unbounded runs between two tiks;
• the nets must be onsistent, i. e., they annot perform several simultaneous ommuniations on thesame port;
• the exeution mahine must be run on a omputer fast enough to ensure that the environment annotattempt more than one ommuniation on a given port between two tiks.We do not onsider the tratability and onsisteny requirements as true restritions sine they atually orre-spond to what an be performed on a realisti mahine. The last restrition is atually a presription: in orderto ensure a orret ommuniation, one has to run the exeution mahine on a omputer fast enough to exeutetiks more often than the environment an produe input. Moreover, it should be notied that the frequenyof tiks is arbitrary. So, if the tiks of a CT-net are too muh sparse with respet to the requested inputs, itis easy to multiply by a onstant k all its timing onstraints in the net so tiks will our k times more often.Using non-safe Petri nets may be onsidered in the future, however, this would lead to the lass of in�nite statesystems whih does not seem realisti for the purpose of exeution.6.1. Future work. Petri nets like CT-nets have been used for a long time as a semantial domain forhigh-level programming languages and proess algebras with step based semantis (see, e. g., [3, 14℄) and thesetehniques ould be diretly applied to massively parallel languages or formalisms. In this diretion, we envisageto ombine a n-ary parallel omposition operation with symmetry redutions [9℄ allowing to the veri�ation ofvery large systems while giving modelling support for kinds of SPMD systems.6.2. Implementation issues. A preliminary version of this work proposed a sequential exeution mahineand a prototype has been suessfully implemented in Ada; this allowed to show that the evenness of tiks wasnot only possible in the theory but also easy to ahieve in an implementation. (The only �di�ulty� was toobtains ∆ using test runs at the starting of the mahine.) A parallel implementation of the version presented herehad been started but had to be delayed sine it turned out that there were still need for a ground study. Indeed,several open questions are atually ritial ones. Notie that if our goal is to perform testing or simulation,an implementation an be naive and may even be sequential. But in the perspetive of diret exeution ofthe modelled systems, the speedup beomes ruial and atually depends on the interation between severalparameters: the model of omputation, the family of parallel mahine targeted and the sheduling strategy(as disussed in the setion 5.1). All these questions were left out of the urrent paper; we thus envisagefurther researh on this subjet with the goal to identify good ombinations allowing to produe high-qualityimplementations of our exeution mahine. In partiular: how to exploit the parallelism in the presentedalgorithm strongly depends on the omputational model envisaged (whih may itself depend on the targetarhiteture); the question of storing the CT-automaton is also important if one targets a distributed memoryarhiteture. Taking all these parameters into aount may lead to several very di�erent re�nements of thealgorithm proposed above, eah speially dediated to a partiular lass of parallel omputer and parallelprogramming language or model.Related to the goal of e�ient exeutions, another interesting problem is to onnet the input/output ofthe mahine to the onrete omputer in order to delegate some omputation. Indeed, output ations may beonsidered as alls to omputational primitives, while input ations ould orrespond to the reeiving of theomputed values. This introdues delays, externals to the model, whih must be taken into aount. This anbe made by introduing further timing onstraints in the model in order to re�et the exeution times obtainedfrom benhmarks or from real-time guarantees in the ase of alls to real-time primitives. In this perspetive,onsidering Petri nets with time beomes neessary.

Petri Nets As Exeutable Spei�ations 816.3. Conlusion. We believe that the framework proposed in this paper an be used to build onreteparallel appliations in whih the ontrol �ow ould be ensured by Petri nets while a large part of the omputationwould be delegated to dediated primitives with known performanes. Using Petri nets for both the modellingand the exeution allows to verify and run the same objet, saving from the risk to introdue errors on the wayfrom a model to its implementation, while allowing exeutions even during the early stages of the design.REFERENCES[1℄ C. André F. Boulanger, A. Girault, Software Implementation of Synhronous Programs, ICACSD'2001, IEEE ComputerSoiety, 2001.[2℄ G. Berry, The foundations of Esterel, Language and Interation: Essays in Honour of Robin Milner. MIT Press, 1998.[3℄ E. Best and R. P. Hopkins, B(PN)2 � A basi Petri net programming notation. PARLE'93. LNCS 694, Springer, 1993.[4℄ E. Best and H. Wimmel, Reduing k-safe Petri nets to pomset-equivalent 1-safe Petri nets, ICATPN'00. LNCS 1825,Springer, 2000.[5℄ E. Boufaïd, Mahines d'ex'eution pour langages synhrones, PhD Thesis, University of Nie-Sophia Antipolis, 1998.[6℄ C. Bui Thanh, H. Klaudel and F. Pommereau, Petri nets with ausal time for system veri�ation, MTCS'02. ENTCS,Elsevier, 2002.[7℄ R. Durhholz, Causality, time, and deadlines, Data & Knowledge Engineering, 6. North-Holland, 1991.[8℄ J. Esparza, Model heking using net unfoldings, Siene of Computer Programming, Elsevier, 1994.[9℄ T. Junttila, On the Symmetry Redution Method for Petri Nets and Similar Formalisms, PhD Thesis, Helsinki Universityof Tehnology, 2003[10℄ H. Klaudel, Compositional High-Level Petri nets Semantis of a Parallel Programming Language with Proedures, Sienesof Computer Programming 41, Elsevier, 2001.[11℄ H. Klaudel and F. Pommereau, A onurrent semantis of stati exeptions in a parallel programming language,ICATPN'01. LNCS 2075, Springer, 2001.[12℄ H. Klaudel and F. Pommereau, A lass of omposable and preemptible high-level Petri nets with an appliation to multi-tasking systems, Fundamenta Informatiae, 50(1):33�55. IOS Press, 2002.[13℄ F. Pommereau, Modèles omposables et onurrents pour le temps-re'el, PhD. Thesis, University Paris 12, Frane, 2002.[14℄ F. Pommereau, Causal Time Calulus, FORMATS'03. LNCS 2791, Springer, 2004.[15℄ G. Rihter, Counting interfaes for disrete time modeling, Tehnial report 26, GMD. September 1998.Edited by: Frédéri LoulergueReeived: June 8, 2004Aepted: June 9, 2005

Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 83�94. http://www.spe.org ISSN 1895-1767© 2005 SWPSAGENT BASED SEMANTIC GRIDS: RESEARCH ISSUES AND CHALLENGESOMER F. RANA∗ AND LINE POUCHARD†Abstrat. The use of agent based servies in a Computational Grid is outlined�along with partiular roles that these agentsundertake. Reasons why agents provide the most natural abstration for managing and supporting Grid servies is also disussed.Agent servies are divided into two broad ategories: (1) infrastruture servies, and (2) appliation servies. Infrastruture serviesare provided by existing Grid management systems, suh as Globus and Legion, and appliation servies by intelligent agents. Usagesenarios are provided to demonstrate the onepts involved.1. Introdution and Related Work. There has been an inrease in interest reently within the Gridommunity [11℄ towards �Servie Oriented� Computing. Servies are often seen as a natural progression fromomponent based software development [6℄, and as a means to integrate di�erent omponent developmentframeworks. A servie in this ontext may be de�ned as a behaviour that is provided by a omponent foruse by any other omponent based on a network-addressable interfae ontrat (generally identifying someapability provided by the servie). A servie stresses interoperability and may be dynamially disovered andused. Aording to [7℄, the servie abstration may be used to speify aess to omputational resoures, storageresoures, and networks in a uni�ed way. How the atual servie is implemented is hidden from the user throughthe servie interfae. Hene, a ompute servie may be implemented on a single or multi-proessor mahine�however, these details may not be diretly exposed in the servie ontrat. The granularity of a servie anvary�and a servie an be hosted on a single mahine, or it may be distributed. The �TeraGrid� projet [9℄provides an example of the use of servies for managing aess to omputational and data resoures. In thisprojet, a omputational luster of IA-64 mahines may be viewed as a ompute servie, for instane�hidingdetails of the underlying operating system and network. A developer would interat with suh a system usingthe GT4.0 [26℄ system�via a olletion of servies and software libraries.Web Servies provide an important instantiation of the Servies paradigm, and omprise infrastruturefor speifying servie properties (in XML�via the Web Servies Desription Language (WSDL) for instane),interation between servies (via SOAP), mehanisms for servie invoation through a variety of protoolsand messaging systems (via the Web Servies Invoation Framework), support for a servies registry (viaUDDI), tunnelling through �rewalls (via a Web Servies Gateway), and sheduling (via the Web ServiesChoreography Language). A variety of languages and support infrastruture for Web Servies has appeared inreent months�although some of these are still spei�ations at this stage with no supporting implementation.Web Servies play an important role in the Semanti Web [17℄ vision, aiming to add �mahine-proessableinformation to the largely human-language ontent urrently on the Web" [12℄. A list of publily aessibleWeb Servies (de�ned in WSDL) an be found at [21℄. By providing metadata to enable mahine proessing ofinformation, the Semanti Web provides a useful mehanism to enable automati interation between software�thereby also providing a useful environment for agent systems to interat [8℄. The adoption of more omplexrepresentation shemes for metadata, suh as WebONT [13℄, suggest that the software using this informationan be more adaptive, and support updates when new information beomes available. The agent paradigmtherefore provides a useful mehanism for managing and mediating aess to Web Servies. Various extensionsof Web servies through the agents paradigm have been disussed by Huhns [8℄�the most signi�ant in theontext of Grid omputing inlude self-awareness and learning apability, the ability to support a number ofontologies, and the formation of groups or teams of agents. Conversely, a key advantage of using agents is tosupport semanti interoperability (i. e. interation between software systems based on pre-agreed, semantiallygrounded, de�nitions). Support of tehnologies suh as WebONT in the ontext of Web Servies are likely toprovide the neessary ore infrastruture for agents to work more e�etively in dynami environments suh asComputational Grids.2. Role of Agents in Grids. Grid omputing urrently fouses on sharing resoures at regional andnational entres. Generally, these inlude large omputational engines or data repositories, often requiring theuser to aept �usage poliy� statements from the entre managers and owners. Similarly, resoure owners are
∗Shool of Computer Siene, Cardi� University, UKo.f.rana�s.f.a.uk
†Computer Siene and Mathematis Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge TN 37831-6367, USApouhardl�ornl.gov 83

84 Omer F. Rana and Line Pouhardobliged under the poliy to guarantee aess one an external user has been approved. Aess rights to theresoures are supported through X.509 erti�ates�whereby a user requiring aess must posses a erti�ate.The grid-proxy-init funtion in Globus provides a mehanism for delegation�however, it is limited in sope,and proteted mainly by standard Unix aess rights. In this model, a trust-hain must be established before aproxy request an be aepted. Furthermore, system administrators responsible for partiular resoure domainsare aountable�and operate based on the poliy of the site. As Grid systems embrae servie-oriented omput-ing, more open and �exible mehanisms are neessary to support servie provision and servie usage, as a userproviding a servie may not belong to a partiular entre. Hene, multiple providers may o�er a similar servie,and the servie user now has to selet between them. The more �open� perspetive on Grids�whereby servieproviders an be a olletion of entres or individuals�would neessitate a user evaluating servie providersbased on a number of di�erent riteria, suh as: hoosing servies whih are best value for money, hoosingthe most �reputable� servies, hoosing the most seure servies, or servies whih have the highest response(exeution) time, or whih have been around the longest. These riteria are therefore more diverse in sope, andan support servie hoie based on dynami, run-time attributes of a servie. We assume two kinds of serviesto exist within a Grid: (1) ore servies�whih are provided by the infrastruture and by trusted users, and(2) user servies�whih an be provided by any partiipant utilising ommon Grid software�suh as OGSA.Two suh ore servies�responsible for managing aess to user servies�inlude:
• Certi�ate Authority (Seurity Servie): The erti�ate authority is externally managed, and used toauthentiate servies�based on the identity of a servie provider. Only a few of these servies are likelyto exist aross a Grid�and aimed at ensuring that servie providers an be veri�ed. The Certi�ateAuthority servies is also used to support the development of servie ontrats between a servie userand provider. A simple mehanism based on X.509 erti�ates already exists, and additional workis neessary to extend this to inlude users who require temporary erti�ates, or may hange theiridentity over time. A riteria to be assoiated with suh a servie inludes the �risk� of aessing aservie whih does not posses a erti�ate. In this ontext, the servie user must now deide whetherto not aept any servie at all, or to hoose one whih is non-trustable. Suh risk evaluation mustbe undertaken with other deisions being made by the servie user�and within a limited time. Thedeision making apability needed to undertake suh an evaluation an be supported through agentsystems�and has been a subjet of extensive researh as �trust models� [31℄. The onept of risk anbe de�ned in a number of di�erent ways�for instane, a high risk servie may be one that is likely togive low-auray results (for a numeri servie), or one that is provided by an unknown vendor. It istherefore important to qualify what is meant by risk in a partiular instane.
• Reputation Servie: Eah servie an have an assoiated �Reputation� index, whih is used to lassifyhow often the provider has ful�lled its Servie Level Agreement (ontrat) in the past, and to whatdegree of on�dene. It is possible for a partiular servie user to subsribe to multiple suh ReputationServies�and indeed for a lient servie to look up the reputation of the providing servie from multipleReputation providers. The onept of Reputation Servies have been developed in the Peer-2-Peeromputing ommunity [14℄, and aimed at inreasing aountability within a system of anonymouspeers. Another onept of reputation (in the FreeHaven projet [15℄) requires servie owners to provide�reeipts� (feedbak) to verify the orretness of results obtained from other servies they interatwith. These reeipts are oupled with servies that at as �witnesses� to ensure that reeipts have beengenerated, and thereby an judge node misbehaviour. In the ontext of Grid servies, witnesses an beexternal nodes whih monitor that a given node has met its Servie Level Agreement, and an verifythat the feedbak provided by the user on the servie provider is aurate.A Reputation or Certi�ate an be used by a lient servie to identify whether to use a partiular servieprovider. This on�dene in a given servie is important in the ontext of servie-oriented Grids�as it allowsrequesting servies to selet between multiple providers with a greater degree of auray. Agents provide themost suitable mehanism for o�ering and managing Grid servies. Eah agent an be a servie provider or user,or an interat with an existing information servie.We therefore assume that servies within a Grid environment are managed and exeuted via agents. It is alsopossible for eah agent to support one or more �servie types� (see setion 4.2). We assume three kinds of agentsto be present: (1) Servie Providers, (2) Servie Consumers, and (3) Community Managers (see setion 4.1).Eah agent must therefore provide support for managing a ommunity desription, managing and sustaininginterations with other agents, and provide a poliy interpreter. The poliy interpreter is used by a servie

Agent Based Semanti Grids: Researh Issues and Challenges 85provider and a ommunity manager to ensure that a servie provider onforms to its servie provision ontrat.Partiularly important in Grid systems is the role played by middle agents�primarily servie providers whihdo not o�er an appliation servie, but at as brokers to disover other servies of interest. The riteria forservie disovery used by a broker may range from servie type to servie reputation�and a servie onsumermay simultaneously invoke a number of di�erent servie providers (brokers) to undertake this searh.The partiular hallenges therefore inlude the ability to assess the risk assoiated with using a servie, andprovide feedbak to potential users to evaluate this risk. Middle agents an support the management of riskwithin an agent ommunity�enabling agents to ombine the use of trusted servies along with newer ones.3. Servie Lifeyle. Eah agent is responsible for managing one or more servies�and eah agentmay utilise a number of di�erent infrastruture servies to ahieve this. An agent exists within a partiularommunity, and utilises infrastruture servies (suh as a seurity or registration servie) within its ommunity�rst. A servie lifeyle identi�es the stages in reating, managing, and terminating a servie. A new serviemay either be reated by an agent, or a servie may be assoiated with an agent by a user�where aess tothe servie is subsequently mediated by the agent. A new servie may also be reated by ombining servieso�ered by di�erent agents�whereby an agent manages a servie aggregate. The agent is now responsible forinvoking servies in the order spei�ed in the omposition proess (spei�ed in a servie enatment ontrat).One a new servie has been reated, it must be registered with its �ommunity manager� by the agent. Aservie is initialised and invoked by sending a request to the agent managing the servie, whih may either agreeto the request immediately, or o�er a ommitment to perform the servie at a later time. Servie terminationinvolves an agent unregistering a servie via the ommunity manager, and removing all data orresponding tothe servie state. When an agent needs to exeute an aggregate servie, it will involve interations with agentswithin multiple ommunities. The manager within eah ommunity is responsible for ensuring that servieontrats are being adhered to by agents within its ommunity. The ability to reate a servie aggregate leadsto the formation of �dynami work�ow��whereby an agent deides at run time whih other agent it needs tointerat with to ahieve a partiular goal. Consequently, the exat invoation sequene between servies is notpre-de�ned, and may vary based on the operating environment of the agent undertaking the aggregation. Thefollowing tehnial hallenges are signi�ant in the ontext of Servie Lifeyles:
• Servie Creation: Creating a servie desription using a standard format is an important requirement�to enable the servie to be subsequently disovered. The reation of a servie also neessitates assoiatingthe servie with an agent. An agent would reeive a request for an appliation servie and reate a newinstane of it using the Fatory Interfae [7℄. Eah agent therefore provides a persistent plae holderfor an appliation servie. An important hallenge in this ontext is determining the number and typesof servies that should be managed by a single agent.
• Servie advertising and disovery: Registering a servie with the loal ommunity manager may restritaess�unless there is also some mehanism to allow ommunity managers to interat. Disovering aservie aross multiple network based registries beomes an important onern�and e�ieny of thereferral and query propagation mehanisms between ommunity managers beome signi�ant. Thegreater the number of partiipants that need to be ontated to searh for a servie, the more timeonsuming and omplex the searh proess will be. The number of registries searhed to �nd a servieof interest beomes an important riteria, as does the mehanism used to formulate and onstrainthe query. The ability to divide a query into sub-parts whih an be simultaneously sent to multipleregistries is useful in this ontext�although it restrits the spei�ation of a query.
• Contrat enforement: The ommunity manager is responsible for ensuring that a request for servieprovision is being honoured by an agent within the ommunity. There is a need for monitoring tools toverify that a ontrat is being adhered to�although this requires an agent to reveal its internal state tothe monitoring servie. Enforement of a ontrat also requires the ommunity manager to de-registerthe servie or to restrit aess to it if it does not meet its ontrat. As previously disussed, it is alsopossible for a ommunity manager to hange the risk or reputation index of suh a servie�and utilisemonitoring tools to periodially update this. Contrat enforement must be undertaken based on aommunity spei� poliy.A servie may also register interest in one or more event types via its agent or the ommunity manager. Certainevent types may be ommon for all servies within a ommunity, and handlers for these provided at serviereation time. Suh an event mehanism may also provide support for servie leasing�whereby a servie is

86 Omer F. Rana and Line Pouhard
Implementation
Technologies
Infrastructure
Technologies

Existing Codes
and Libraries

Hardware
Platforms

Services

Interfaces

Core Services
Application Services

Java, CORBA, Web Services (WSDL)

Standard Encoding

Name Service, Event Service, Transactions,
Factory Service

Codes in Fortran and C

NoWs, Parallel Machines, Scientific
Instruments, ImmersaDesksFig. 4.1. The Servies Stakonly made available to a ommunity (or to external agents) for a lease duration�the lease is monitored by theommunity manager. When the lease period expires, the servie agent must either renew the lease or delete theservie.4. Servie Types and Instanes. Figure 4.1 illustrates the layers within servie oriented Grids�startingfrom the servies themselves (whih an be infrastruture or user servies) and interfaes to these serviesenoded in some agreed upon format. At present no standard exists within the Grid ommunity, although thereare working groups in the GGF [11℄ exploring standard interfaes for servies within a partiular appliationdomain. Existing work on the Common Component Arhiteture (CCA) [10℄ provides a useful preedenefor developing ommon interfae standards. Some of the servies may also wrap existing exeutable odes,developed in C or Fortran�requiring the users of these legay odes to publish interfaes to their ode.Servies may subsequently be implemented using a number of di�erent tehnologies�and interfae de�ni-tions using WSDL may bind to a number of di�erent implementations. Servie interation is then supportedthrough an infrastruture that provides support for servie registration and disovery, distributed event deliverybetween servies, and support for transations between servies. Currently, this is provided by systems suh asGlobus, although the need for integrating suh infrastruture servies from other platforms, suh as EnterpriseJavaBeans or CORBA beomes signi�ant.Servies are assumed to be of two ategories: (1) infrastruture servies provided via Globus/OGSA (forinstane), and (2) appliation servies provided by agents. Examples of infrastruture servies inlude a SeurityServie, an Aounting Servie, a Data Transfer servie et. Examples of appliation servies inlude Matrixsolvers, PDE Solvers, and omplete sienti� appliations. Agents utilise infrastruture servies on-demand,and may use type information made available by infrastruture servies. Agents an also interat with eahother based on a goal they are aiming to satisfy.A minimal set of servie metadata should be agreed upon by all agents within a ommunity, regardless ofthe appliation domain�referred to as a �Servies Ontology". Suh an ontology would be used by agents todisover other servie providers and servie onsumers, and the types of servies they o�er�and based on theGrid Servies Spei�ation (GSS) [22℄. Terms within suh an ontology an inlude the onept of �le/servietitle, authors/servie manager, loations, dates, and metadata about �le ontent�suh as quality, provenaneet. Eah agent responsible for a servie must also deide how to proess requests being made to a given serviethat it manages. These riteria may be enfored by the ommunity manager, or based on the attributes of theservies being managed by the agent.4.1. Servie Interations and Communities. Interations between servies form an essential part ofGrid systems, with interations ranging from simple requests for information (suh as extrating data fromthe Grid Information Index Servie (GIIS) in Globus), to more omplex negotiation mehanisms for arranging

Agent Based Semanti Grids: Researh Issues and Challenges 87ommon operations between servies (suh as o-sheduling operations on multiple mahines). Interationsbetween agents are onstrained by the paradigm used�suh as the onept of a �virtual market��wherebyagents an trade servies based on a omputational eonomy [30℄. An important aspet of suh an interationparadigm is that agents need to make deisions in an environment over whih they have limited ontrol, restritedinformation about other agents, and often a limited understanding of the global objetives of the environmentthey inhabit. The onept of �ommunities� beomes important to limit the omplexity of deisions eahagent needs to make, by limiting interations to a restrited set of other agents. In the ommunity ontext,agents must be able to �rst establish whih ommunities to join, and subsequently to deide upon mehanismsfor making their loal state visible to others. Eah ommunity must have a manager entity, responsible foradmitting other agents, and for ensuring that agents adhere to some ommon obligations within the ommunity.Interation between agents may also be mediated via suh a manager�whereby the manager also ats as aprotool translator. The ommunity manager is also responsible for advertising the properties of a ommunityto others, and for eventually disbanding a ommunity if it is non-persistent.
Service
Provider

Service
Provider

Service
User

GRIS
Server

GRIS
Server

GIIS
Server

 Community
 Manager

 Community
 Manager

MatchMaker

Information

Verification
 Service

 Service

MatchMaking Service (M)

MatchMaking Service (M)Fig. 4.2. Servie CommunityFigure 4.2 illustrates the ore servies provided within eah ommunity, and onsists of servie user-s/providers, a MathMaker (M)�whih is supported via a veri�ation and information servie, and a ommunitymanager. The MathMaker provides an example of a middle agent, failitating interation between other servieusers and providers within the ommunity. The information servie an interat with the GRIS/GIIS serverand loate other omputational resoures of interest�using the Globus system. Interation between the servieuser and provider is undertaken based on a ommon data representation�whih enables the state of a givenservie to be queried at a given time `t' (an example of this data model for omputational servies an be foundin [23℄). We assume that there is a single M within a ommunity, although the request for math may utilisedi�erent riteria. The availability of a servie over time extends from t < turrent (usage history) to t > turrent(projeted usage) and inludes t = turrent (urrent usage). Availability over time is just one of the parametersthat must be supported in the system, for instane, we also onsider availability over the set of servie users.The mathmaking servie works as follows:
• Eah Servie Provider sends an asynhronous message to a pre-de�ned mathmaking servie `M' (run-ning on a given host) to indiate its availability within the loal ommunity. Eah message may betagged with the servie type that is being supported. The message ontains no other information, andis sent to the loal `M'. The identity of M may be pre-built into eah servie when it is reated, or maybe obtained from the ommunity manager agent (via a multiast request within the ommunity).
• On reeiving the message, the loal `M' responds by sending a doument speifying the required in-formation to be ompleted by the servie provider agent. This information is enoded in an XML

88 Omer F. Rana and Line Pouharddoument (see [23℄), and ontains speialised keywords that orrespond to dynami information thatmust be reorded for every servie managed by the agent. The doument also ontains a time stampindiating when it was issued, and an address for `M'.
• The servie provider agent ompletes the doument�obtaining the neessary information via the GIISserver (if neessary), and sends bak the form to `M', maintaining a loal opy. The doument ontainsthe original time stamp of `M', and a new time stamp generated by the servie manager. Some parts ofthe doument are stati, while others an be dynamially updated. The new servie is now registeredwith the ommunity manager, and an be invoked by a servie user, until it de-registers with `M'. If theservie is terminated or rashes, `M' will automatially de-register it when it tries to retrieve a new opyof the doument. An alternative tehnique would involve a `push' model whereby eah servie updatesM with its state on a hange. Typially, the update would be to desribe hanges in availability, forexample after a reservation has been made by a servie user. However, the update ould also involve ahange in apability, for example an extra servie being added to the loal system. If a push mehanismis used from the servie to M then repeated polling of the resoures is not neessary. It is useful to notethat the ommunity manager does not diretly maintain any servie information or ontent itself, andinterats with M to obtain the neessary servie details.Agents within a ommunity may need to undertake multiple interations to reah onsensus. For instane,an agent trying to disover suitable servies may need to issue multiple disovery requests before it is able to�nd a suitable servie. Interation mehanisms between agents therefore may be more omplex, and utiliseaution and negotiation mehanisms, or interation rules. The ommunity manager may provide mediation inthis proess, by restriting the maximum number of message exhanges between agents. The main objetivebeing to enable servie providers to enable their servies to be more e�etively used.A partiular hallenge in this ontext is the ability to agree on a ommon data model for exhange servieapability douments. There must be some agreement based on GSS [22℄, but also the ability of a servie providerto identify additional properties if available in the servie interfae. Another important hallenge is to identifythe omplexity of the math proess (from a syntax based math to a semanti math�for instane)�and toenable a user to limit the omplexity of the math in their request to `M'.4.2. Servie Semantis. Servie interations require de�nitions of ommon terms�the de�nition of om-mon units when exhanging engineering data for instane (where one servie may reports its results in miles,while the servie user undertakes its proessing in kilometres). Servie semantis are generally assumed in dis-tributed systems�where heks on the results an be made by a user. However, when servies interat diretly,it is important to ensure that the results they produe follow some prede�ned types.Servie types may be �abstrat� types�diretly supported by a servie, or �derived� types whih are obtainedby extending or ombining abstrat types. An agent therefore also publishes type information assoiated withthe servies it supports�enabling servie users (other agents) to undertake the neessary type onversions.Servie types an be based on data types supported within the servie implementation�suh as float, string,et, or they may be appliation related�suh as a distane type or a o-ordinate type. The servie typemehanism may be extended into an ontology�whih may also identify additional attributes, suh as partiularinstanes of types, axioms for transforming between types, and onstraints on types.The type mehanism is also used for disovering other servies, and for launhing speialist servies whihprovide a partiular output type. The semantis assoiated with a partiular type must also be de�ned by aservie�hene, a servie whih uses a derived type distane, must pre�x it with its servie identity. Conse-quently, servies with similar types but di�erent semantis may o-exist, and an publish this information aspart of their interfae desriptions. One example of semanti servies inlude mathematial libraries (suh as inthe MONET projet [20℄) with prede�ned ategorisation of these numeri libraries. In this ontext therefore, asearh for a numeri solver servie by a user in a partiular appliation domain would proeed by ontating onemore more broker agents and perform mathing based on problem domain, along with various non-mathematialissues suh as the user's preferenes for partiular kinds or brands of software. The motivation stems from theobservation that many sientists prefer to use servies from partiular developers, a deision often determinedby the appliation domain of the sientist. This subjetive riteria should therefore be utilised when searhingfor suitable numeri servies�and used along with the operational interfae the servie o�ers.In a typial Grid environment, multiple domain spei� ontologies are likely to o-exist. Work beingundertaken in the Gene Ontology Consortium [24℄ provides one example of a voabulary being developed to

Agent Based Semanti Grids: Researh Issues and Challenges 89support software interoperability. There are therefore likely to be a number of ommon servies (based on ageneri servies ontology), and a number of speialist servies (suh as mathematial libraries, gene lusteringsoftware et), whih an only be invoked in a limited way, and by a restrited set of other servies. Animportant hallenge in this ontext is to identify the granularity at whih these domain spei� servies shouldbe desribed, and whether advertising of servies should be restrited. Also important is to identify how serviesaross domains an be de�ned in ommon ways�for instane, the use of lustering and data analysis serviesmay be ommon in a number of di�erent domains. However, the partiular desription shemes used mayvary. Many of the onerns related to the de�nition of ontologies needs to be undertaken within the partiularsienti� ommunity involved�although ways of identifying ommon servies used by a number of di�erentommunities would be a useful undertaking.5. Senario. We illustrate the onepts outlined in this paper via a projet whih uses agents for man-aging user aess to sienti� instruments at Oak Ridge National Laboratory (ORNL). It was mainly aimed atautomating an existing manual proess of approving user requests to obtain time on a mirosope and othersienti� instruments. The projet was undertaken as part of the Materials Miroharaterization Collaboratory(MMC) [16℄ projet, involving ORNL and various other partiipants. The purpose of ollaboration within theMMC is to haraterise the mirostruture of material samples using tehniques suh as eletroni mirosopy,and X-ray and neutron di�ration. Observation, data aquisition, and analysis are performed using instrumentssuh as transmission and sanning eletroni mirosopes, and a neutron beam line. An important aspet of theMMC projet is the omputer o-ordination and ontrol of remote instrumentation, data repositories, visuali-sation platforms, omputational resoures, and expertise, all of whih are distributed at various sites aross theUS. The role of ORNL in this ollaboratory was to provide aess to, and management of experiments withinthe High Temperature Materials Laboratory [18℄. A sientists is required to omplete a pre-formatted proposaldoument (a part of this is illustrated in �gure 5.1), and pass this to a entral faility. Based on the type ofexperiment, and the instrument identi�ed, the faility selets one or more experts to evaluate the proposal. Theseletion riteria involves eonomi fators (suh as industrial impat the experiment is likely to have), tehnialfators (suh as types of materials to be analysed in the experiment), safety fators (suh as whether the userhas had radiation or general training on the instrument), and redibility fators (suh as what publiations theuser already has in the �eld, why the experiment is being requested et). These fators are weighed by theexpert, and a deision is made on whether the proposal to undertake the experiment should be granted. Theprojet was oneived to automate some of the proessing involved in reahing a deision on the initial proposal.It was deided that replaing the expert was not a viable option, as this would involve a detailed knowledgeeliitation from existing experts, and the e�ort and time involved in suh an undertaking would be signi�ant.Instead, the approah adopted was to support the deision making proess of the expert, and to automate asmuh analysis of the proposal as possible, prior to delivery of the proposal to the expert.The automation of the urrent system was ahieved using Web based forms, CGI sripts and an agentdevelopment tool. An agent is used to represent every entity involved in the system, and inludes a �User�agent, an �Expert� agent, an �Instrument� agent, an �Experiment� agent, and two utility/middle agents, a�Sheduling� agent and a �Failitator� agent. Eah of these agents perform a pre-de�ned set of servies, whihmust interat to omplete the overall request. Message exhanges between agents an relate to requests forproposal to be veri�ed, on�rmation or denial of a proposal, and a veri�ation of sheduling request. Eahagent operates as an autonomous entity, in that it manages and makes requests for information to other agents,in order to ahieve a given goal. The goals are spei�ed by the physial entities whih are being represented bythe agent�suh as a human user (for a User agent), or an instrument expert (for an Expert agent). Eah agentthen tries to �nd a set of servies to be undertaken to reah the goal it has been set. Goal ompletion is basedon eah agent hoosing an initial ation that will lead it loser to its goal, and determined by the pre-onditionsfor a given ation to be taken, and post-onditions (or e�ets) identifying the outome of a given ation on theagent itself, and its environment. The agent based approah provides the best option for modelling senarioswhere a large number of users, instruments and experts an o-exist, with eah entity ontrolling and managingits own requirements and goals.MatML for Materials Property Data [25℄ is used for speifying intrinsi harateristis of materials. Inthe DeepView system developed for the MMC [27℄, an instrument shema has been designed for instrumentproperties permitting the remote, on-line operation of mirosopes [28℄. These shemas were examined to formthe basis of a loal ontology for our system. However, re-use of existing shemas raises questions onerning

90 Omer F. Rana and Line Pouhard

Fig. 5.1. Form ompleted by the userthe purpose and sope of an ontology within the ontext of an agent-based system�as our objetive was toenable a user to aess an instrument and performane of the system was of issue [29℄. With these onstraints inmind, it was deided that the onepts in the ontology must fous on use of instruments and harateristis of(human) users rather than on properties of materials suh as hemial omposition and geometry (MatML), andinstrument harateristis suh as vendor and resolution (DeepView). For these and other reasons, a domainontology for our system was reated that did not re-use onepts in the shemas mentioned above. The domainontology is divided into four ategories: Users, Experts, Experiments and Instruments��gure 5.2 illustrates the�Experiment ontology�. Terms used within the ontology an take on a number of di�erent ontent types�suhas integers, reals, strings�and onstraints are de�ned as ranges on these basi types. An important onernwas to identify mehanisms to translate existing types supported in the form, into types that ould be diretlyinterpreted by the agents. Some attributes in the ontologies utilised by the agents required an appropriaterepresentation of �Phase" (in the Instrument ontology), the onept of �Impat� (in the Experiment ontology),and ommon ways to enode time and date information. It was also neessary to onstrain parameters assoiatedwith ontologies maintained by di�erent agents�to enable interation between agent roles.Eah agent in the system undertakes a partiular set of ations to ahieve its �role". A role is de�nedas a set of goals that need to be ompleted by an agent, in a given ontext. Hene, a User agent plays therole of an external user. In the ontext of the MMC, this involves �Creating a Proposal" and �Aepting aProposal". A role is de�ned at a higher level of abstration than method alls on objets, or sub-routine allsin soure ode. In an agent based system, a given entity (or agent) an only undertake pre-de�ned roles whihdetermine its funtion in a given soiety of other agents. Hene, a User agent in this partiular ontext annotshedule operations on a given instrument, beause it does not possess this as a role. It an make a request toa Sheduling agent to undertake suh an operation, or alternatively, to ommuniate with an Expert agent torequest a given shedule to be validated. Agents an therefore posses roles and relationships with eah otherbased on their partiular funtion in the agent soiety. It is assumed in this projet that agents annot hangeor modify their roles or servies, although they an update the information ontent of their loal repositoriesbased on interations with other agents.

Agent Based Semanti Grids: Researh Issues and Challenges 91
Experiment

Start Time

End Time

Start Date

End Date

Material

Requestor

Instrument Type

Approved

Properties

Impact

Type

Safety

Preparation

Previously Requested

UserID

Industry

Academic

Temperature

EnvironmentFig. 5.2. The �Experiment" ontology
User

Agent

Expert

Agent

Instrument

Agent

 Scheduling

Agent

Experiment

Agent

Sub-ordinate

Relationship

Peer RelationshipFig. 5.3. Co-ordination mehanism and role interation between ollaborating agents for MMC resoure alloationA User agent and an Expert agent have a peer-to-peer relationship, as eah an initiate a request to the otherone. An Instrument agent is a sub-ordinate to an Expert agent, as an Expert agent an request informationfrom an Instrument agent, but not vie versa. Roles between agents in the MMC system are illustrated in�gure 5.3. Eah agent in the system, and the partiular servies undertakes are as below:
• User Agent: This agent undertakes two basi servies: CreateProposal and AeptProposal. TheCreateProposal task involves reading a �le from disk, based on a given User ID, and initiating a proposalrequest to an Expert agent. The AeptProposal task involves verifying that the shedule given by theExpert agent is aeptable�the aeptane riteria is based on heking onstraints de�ned in theproposal with the initial request made by the User agent.
• Expert Agent: This agent is the most omplex of all, and ats as the o-ordinator. The Expert agentan undertake one of �ve di�erent servies: ReeiveProposal, RequestInstrument, ChekShedule,ConfirmShedule and ValidateRequest. ReeiveProposal involves aepting a User generated request

92 Omer F. Rana and Line Pouhardto undertake a given experiment. RequestInstrument involves verifying onstraints via the Instrumentagent, based on availability of the instrument, and whether the parameters for the requested experimentare valid for the given instrument. Only two suh parameters were identi�ed as being relevant for thisprototype�the �Operating Temperature" of the instrument, and the �Phase ID". Both of these areompared with the initial request from the User agent to on�rm that a given instrument an supportthese ranges or absolute values. The ChekShedule and Con�rmShedule involve heking onstraintson the availability of the instrument, with the availability of the expert. For the MMC, it is identi�ed asa requirement that an instrument and an expert are available over the same time period, and that thisfalls within the duration of the requested experiment. The ChekShedule task validates that suh anoverlap exists, and the Con�rmShedule task generates a message to the Sheduling agent on�rmingthe Shedule is valid. The ValidateRequest task is used by the Expert agent to on�rm that a givenrequest from a User agent does not violate any existing shedules that have already been deided. TheExpert agent ahieves this by interating with the Sheduler agent, and heking the stored shedules.
• Instrument Agent: This agent ats as a wrapper for a mirosope, and is used to identify partiularaess parameters required to request it for an experiment.
• Experiment Agent: This agent an interat with a User agent or an Expert agent to help them pre-pare an experiment. It supports the generation of proposals by a User agent, and the veri�ation orheking of these by an Expert agent. Its primary purpose is to at as a support agent for helpingformulate proposals, and help the User and Expert agents negotiate over parameters identi�ed in a pro-posal. The Experiment agent undertakes three servies: PrepareProposal, ChekProposalRequestand ValidateProposalRequest. The PrepareProposal task is ativated by a User agent, and involvesthe Experiment agent helping to omplete missing parameters in the proposal being sent to it. TheChekProposalRequest is used by an Expert agent to ensure that the parameters requested in a pro-posal are valid. The ValidateProposalRequest is used by the Experiment agent to undertake the abovetwo servies based on its loal database of fats. The database is an external program that must beprovided by the developer of the system.
• Sheduling Agent: This agent maintains a list of all valid shedules at any time, and an undertakethree servies: ReeiveRequest, ConfirmRequest and ValidateShedule. The ReeiveRequest taskinvolves aepting a request to verifying a proposal from an Expert agent. The Sheduling agent atsas a sub-ordinate of the Expert agent, and provides support to the Expert agent to reah a partiulargoal. The ValidateShedule task involves verifying the requested shedule against its database to ensurethat the requested shedule does not on�it any already assigned. The Con�rmRequest task is thenused to send a message to the given Expert agent to on�rm or deny the request.
• Failitator and Name Server Agents: These agents ats as utility agents, mapping an agent loation toits IP address (for the Name Server agent), and identifying servies that a given agent an undertake,in some respets similar to a yellow page servie (for the Failitator agent).
• Globus Gateway Agent: The Globus/OGSA gateway agent enables an Experiment agent to launh jobson remote instruments. Job management an be supported via the MatML data model. The gatewayagent also makes use of the Failitator and Name Server to loate and ommuniate with other agents.A prototype system was implemented using the Zeus agent development tools [32℄.5.1. Barriers and Disussion. Servies supported by agents need to interat with infrastruture serviesprovided through tools suh as Globus/OGSA�although this is only neessary to support exeution of sienti�odes. Agents must therefore interat with existing Grid servies via one or more gateways. Performane issuesbeome signi�ant when deploying agents to manage servies�as no diret interation between servies exist.Existing Web servies tehnologies�suh as the use of SOAP�an have signi�ant overheads, primarily due tothe HTTP transport used and the parsing of XML based messages�espeially when enoding data types alongwit the ontent (a useful study on SOAP performane an be found in [33℄). Standards suh as DIME [19℄may provide some performane improvement. Therefore, although the use of Web Servies infrastruture mayprovide an important route for a wider use of Grid infrastruture, the performane impliations introdued bysuh tehnologies still need to be overome (the sienti� odes urrently deployed via Grid middleware haveperformane as a key requirement). Although many sientists may be willing to relinquish this requirement inthe prototyping phase of their work�deploying prodution odes in this way may not be possible. Many WebServies standards are also at an early stage of development at the present time, and most experimentation

Agent Based Semanti Grids: Researh Issues and Challenges 93is still being undertaken behind �rewalls. It is also not apparent how the UDDI (servie registries) are to bemanaged, and by whom. Should there be a few �root� UDDI registries (like urrent Domain Name Servers), orshould the registration mehanism be more distributed? Some of these onerns need to be evaluated in theontext of Grid registration servies (urrently utilising Globus/OGSA), to enable more e�etive sharing of GridServies aross appliations. We also see a number of similarities between the Peer-2-Peer (P2P) approah [1℄and agent systems�as both fous on servie provision through a deentralised model of yle sharing or �lesharing. Whereas agent systems fous on the semantis of the shared servies, the fous in P2P systems is onthe e�ieny of the routing mehanism used.The use of the servie oriented approah for deploying sienti� odes also requires the delegation of ontrolto a remote servie. This is espeially true when servie aggregation is being undertaken by an agent. It istherefore important to identify how ownership is delegated in the ontext of suh a omposition proess, andhow a servie ontrat must be de�ned and enfored for the aggregate servie. One inentive for supportingsuh an aggregation of servies may be based on the onept of a �virtual eonomy� [30℄�whereby servies anhave assoiated osts of aess and deployment. Although a useful model (and one whih losely resemblesthe urrent usage of omputational resoures at national entres)�it is unlear how servies are pried, andwhat roles are neessary within suh an eonomy. Should these roles be entrally assigned and managed in thesame way as index servies are being used today, or an they be distributed aross multiple sites? Anotherlosely related issue is the types of relationships that must exist between servies within suh an eonomy�forinstane, should we be able to support the myriad di�erent �nanial trading shemes that exist in our markets,and more importantly, what enforement mehanisms need to be provided to ensure that these trading shemesare being observed.6. Conlusion. Issues in developing servie oriented Grids are outlined. We indiate why agents providea useful abstration for managing servies in this ontext, and researh hallenges that need to be addressedto make more e�etive use of agents. The need to agree upon ommon data models/ontologies is signi�-ant, and we view this as a signi�ant future undertaking to make Grids more widely deployable. The needfor partiular appliation ommunities to agree and implement ommon servie representations is thereforeimportant�as is the need to agree upon a ommon ontology for de�ning generi servies. A system for manag-ing user aess to sienti� instruments is outlined�identifying the servies supported and interations betweenagents. REFERENCES[1℄ Dejan S. Milojii, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne, Bruno Rihard, SamiRollins, Zhihen Xu, Peer-to-Peer Computing, HP Labs, Tehnial Report HPL-2002-57, 2002.[2℄ S. J. Poslad, P. Bukle, and R. Hadingham, The FIPA-OS Agent Platform: Open Soure for Open Standards, Pro-eedings of Workshop on Salability in MAS (Ed: T.Wagner and O.F.Rana), at Autonomous Agents 2000, Barelona,Spain, 2000.[3℄ David De Roure, Nik Jennings, and Nigel Shadbolt, Semanti Grids, http://www.semantigrid.org/. Last visited:September 2002.[4℄ Lu Moreau, Agents for the Grid: a Comparison with Web Servies (Part I: Transport Layer),http://iteseer.nj.ne.om/moreau02agents.html.[5℄ A. Avila-Rosas, L. Moreau, V. Dialani, S. Miles, and X. Liu, Agents for the Grid: A omparison with Web Servies(Part II: Servie Disovery), AgentCities Workshop at AAMAS, Bologna, 2002.[6℄ M. Stevens, Servie-Oriented Arhiteture Introdution, Part 1,http://softwaredev.earthweb.om/mirosoft/artile/0�10720_1010451_1,00.html[7℄ Ian Foster, Carl Kesselman, Jeffrey M. Nik, Steven Tueke, The Physiology of the Grid: An Open Grid ServiesArhiteture for Distributed Systems Integration, http://www.globus.org/researh/papers/ogsa.pdf, 2002.[8℄ Mihael N. Huhns, Agents as Web Servies, IEEE Internet Computing, pp 93�95, July/August 2002.[9℄ The TeraGrid Projet, http://www.teragrid.org/. Last visited: September 2002.[10℄ The Common Component Arhiteture Forum, http://www.a-forum.org/. Last visited: September 2002.[11℄ The Global Grid Forum, http://www.gridforum.org/. Last visited: September 2002.[12℄ A. Swartz, MusiBrainz: A Semanti Web Servie, IEEE Intelligent Systems, pp 76�77, January/February 2002.[13℄ The W3C Web Ontologies Working Group, http://www.w3.org/2001/sw/WebOnt/. Last visited: September 2002.[14℄ E. Turan and R. L. Graham, Getting the Most from Aountability in P2P, Proeedings of First International Confereneon Peer-to-Peer Computing, IEEE Computer Soiety Press.[15℄ R. Dingledine, M. Freedman, D. Molnar, The FreeHaven Projet, Massahussets Institute of Tehnology.http://www.freehaven.net/. Last visited: Otober 2002.[16℄ MMC Virtual Lab: The Materials Miroharaterization Collaboratory Projet, http://www.ornl.gov/doe2k/mm/[17℄ W3C, Semanti Web, http://www.w3.org/2001/sw/. Last visited: September 2002.

94 Omer F. Rana and Line Pouhard[18℄ Oak Ridge National Laboratory, The High Temperature Materials Laboratory�User Proposal Pakage,http://www.ms.ornl.gov/htmlhome/[19℄ H. F. Nielsen, H. Sanders, R. Butek, and S. Nash, Diret Internet Message Enapsulation (DIME), June 2002.http://msdn.mirosoft.om/library/en-us/dnglobspe/html/draft-nielsen-dime-02.txt[20℄ MONET:Mathematis on the Net, http://monet.nag.o.uk/. Last visited: September 2002.[21℄ Web Servies in WSDL, http://www.xmethods.net/. Last visited: Otober 2002.[22℄ S. Tueke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, Grid Servie Spei�ation, Open gridServie Infrastruture WG, Global Grid Forum, Draft 2, 7/17/2002. http://www.globus.org/researh/papers.html[23℄ O. F. Rana, D. Bunford-Jones, D.W. Walker, M. Addis, M. Surridge, and K. Hawik, Resoure Disovery forDynami Clusters in Computational Grids, In Proeedings of Heterogeneous Computing Workshop, at IPPS/SPDP, SanFraniso, California, April 2001, IEEE Computer Soiety Press.[24℄ The Gene Ontology Consortium, http://www.geneontology.org/. Last visited: Otober 2002.[25℄ MatML Home, http://www.eramis.nist.gov/matml/matml.htm. Last visited: Otober 2002.[26℄ Argonne National Laboratory, The Globus Projet, See Web site at: http://www.globus.org/. Last visited: Otober2002.[27℄ B. Parvin, J. Taylor, G. Cong, M. O'Keefe, M. Barellos-Hof, DeepView: A Channel for Distributed Mirosopyand Informatis, Proeedings of the ACM/IEEE SC99 Conferene, Portland, OR, November 1999.[28℄ http://vision.lbl.gov/Projets/DeepView/Instruments/Instrument.dtd. Last visited: Otober 2002.[29℄ L. Pouhard, D. Walker, A Community of Agents for User Support in a Problem-Solving Environment in Tom Wagner,Omer Rana (Eds.), Infrastruture for Agents, Multi-Agents Systems, and Salable Multi-Agent Systems, Leture Notesin Computer Siene 1887, Springer Verlag, 2001.[30℄ R. Buyya, Eonomi Paradigm for Resoure Management and Sheduling for Servie-Oriented Grid Computing,http://www.buyya.om/eogrid/. Last visited: Otober 2002.[31℄ Various papers�5th International workshop on Deeption, Fraud and Trust in Agent Soieties, at AAMAS 2002, Bologna,Italy. http://wwwist.ip.rm.nr.it/news/wstrust.htm[32℄ The Zeus Projet, See Web site at: http://193.113.209.147/projets/agents.htm, 2000.[33℄ D. Davis and M. Parashar, Lateny Performane of SOAP Implementations, Proeedings of the 2nd InternationalWorkshop on Global and Peer-to-Peer on Large Sale Distributed Systems, IEEE International Symposium on ClusterComputing and the Grid, Berlin, Germany, May 2002.Edited by: Dan Grigoras, John P. Morrison, Marin PaprzykiReeived: August 12, 2002Aepted: Deember 13, 2002

Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 95�107. http://www.spe.org ISSN 1895-1767© 2005 SWPSA FEEDBACK CONTROL MECHANISM FOR BALANCING I/O- ANDMEMORY-INTENSIVE APPLICATIONS ON CLUSTERSXIAO QIN∗ , HONG JIANG† , YIFENG ZHU† , AND DAVID R. SWANSON†Abstrat. One ommon assumption of existing models of load balaning is that the weights of resoures and I/O bu�er sizeare statially on�gured and annot be adjusted based on a dynami workload. Though the stati on�guration of these parametersperforms well in a luster where the workload an be modeled and predited, its performane is poor in dynami systems in whihthe workload is unknown. In this paper, a new feedbak ontrol mehanism is proposed to improve overall performane of a lusterwith a general and pratial workload inluding I/O-intensive and memory-intensive load. This mehanism is also shown to bee�etive in omplementing and enhaning the performane of a number of existing dynami load-balaning shemes. To apturethe urrent and past workload harateristis, the primary objetives of the feedbak mehanism are: (1) dynamially adjustingthe resoure weights, whih indiate the signi�ane of the resoures, and (2) minimizing the number of page faults for memory-intensive jobs while inreasing the utilization of the I/O bu�ers for I/O-intensive jobs by manipulating the I/O bu�er size. Resultsfrom extensive trae-driven simulation experiments show that ompared with a number of shemes with �xed resoure weights andbu�er sizes, the feedbak ontrol mehanism delivers a performane improvement in terms of the mean slowdown by up to 282%(with an average of 125%).Key words. Feedbak ontrol, I/O-intensive appliations, luster, load balaning1. Introdution. Sheduling [16, 19℄ and load balaning [1, 10℄ tehniques in parallel and distributedsystems have been investigated to improve system performane with respet to throughput and/or individualresponse time. Sheduling shemes assign work to mahines to ahieve better resoure utilization, whereasload-balaning poliies an migrate a newly arrived job or a running job preemptively to another mahines ifneeded.Sine lusters-a type of loosely oupled parallel system-have beome widely used for sienti� and ommer-ial appliations, several distributed load-balaning shemes in lusters have been presented in the literature,primarily onsidering CPU [9, 10℄, memory [1, 23℄, or a ombination of CPU and memory [26, 27℄. Althoughthese load-balaning poliies have been very e�etive in inreasing the utilization of resoures in distributedsystems (and thus improving system performane), they have ignored one type of resoure, namely disk (anddisk I/O). The impat of disk I/O on overall system performane is beoming signi�ant as more and morejobs with high I/O demand are running on lusters. This makes storage devies a likely performane bottle-nek. Therefore, we believe that for any dynami load balaning sheme to be e�etive in this new appliationenvironment, it must be made I/O-aware.Typial examples of I/O-intensive appliations inlude long running simulations of time-dependent phe-nomena that periodially generate snapshots of their state [22℄, arhiving of raw and proessed remote sensingdata [4℄, multimedia and web-based appliations. These appliations share a ommon feature in that theirstorage and omputational requirements are extremely high. Therefore, the high performane of I/O-intensiveappliations heavily depends on the e�etive usage of storage, in addition to that of CPU and memory. Com-pounding the performane impat of I/O in general, and disk I/O in partiular, the steady widening gap betweenCPU and I/O speed makes load imbalane in I/O inreasingly more ruial to overall system performane. Tobridge this gap, I/O bu�ers alloated in the main memory have been suessfully used to redue disk I/O osts,thus improving the throughput of I/O systems.This paper proposes a feedbak ontrol mehanism to dynamially on�gure resoure weights and I/Obu�ers in suh a way that the weights are apable of re�eting the signi�ane of system resoures, and thememory utilization is improved for I/O- and memory-intensive workload.The rest of the paper is organized as follows. Related work in the literature is reviewed in Setion 2. Setion 3desribes system model, and Setion 4 proposes the feedbak ontrol mehanism. Setion 5 evaluates theperformane of the mehanism. Finally, Setion 6 onludes the paper by summarizing the main ontributionsand ommenting on future diretions of this work.
∗Department of Computer Siene, New Mexio Institute of Mining and Tehnology, Soorro, New Mexio 87801.http://www.s.nmt.edu/∼xqin (xqin�s.nmt.edu). Questions, omments, or orretions to this doument may be direted tothat email address.
†Department of Computer Siene and Engineering, University of Nebraska-Linoln, Linoln, NE 68588-0115.95

96 X. Qin et al.2. Related Work. There exists a large base of exellent researh related to distributed load balaningmodels, and to name just a few: sender or reeiver-initiated di�usion [5, 24℄, the gradient model [6, 13, 14℄,and the hierarhial balaning model Pollak [24℄. Eager et al. studied both reeiver and sender initiateddi�usion, and the results of their study showed that reeiver-initiated poliies are preferable at high systemloads if the overheads of task transfer under the two poliies are omparable [5℄. The gradient model makesuse of a gradient proximity map of underloaded proessors to guide the migration of tasks from overloaded tounderloaded proessors [6, 13, 14℄. Underloaded nodes dynamially update the gradient proximity map, whereasoverloaded nodes initiate task migrations. Pollark proposed a salable approah for dynami load balaning inlarge parallel and distributed systems on a multi-level ontrol hierarhy [15℄. The hierarhial sheme ahievesigni�ant performane gain due to the parallelism in the low level of the hierarhy and the possibility toaggregate information in the higher level of the ontrol tree [15℄.The issue of distributed load balaning for CPU and memory resoures has been extensively studied andreported in the literature. For example, Harhol-Balter et al. [9℄ proposed a CPU-based preemptive migrationpoliy that was more e�etive than non-preemptive migration poliies. Zhang et al. [27℄ foused on load sharingpoliies that onsider both CPU and memory servies among the nodes of a luster. Throughout this paper, theCPU-memory-based load balaning poliy presented in [27℄ will be referred to as CM. The simulation resultsshow that the CM poliy not only improves performane of memory-intensive jobs, but also maintains the sameload sharing quality of the CPU-based poliies for CPU-intensive jobs [27℄.A large body of work an be found in the literature that addresses the issue of balaning the load of disksystems [11, 18℄. Sheuermann et al. [18℄ studied two issues in parallel disk systems, namely striping and loadbalaning, and showed their relationship to response time and throughput. Lee et al. [11℄ proposed two �leassignment algorithms that minimize the variane of the servie time at eah disk, in addition to balaningthe load aross all disks. Sine the problem of balaning the utilizations aross all disks is isomorphi to themultiproessor sheduling problem [7℄, a greedy multiproessor-sheduling algorithm, alled LPT [8℄, an beapplied to disk load balaning [11℄. Thus, LPT greedily assigns a proess to the proessor with the lightest I/Oload [11℄. Throughout this paper, we refer to the approahes that diretly apply LPT to I/O load balaning asthe IO poliy. The I/O load balaning poliies in these studies have been shown to be e�etive in improvingoverall system performane by fully utilizing the available hard drives.Very reently, three load balaning models, whih onsider I/O, CPU and memory resoures simultaneously,were presented [21, 26℄. In [21℄, a dynami load-balaning sheme, tailored for the spei� requirements of theQuestion/Answer appliation, was proposed along with a performane analysis of the approah. Xiao et al.proposed e�etive load sharing strategies by minimizing both CPU idle time and the number of page faults inlusters [26℄.However, the load-balaning models presented in [21, 26℄ are similar in the sense that the weights ofsystem resoures and bu�er size are statially on�gured with a dynamial workload. In ontrast, the newfeedbak ontrol mehanism proposed in this study judiiously on�gures these parameters in aordane withthe workload of the luster. Trae-driven simulations show that, ompared with the CM and IO poliies, theproposed sheme with a feedbak ontrol mehanism signi�antly enhanes the overall performane of a lustersystem under both memory-intensive and I/O-intensive workload.Some work has been done to make use of feedbak ontrol mehanisms in operating systems and distributedenvironments [12, 20℄. For example, Steere et al. proposed a sheduling sheme that dynamially adjusts CPUalloation and period of threads using the feedbak of an appliation's rates of progress with respet to itsinputs and/or outputs [20℄. Li and Nahrstedt studied a feedbak ontrol algorithm to support end-to-end QoSin a distributed environment [12℄. However, the feedbak ontrols of resoure weights and bu�er sizes havenot been addressed in these works. In ontrast, this paper has presented the experimental results that verifythe bene�ts of the proposed feedbak ontrol mehanism for both resoure weights and bu�er sizes in a highlydynami environment.3. System Model. We onsider the issue of feedbak ontrol method to improve the performane of loadbalaning shemes in a luster onneted by a high-speed network, where eah node not only maintains itsindividual job queue that holds jobs until they �nish exeution, but also pereives reasonably up-to-date globalload information by periodially exhanging load status with other nodes. Jobs arrive at eah node dynamiallyand independently, and share three main resoures, namely, CPU, main memory, and disk I/O. It is assumedthat a round-robin sheduling (time-sharing) is employed as the CPU sheduling poliy [9, 27℄, and the disk of

A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 97eah node is modeled as a single M/G/1 queue [11℄. Sine jobs may be delayed beause of waiting in queues(to share resoures with other jobs) or being migrated to remote nodes, the slowdown imposed on a job u isde�ned as below, slowdown(u) =
tf (u)− ta(u)

tCPU (u) + tIO(u)
(3.1)where tf (u) and ta(u) are the �nish and arrival times of the job, and tCPU (u) and timeIO(u) are the timesspent by job u on CPU and I/O, respetively, without any resoure sharing.In expression 3.1, the numerator orresponds to the total time the job spends running, aessing I/O,waiting, or migrating, and the denominator orresponds to the exeution time for job u in a dediated setting.The de�nition of slowdown is an extension of the one used in [9, 26, 27℄, where I/O aess time is not onsidered.For simpliity, we assume that all nodes are homogeneous, having idential omputing power, memory a-paity, and disk I/O performane harateristis. This simplifying assumption should not restrit the generalityof the proposed model, beause if a luster is heterogeneous, the relative load of a given job imposed on a nodewith high proessing apability is less than that imposed on a node with low performane. The proposed shememay be extended to handle heterogeneous system by inorporating a simple onversion mehanism for relativeload [16℄.We also assume the network in our model is fully onneted and homogenous in the sense that ommuniationdelay between any pair of nodes is the same. This simpli�ation of the network is ommonly used in manyload-balaning models [9, 26, 27℄. Additionally, we assume that the input data of eah job has been stored onthe loal disk of the node to whih the job is submitted. This assumption is onservative in nature, sine weonduted an experiment to show that, under I/O-intensive workload, the performane of the proposed shemeswith suh assumption is approximately 10% less e�etive than that of the shemes without it.For a newly arrived job u at a node i, load balaning shemes attempt to ship it to a remote node with thelightest load if node i is heavily loaded, otherwise job u is admitted into node i and exeuted loally. To avoiduseless migration that may potentially degrade the system performane, the load balaning shemes onsidertransferring a job only if the load disrepany between the soure node and the destination node is greater thanthe load of the newly arrived job plus the migration ost, therefore guaranteeing that eah migration improvesthe expeted slowdown of the job. If an appropriate andidate remote node is not available or the migration isevaluated to be useless, the load balaning shemes will not initiate the job migration.4. Adaptive Load Balaning Sheme.4.1. Weighted Average Load-balaning Sheme. In this setion, we present WAL, a weighted averageload-balaning sheme. Eah job is desribed by its requirements for CPU, memory, and I/O, whih are measuredby the number of jobs running in the nodes, Mbytes, and number of disk aesses per ms, respetively. For anewly arrived job u at a node i, the WAL-FC sheme balanes the system load in the following �ve steps.1. First, the load of node i is updated by adding job u's load, assigning the newborn job to the loal node.2. Seond, a migration is to be initiated if node i's load is overloaded. Node i is overloaded, if: (1) its loadis the highest; and (2) the ratio between its load and the average load aross the system is greater thana threshold, whih is set to 1.25 in our experiments. This optimal value, whih is onsistent with theresult reported in [25℄, is obtained from an experiment where the threshold is varied from 1.0 to 2.0.3. Third, a andidate node j with the lowest load is hosen. In the ase where there are more than twonodes with the lowest load, we randomly selet one node to break the tie. If a andidate node is notavailable, WAL-FC will be terminated and no migration will be arried out.4. Fourth, WAL-FC determines if job u is eligible for migration. A job is eligible for migration if itsmigration is able to potentially redue the job's slowdown.5. Finally, job u is migrated to the remote node j, and the load of nodes i and j is updated in aordanewith job u's load.WAL-FC alulates the weighted average load index in the �rst step. The load index of eah node i isde�ned as the weighted average of CPU and I/O load, thus:load(i) = WCPU × loadCPU (i) + WIO × loadIO(i), (4.1)where loadCPU (i) is CPU load de�ned as the number of running jobs and loadIO(i) is the I/O load de-�ned as the summation of the individual impliit and expliit I/O load ontributed by jobs assigned to

98 X. Qin et al.node i. WCPU and WIO are resoure weights used to indiate the signi�ane of the orresponding re-soure.It is noted that the memory load is expressed by the impliit I/O load imposed by page faults. Let lpage(i, u)and lIO(i, u) denote the impliit and expliit I/O load of job u assigned to node i, respetively. loadIO(i) anbe de�ned by equation 4.2, where Mi is a set of jobs running on node i:loadIO(i) =
∑

u∈Mi

lpage(i, u) +
∑

u∈Mi

lIO(i, u). (4.2)Let rMEM (u) denote the memory spae requested by job u, and nMEM (i) represent the memory spae inbytes that is available to all jobs running on node i. It is to be noted that the memory spae, nMEM (i), anbe on�gured in aordane with the bu�er size that is adaptively tuned by the feedbak ontrol mehanismproposed in Setion 4.2. When the node's available memory spae is larger than or equal to the memory demand,there is no impliit I/O load imposed on the disk. Conversely, when the memory spae of a node is unable tomeet the memory requirements of the jobs, the node enounters a large number of page faults, leading to a highimpliit I/O load. Impliit I/O load depends on three fators, namely, the available user memory spae, thepage fault rate, and the memory spae requested by the jobs assigned to node i. More preisely, lpage(i, u) anbe de�ned as follows, where µi denotes the page fault rate of the node, and loadMEM (i) is the memory loaddenoted as the sum of the memory requirements of the jobs running on node i.
lpage(i, u) =

{

0 if loadMEM (i) ≤ nMEM (i),
µi×

P

v∈Mi
rMEM (v)

nMEM (i) otherwise. (4.3)
lIO(i, u) in Equation 4.2 is a funtion of I/O aess rate, denoted λu), and I/O bu�er hit rate h(i, u) thatwill be disussed in Setion 4.1. Thus, lIO(i, u) is approximated by the following expression:

lIO(i, u) = λu × (1− h(i, u)). (4.4)In what follows, we quantitatively determine whether a job is eligible for migration. When a job u isassigned to node i, its expeted response time r(i, u) an be omputed in Equation 4.5.
r(i, u) = tu × E(Li) + tu × λu × E(si

disk +
Λi

disk × E((si
disk)2)

2(1− ρi
disk)

), (4.5)where tu and λu are the omputation time and I/O aess rate of job u, respetively. E(si
disk) and E((si

disk)2)are the mean and mean-square I/O servie time in node i, and ρi
disk is the utilization of the disk in node i.

E(Li) represents the mean CPU queue length Li, and Λi
disk denotes the aggregate I/O aess rate in node i.Sine the expeted response time of an eligible migrant on the soure node has to be greater than the sum ofits expeted response time on the destination node and the migration ost, job u is eligible for migration if:

r(i, u) > r(j, u) + cu, (4.6)where j represents a destination node, and cu is the migration ost (time) modeled as follows,
cu = e + du × (

1

bij
net

+
1

bi
disk

+
1

bj
disk

), (4.7)where e is the �xed ost of migrating the job and loading it into the memory on another node, bij
net denotes theavailable bandwidth of the network link between node i and j, bi

disk is the available disk bandwidth in node i.In pratie, bij
net and bj

disk an be measured by a performane monitor [3℄. Aordingly, the simulator disussedin Setion 5 estimates bij
net and bj

disk by storing the most reent values of the disk and network bandwidth. durepresents the amount of data initially stored on disk to be proessed by job u. Thus, the seond term on theright hand side of Equation 4.7 represents the migration time spent on transmitting data over the network andon aessing soure and destination disks.

A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 994.2. Problem Desription and Examples. The feedbak ontrol mehanism that aims at minimizingthe mean slowdown fouses on adjusting the resoure weights and the bu�er sizes. To help desribe the problemof �xed resoure weights and I/O bu�er sizes, we �rst present the following examples that motivate the proposedsolution to improve the system performane.Assume a luster with six idential nodes [9, 17, 26, 27℄, to whih the IO load-balaning poliy is applied.The average page-fault rate and I/O aess rate are hosen to be 2.0 No./ms (Number/Milliseond) and 2.8No./ms, respetively. The total memory size for eah node is 640 Mbyte, and other parameters of the lusterare given in Setion 5.1. We modi�ed the traes used in [9, 27℄, adding a randomly generated I/O aess rate toeah job. The traes used in [9℄ have been olleted from one workstation on six di�erent time intervals. In thetraes used in our experiments, the CPU and memory demands remain unhanged, and the memory demandof eah job is hosen based on a Pareto distribution with the mean size of 4 Mbytes [27℄.To evaluate the impat of resoure weights (see Equation 4.1) on the system performane, we onduted asimulation experiment where the resoure weights were statially set. Figure 4.1 plots the relationship betweenthe resoure weight of I/O and the mean slowdown experiened by all the jobs in the trae. The result indiatesthat the mean slowdown onsistently dereases as the I/O resoure weight inreases from 0 to 1 with inrementsof 0.2. We attributed this observation to the fat that, under I/O-intensive workload onditions, the I/Oresoure weight with a high value is able to aurately re�et the signi�ane of the disk I/O resoures in thesystem.
0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1
WIO, resource weight of disk I/O

Mean Slowdown

Fig. 4.1. Mean slowdowns as a funtion of the I/O re-soure weight. Average page-fault rate = 2.0No./ms, averageI/O aess rate = 2.8 No./ms.
0

10

20

30

40

50

60

110 160 210 260 310 360
Buffer Size (MByte)

Mean Slowdown

Fig. 4.2. Mean slowdowns as a funtion of the bu�er size.Average page-fault rate is 5.0 No./ms, average I/O aess rateis 2.3No./msThe memory of eah node is divided into two portions, with one serving as I/O bu�er and the other beingused to store working sets of running jobs. Without loss of generality, we assume that the bu�er sizes of sixnodes are idential. We onduted a seond experiment, in whih the bu�er sizes were statially on�gured.Figure 4.2 shows the bu�er size hosen in the experiment and the orresponding mean slowdowns obtained fromthe simulator.The urve in Figure 4.2 reveals that the bu�er size has a large e�et on the mean slowdowns of the IO-awarepoliy. When bu�er size is smaller than 210 MByte, the slowdown dereases with the inreasing value of thebu�er size. In ontrast, the slowdown inreases as the bu�er size inreases if the bu�er size is greater than 210MByte. Optimally, the mean slowdown of this given workload reahes the minimum value when bu�er size is210 MByte. A large bu�er size results in a high bu�er hit rate and redues I/O proessing time, thereby ausinga positive e�et on the performane. On the other hand, given a �xed value of the total available main memorysize, a larger bu�er size implies a smaller the amount of memory used to store the working sets of runningjobs, whih in turn leads to a larger number of page faults. In general, a large bu�er size may introdue bothpositive and negative e�et on the mean slowdown at the same time, and the overall performane depends onthe resultant e�et.Although the stati on�guration of resoure weights and bu�er sizes is an approah to tuning the per-formane of lusters where workload onditions an be modeled and predited, this approah performs poorlyand ine�iently for highly dynami environments where workloads are unknown at ompile time. Therefore, afeedbak ontrol algorithm is developed in this study to adaptively on�gure resoure weights and bu�er sizes.

100 X. Qin et al.4.3. A Feedbak Control Mehanism. The high level view of the arhiteture for the feedbak ontrolmehanism is presented in Figure 4.3, where the arhiteture omprises a load-balaning sheme, a resoures-sharing ontroller, and a feedbak ontroller. The resoure-sharing ontroller onsists of a CPU sheduler, amemory alloator and an I/O ontroller. The slowdown of a newly ompleted job and the history slowdownsare fed bak to the feedbak ontroller, whih then determines the required ontrol ation ∆WIO and ∆bufsize.
∆WIO > 0 means the IO-weight needs to be inreased, and otherwise the IO-weight should be dereased. Sinethe sum of WCPU and WIO is 1, the ontrol ation ∆WCPU an be obtained aordingly. Similarly, ∆bufsize > 0means the bu�er size needs to be inreased, and otherwise the bu�er size is to be dereased.

Newly
arrived jobs

Running
jobs

CPU MEM I/O

Completed job u

Resource
Sharing
controller

Load-
balancing

Feedback
Controller

 Slowdown history

slowdown(u)

 WIO, WCPU bufsize

Fig. 4.3. Arhiteture of the feedbak ontrol mehanismThe �rst goal of the feedbak ontroller is to manipulate the resoure weights in a way that makes it possibleto minimize the mean slowdown of jobs. The system model for an open loop balaner is approximately givenby the following equation, slowdown(z) = −wg(L)WIO(z) + wd(L), (4.8)where wg(L) and wd(L) are the gain fator and disturbane fator of the I/O resoure weight under workload L,respetively. The values of wg and wd largely depend on workload onditions and the applied load-balaningpoliy. Thus, wg and wd an be obtained based on simulation models for open-loop load balaners. The ontrolrule for the resoure weight is formally modeled below,
∆WIO,u = Gw(1 −

Su

Su−1

)
∆WIO,u−1

|∆WIO,u−1|
, (4.9)

WIO,u = WIO,u−1 + ∆WIO, (4.10)where ∆WIO,u is the ontrol ation, Su denotes the average slowdown, ∆WIO,u−1

|∆WIO,u−1|
indiates whether the previousontrol ation has inreased or dereased the resoure weight, and Gw denotes the ontroller gain for the I/Oresoure weight. In the experiments presented shortly in the next setion, Gw is tuned to be 0.5 for betterperformane. Let WIO,u be the resoure weight upon the arrival of job at the system, the resoure weight willbe updated to WIO,u−1 + ∆WIO. Without loss of generality, we make use of a linear model to apture theharateristis of varying workload onditions. The model is given by the following equation,slowdown(z) = −wg0(L)WIO(z) + wd0 + ∆wd, (4.11)The feedbak ontroller attempts to manipulate the resoure weights in the following three steps. First,when a job u is aomplished, the ontroller alulates the slowdown su of this newly ompleted job, Seond,

su is stored in the slowdown history table, and the average slowdown Su is omputed aordingly. Note that
Su re�ets a spei� pattern of the reent slowdowns in the dynami workload. The table size is a tunableparameter, and the oldest slowdown will be replaed by the latest one if the history table over�ows. In oursimulation model presented in Setion 5.1, the history table size is �xed to 50. Finally, the ontroller generates

A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 101ontrol ations ∆WIO,u and ∆WCPU,u, whih are based on the previous ontrol ation along with the omparisonbetween Su and Su−1. More preisely, the performane is regarded to be improved by the previous ontrol ationif Su−1 > Su, therefore the ontroller ontinues inreasing WIO if it has been inreased by the previous ontrolation, otherwise WIO is dereased. Similarly, Su−1 < Su means that the performane has been worsened sinethe latest ontrol ation, suggesting that WIO has to be inreased if the previous ontrol ation has redued
WIO, and vie versa.Besides on�guring the weights, the seond goal of the feedbak ontrol mehanism is to dynamially setthe bu�er size of eah node based on the unpreditable workload. The mehanism is aiming at improving bu�erutilizations and reduing the number of page faults by maintaining an e�etive usage of memory spae forrunning jobs and their data.We an derive the slowdown based on a model that aptures the orrelation between the bu�er size and theslowdown. For simpliity, the model an be onstruted as follows,slowdown(z) = −bg(L)bufsize(z) + bd(L), (4.12)where bg(L) and bd(L) are the bu�er size gain fator and disturbane fator under workload L, respetively.The ontrol rule for bu�er sizes is formulated as,

∆bufsizeu = Gb(Su−1 − Su)
∆bufsizeu−1

|∆bufsizeu−1|
, (4.13)where ∆bufsizeu is the ontrol ation, ∆bufsizeu−1

|∆bufsizeu−1
| indiates whether the previous ontrol ation has inreasedor dereased the resoure weight, and Cb denotes the ontroller gain. Gw is tuned to be 0.5 in order todeliver better performane. Let bufsizeu−1 be the urrent bu�er size, the bu�er size is alulated as bufsizeu =bufsizeu−1 + ∆bufsizeu.As an be seen from 4.3, the feedbak ontrol generates ontrol ation ∆bufsize in addition to ∆WCPU and

∆WIO. The adaptive bu�er size makes notieable impats on both the memory alloator and I/O ontroller,whih in turn a�et the overall performane (See Figure 4.2). The feedbak ontroller generates a ontrol ation
∆bufsize based on the previous ontrol ation along with the omparison between Su and Su−1. Spei�ally,
Su−1 > Su, means the performane is improved by the previous ontrol ation, thereby inreasing the bu�er sizeif it has been inreased by the previous ontrol ation, otherwise the bu�er size is redued. Likewise, Su−1 < Su,indiates that the latest bu�er ontrol ation leads to a worse performane, implying that the bu�er size hasto be inreased if the previous ontrol ation has redued the bu�er size, otherwise the ontroller dereases thebu�er size.The extra time spent in performing feedbak ontrol is negligible and, therefore, the overhead introdued bythe feedbak ontrol mehanism is ignored in our simulation experiments. The reason is beause the omplexityof the mehanism is low, and it takes a onstant time to make a feedbak ontrol deision.5. Experiments and Results. To evaluate the performane of the proposed load-balaning sheme witha feedbak ontrol mehanism, we have onduted a trae-driven simulation, in whih the performane metriused is slowdown that is de�ned earlier in setion 3. We have evaluated the performane of the followingload-balaning poliies:1. CM: the CPU-memory-based load-balaning poliy [27℄ without using bu�er feedbak ontroller. If thememory is imbalaned, CM assigns the newly arrived job to the node that has the least aumulatedmemory load. When CPU load is imbalane and memory load is well balaned, CM attempts to balaneCPU load.2. IO: the IO-based poliy [11℄ without using the feedbak ontrol mehanism. The IO poliy uses a loadindex that represents only the I/O load. For a job arriving in node i, the IO sheme greedily assignsthe job to the node that has the least aumulated I/O load.3. WAL: the Weighted Average Load-balaning sheme without the feedbak ontroller [21℄.4. WAL-FC: the Weighted Average Load-balaning sheme with the feedbak ontrol mehanism.5. NLB: The non-load-balaning poliy without using the feedbak ontroller.5.1. Simulation Model. Before presenting the empirial results, the trae-driven simulation model andthe workload are presented.

102 X. Qin et al.To study dynami load balaning, Harhol-Balter and Downey [9℄ implemented a trae-driven simulatorfor a distributed system with 6 nodes in whih round-robin sheduling is employed. The load balaning poliystudied in that simulator is CPU-based. Zhang et. al [27℄ extended the simulator, inorporating memoryreourses into the simulation system. Based on the simulator presented in [27℄, our simulator inorporatesthe following new features: (1) The above polies are implemented in the simulator. (2) The interonnet isassumed to be a fully onneted network. (3) A simple disk model is added into the simulator. (4) An I/O bu�ermodel, whih will be presented shortly in this setion, is implemented on top of the disk model. The traes usedin the simulation are modi�ed from [9℄[27℄, and it is assumed that the I/O aess rate is randomly hosen inaordane with a uniform distribution. We assume that the I/O aess rate of eah job is independent of thejob's memory spae requirement and CPU servie time. Although this simpli�ation de�ates any orrelationsbetween I/O requirement and other job harateristis, we an examine the impat of I/O requirement onsystem performane by on�guring the mean I/O aess rate as a workload parameter.The simulated system is on�gured with parameters listed in Table 5.1. The parameters for CPU, memory,disks, and network are hosen in suh a way that they resemble a typial luster of the urrent day.Table 5.1Data CharateristisParameters Value Parameters ValueCPU Speed 800 MIPS Page Fault Servie Time 8.1 msRAM Size 640 MByte Seek and Rotation time 8.0 msInitial Bu�er Size 160 MByte Disk Transfer Rate 40MB/Se.Context swith time 0.1 ms Network Bandwidth 1GbpsDisk aesses of eah job are modeled as a Poisson proess. Data sizes dRW
u of the I/O requests in job uare randomly generated based on a Gamma distribution with the mean size of 250 KByte and the standarddeviation of 50 Kbyte. The sizes hosen in this way re�et typial data harateristis for MPEG-1 data [2℄,whih is retrieved by many multimedia appliations.Sine bu�er an be used to redue the disk I/O aess frequeny (See Equation 4.4), we approximatelymodel the bu�er hit probability of I/O aess for job u running on node i by the following formula:

h(i, u) =

{

ru

ru+1 if dbuf (i, u) ≥ ddata(u),
ru

ru+1 ×
dbuf (i,u)
ddata(u) otherwise, (5.1)where ru is the data re-aess rate, dbuf (i, u) is the bu�er size alloated to job u, and ddata(u) is the amountof data job u retrieves from or stored to the disk, given a bu�er with in�nite size. I/O bu�er in a node is aresoure shared by multiple jobs in the node, and the bu�er size a job an obtain in node i at run time heavilydepends on the jobs' aess patterns, haraterized by I/O aess rate and average data size of I/O aesses.

ddata(u) linearly depends on aess rate, omputation time and average data size of I/O aesses dRW
u , and

ddata(u) is inversely proportional to I/O re-aess rate. dbuf (i, u) and ddata(u) are estimated using the followingtwo equations:
dbuf (i, u) =

λudRW
u dbuf (i)

∑

k∈Mi
λkdRW

u

, (5.2)
ddata(u) =

λutudRW
u

ru + 1
. (5.3)From Equations 5.1, 5.2 and 5.3, hit rate h(i, u) beomes:

h(i, u) =

{

ru

ru+1 if dbuf (i, u) ≥ ddata(u),
rudbuf (i)

tu

P

j∈Mi
λjdRW

j

otherwise. (5.4)Figure 5.1 shows the e�ets of bu�er size on the bu�er hit probabilities of the NLB, CM and IO poliies.When bu�er size is smaller than 150 Mbyte, the bu�er hit probability inreases almost linearly with the bu�er

A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 103size. The inreasing rate of the bu�er hit probability drops when the bu�er size is greater than 150 Mbyte,suggesting that further inreasing the bu�er size an not signi�antly improve the bu�er hit probability whenthe bu�er size approahes to a level at whih a large portion of the I/O data an be aommodated in thebu�er.
0

10

20

30

40

50

60

70

80

10 50 100 150 200 250 300 350 400 450

NL, R=5
CM, R=5
IO, R=5
NL, R=3
CM, R=3
IO, R=3

Buffer Size (Mbyte)

Buffer Hit Probability

Fig. 5.1. Bu�er Hit Probability as a funtion of theBu�er Size, page-fault rate is 4.0 No./ms, I/O aess rate is2.2No./ms.
0

10

20

30

40

50

60

70

80

90

7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8

NLB

IO

WAL

WAL-FC

Number of Page Fault Per Millisecond

Mean Slowdown

Fig. 5.2. Mean slowdowns as a funtion of the page-faultrate, I/O aess rate of 0.1 No./ms.5.2. Memory Intensive Workload. To simulate a memory intensive workload, the I/O aess rateis �xed to a omparatively low level of 0.1 No./ms. The page-fault rate is set from 7.2 No./ms to 8.8No./ms with inrements of 0.2 No./ms. The performane of CM is omitted, sine it is very lose to thatof WAL.Figure 5.2 reveals that the mean slowdowns of all the poliies inrease with the page-fault rate. This isbeause as I/O demands are �xed, high page-fault rate leads to a high utilization of disks, ausing longer waitingtime on I/O proessing.When the page-fault rate is high, WAL outperforms IO and NLB, and the WAL-FC has better perfor-mane than both WAL and IO. For example, the WAL poliy redues slowdowns over the IO poliy by upto 37.2% (with an average of 31.5%), and the WAL-FC poliy improves the performane in terms of meanslowdown over IO by up to a fator of 4 (400%). The reason is that the IO poliy only attempts to bal-ane expliit I/O load, ignoring the impliit I/O load that resulted from page faults. When the expliit I/Oload is low, balaning expliit I/O load does not make a signi�ant ontribution to balaning the overall sys-tem load. In addition, NLB is onsistently the worst among the six poliies, sine NLB leaves three sharedresoures extremely imbalaned and does not improve the bu�er utilization by the adaptive on�guration ofbu�er sizes.More interestingly, the poliies that use the feedbak ontrol mehanism algorithm onsiderably improvethe performane over those without employing the feedbak ontroller. For example, WAL-FC improves thesystem performane over WAL by up to 274% (with an average of 220%). Consequently, the slowdowns of NLB,WAL, and IO are more sensitive to the page-fault rate than WAL-FC.5.3. I/O-Intensive Workload. To stress the I/O-intensive workload in this experiment, the I/O aessrate is �xed at a high value of 2.8 No./ms, and the page-fault rate is hosen from 1.6 No./ms to 2.1 No./mswith inrements of 0.1No./ms. The low page-fault rates imply that, even when the requested memory spae islarger than the alloated memory spae, page faults do not our frequently. This workload re�ets a senariowhere memory-intensive jobs exhibit high temporal and spatial loality of aess. Figure 5.3 plots slowdown asa funtion of the page-fault rate. The results of IO are omitted from Figure 5.3, sine they are nearly identialto those of WAL.First, the results show that the WAL sheme signi�antly outperforms the NLB and CM poliies, suggestingthat NLB and CM are not suitable for I/O intensive workload. For example, as shown in Figure 5.3, WALimproves the performane of CM in terms of the mean slowdown by up to a fator of 9 (with an average of476%). This is beause the CM poliies only balane CPU and memory load, ignoring the imbalaned I/O loadof lusters under the I/O intensive workload.

104 X. Qin et al.
0

20

40

60

80

100

1.6 1.7 1.8 1.9 2 2.1

NLB

CM

WAL

WAL-FC

Number of Page Fault Per Millisecond

Mean Slowdown

Fig. 5.3. Mean slowdown as a funtion of the page-fault rate, I/O aess rate is 2.8 No./ms.Seond, Figure 5.3 shows that WAL-FC signi�antly outperforms WAL. For example, WAL-FC delivers aperformane improvement over WAL by up to 282% (with an average of 125%). Again, this is beause the WAL-FC sheme applies the feedbak ontroller to meet the high I/O demands by hanging the weights and the I/Obu�er sizes to ahieve a high bu�er hit probability. This result suggests that improving the I/O bu�er utilizationby using the feedbak ontrol mehanism an potentially alleviate the performane degradation resulted fromthe imbalaned I/O load.Third, the results further show the slowdowns of NLB and CM are very sensitive to the page-fault rate.In other words, the mean slowdowns of NLB and CM all inrease notieably with the inreasing value ofI/O load. One reason is, as I/O load are �xed, a high page-fault rate leads to high disk utilization, aus-ing longer waiting time on I/O proessing. A seond reason is, when the I/O load is imbalaned, the ex-pliit I/O load imposed on some node will be very high, leading to a longer paging fault proessing time.Conversely, the page-fault rate makes insigni�ant impat on the performane of WAL, and WAL-FC. Sinethe high I/O load imposed on the disks is diminished either by balaning the I/O load or by improvingthe bu�er utilization. This observation suggests that the feedbak ontrol mehanism is apable of boostingthe performane of lusters under I/O-intensive workload even in the absene of any dynami load-balaningshemes.5.4. Memory and I/O intensive Workload. The two previous setions presented the best ases forthe proposed sheme sine the workload was either highly memory-intensive or I/O-intensive but not both. Inthese extreme senarios, the feedbak ontrol mehanism provides more bene�ts to lusters than load-balaningpoliies do. This setion attempts to show another interesting ase in whih the luster has a workload withboth high memory and I/O intensive jobs. The I/O aess rate is set to 1.5 No./ms. The page fault rate isfrom 7.2 No./ms to 8.4 No./ms with inrements of 0.2 No./ms.Figure 5.4 shows that the performanes of CM, IO, and WAL are lose to one another. This is beausethe trae, used in this experiment, omprises a good mixture of memory-intensive and I/O-intensive jobs.Hene, while CM takes advantage of balaning CPU-memory load, IO an enjoy bene�ts of balaning I/Oload. Interestingly, under this spei� memory and I/O intensive workload, the resultant e�et of balaningCPU-memory load is almost idential to that of balaning I/O load.A seond observation is that, under the memory and I/O intensive workload, load-balaning shemes ahievehigher level of improvements over NLB. The reason is that when both memory and I/O demands are high, thebu�er sizes in a luster are unlikely to be hanged, as there is a memory ontention among memory-intensiveand I/O-intensive jobs. Thus, instead of �utuating widely to optimize the performane, the bu�er sizes �nallyonverge to a value that minimizes the mean slowdown.Third, inorporating the feedbak ontrol mehanism in the existing load-balaning shemes is able tofurther boost the performane. For example, ompared with WAL, WAL-FC further dereases the slowdownby up to 54.5% (with an average of 30.3%). This result suggests that, to sustain a high performane inlusters, ompounding a feedbak ontroller with an appropriate load-balaning poliy is desirable and stronglyreommend.

A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 105
0

10

20

30

40

50

60

70

80

90

100

7.2 7.4 7.6 7.8 8 8.2 8.4

NLB
CM
IO
WAL
WAL-FC

Number of Page Fault Per Millisecond

Mean Slowdown

Fig. 5.4. Mean slowdowns as a funtion of the page-faultrate, I/O aess rate of 1.5 No./ms. 0

20

40

60

80

100

120

100 150 200 250 300 350 400

IOCM,IO rate=2.6

WAL-PM,IO rate=2.6

WAL-RE,IO rate=2.6

 Average Data Size (KByte)

Mean Slowdown

Fig. 5.5. Mean slowdown as a funtion of the size ofaverage data size. Page fault rate is 0.5 No./ms, and I/O rateis 2.6 No./ms.5.5. Average Data Size. In the previous experiments, the data sizes are hosen based on typial mul-timedia appliations. It is noted that I/O load depends on I/O aess rate and the average data size of I/Orequests, whih in turn rely on the I/O aess patterns of appliations. The purpose of this experiment is tostudy the performane improvements ahieved by the feedbak ontrol mehanism for other types of applia-tions if they exhibit di�erent harateristis. Spei�ally, Figure 5.5 shows the impat of average data size onthe performane of the feedbak ontrol mehanism. The page fault rate and the I/O aess rate are set to0.5 No./ms and 2.6 No./ms., respetively. The average data size is hosen from 100 KByte to 400 KByte withinrements of 50 KByte.Figure 5.5 indiates that, for three examined load-balaning poliies, the mean slowdown inreases as theaverage data size inreases. This is beause, under irumstane that both page fault rate and I/O aessrate are �xed, a large average data size yields a high utilization of disks, ausing longer waiting times on I/Oproessing. More importantly, Figure 5.5 shows that the performane improvement gained by the feedbakontrol mehanism beomes more notieable when the average data size is large. This result suggests that theproposed approah is not only bene�ial for multimedia appliations, but also turns out to be useful for a varietyof appliations that are data intensive in nature.6. Conlusions. In this paper, we have proposed a feedbak ontrol mehanism to dynamially adjustthe weights of reourses and the bu�er sizes in a luster with a general and pratial workload that inludesmemory and I/O intensive workload onditions. The primary objetive of the proposed approah is to minimizethe number of page faults for memory-intensive jobs while improving the bu�er utilization of I/O-intensivejobs. The feedbak ontroller judiiously on�gures the weights to ahieve an optimal performane. Meanwhile,under a workload where the memory demand is high, the bu�er sizes are dereased to alloate more memoryfor memory-intensive jobs, thereby leading to a low page-fault rate.To evaluate the performane of the mehanism, we ompared the proposed WAL-FC sheme with WAL,CM, and IO. For omparison purposes, the NLB poliy that does not onsider load balaning is also simu-lated. A trae-driven simulation provides extensive empirial results demonstrating that WAL-FC is e�etivein enhaning performane of existing dynami load-balaning poliies under memory-intensive or I/O-intensiveworkload. In partiular, when the workload is memory-intensive, WAL-FC redues the mean slowdown overthe CM and IO poliies by up to a fator of 9. Further, we have made the following observations:1. When the page-fault rate is higher and the I/O rate is very low, WAL and CM outperform IO andNLB, and WAL-FC has better performane than WAL;2. When I/O demands are high, WAL and IO are signi�antly superior to CM and NLB. And WAL-FChas notieably better performane than that of IO;3. Under an I/O intensive workload, the mean slowdowns of NLB and CM all inrease notieably withI/O load. Conversely, the page-fault rate makes insigni�ant impat on the performane of IO, WAL,and WAL-FC.4. Under the workload with a good mixture of memory and I/O intensive jobs, WAL-FC ahieves highlevel of improvements over NLB.

106 X. Qin et al.5. The performane improvement gained by the feedbak ontrol mehanism beomes pronouned whenthe average data size is relatively large. Future studies in this area may be performed in severaldiretions. First, the feedbak ontrol mehanism will be implemented in a luster system. Seond, wewill study the stability of the proposed feedbak ontroller. Finally, it will be interesting to study howquikly the feedbak ontroller onverges to the optimal value in lusters.7. Aknowledgements. This work was partially supported by an NSF grant (EPS-0091900), a start-upresearh fund (103295) from the researh and eonomi development o�e of the New Mexio Institute of Miningand Tehnology, a Nebraska University Foundation grant (26-0511-0019), a UNL Aademi Program PrioritiesGrant, and a Chinese NSF 973 projet grant (2004b318201). We are grateful to the anonymous referees fortheir insightful suggestions and omments. REFERENCES[1℄ A. Aharya and S. Setia, Availability and Utility of Idle Memory in Workstation Clusters, Pro. ACM SIGMETRICS Conf.Measuring and Modeling of Computer Systems, May 1999.[2℄ E. Balafoutis, G. Nerjes, P. Muth, M. Paterakis, P. Triantafillou, and G. Weikum, Clustered Sheduling Algo-rithms for Mixed-Media Disk Workloads, Pro. Int'l Conf. on Cluster Computing, 2002.[3℄ J. Basney and M. Livny, Managing Network Resoures in Condor, Proeedings of the Ninth IEEE Symposium on HighPerformane Distributed Computing, Pittsburgh, Pennsylvania, August 2000, pp 298-299.[4℄ C.Chang, B. Moon, A. Aharya, C. Shok, A. Sussman, J. Saltz, Titan: A High-Performane Remote-sensing Database,Pro. of International Conferene on Data Engineering, 1997.[5℄ D. Eager, E. Lazowaska, and J. Zahorjan, A omparison of reeiver-initiated and sender-initiated adaptive load sharing,Proeedings of the 1985 ACM SIGMETRICS onferene on Measurement and modeling of omputer systems, Austin,Texas, 1985.[6℄ D. J. Evans and Wunbutt, Load balaning with network partitioning using host groups, Parallel omputing, 20:325-345,Marh 1994.[7℄ M. Garey and D. Johnson, Computers and Intratability: A Guide to the theory of NP-Completeness, W.H. Freeman, 1979.[8℄ R. L. Graham, Bounds on Multiproessing Timing Anomalies, SIAM J. Applied Math., Vol.17, No.2, pp.416-429, 1969.[9℄ M. Harhol-Balter and A. Downey, Exploiting Proess Lifetime Distributions for Load Balaing, ACM transation onComputer Systems, vol. 3, no. 31, 1997.[10℄ C. Hui and S. Chanson, Improved Strategies for Dynami Load Sharing, IEEE Conurreny, vol.7, no.3, 1999.[11℄ L. Lee, P. Sheauermann, and R. Vingralek, File Assignment in Parallel I/O Systems with Minimal Variane of Servietime, IEEE Trans. on Computers, Vol. 49, No.2, pp.127-140, 2000.[12℄ B. Li and K. Nahrstedt, A Control Theoretial Model for Quality of Servie Adaptations, in IEEE International Workshopon Quality of Servie, May 1998.[13℄ F.C.H. Lin and R.M. Keller, The Gradient Model Load Balaning Method, IEEE Trans. Software Engineering, vol. 13,no. 1, pp. 32-38, Jan. 1987.[14℄ F. Muniz and E.J. Zaluska, Parallel Load Balaning: An Extension to the Gradient Model, Parallel Computing, vol. 21,pp. 287-301, 1995.[15℄ R. Pollak, A Hierarhial Load Balaning Environment for Parallel and Distributed Superomputer, Pro. of the Interna-tional Symposium on Parallel and Distributed Superomputing, Fukuoka, Japan, September 1995.[16℄ X. Qin, H. Jiang, and D. R. Swanson, An E�ient Fault-tolerant Sheduling Algorithm for Real-time Tasks with PreedeneConstraints in Heterogeneous Systems, Pro. the 31st Int'l Conf. on Parallel Proessing (ICPP 2002), Vanouver, Canada,Aug 2002, pp. 360-368.[17℄ X. Qin, H. Jiang, Y. Zhu, and D. Swanson, Dynami Load Balaning for I/O-Intensive Tasks on Heterogeneous Clusters,Pro. of the 10th International Conferene on High Performane Computing (HiPC 2003), De.17-20, 2003, Hyderabad,India.[18℄ P. Sheuermann, G. Weikum, P. Zabbak, Data Partitioning and Load Balaning in Parallel Disk Systems, The VLDBJournal, pp. 48-66, July, 1998.[19℄ H. Shen, S. Lor, and P. Maheshwari, An arhiteture-independent graphial tool for automati ontention-free proess-to-proessor mapping, Journal of Superomputing, Vol. 18, No. 2, 2001, p. 115-139.[20℄ D. C. Steere, A. Goel, J. Gruenberg, et. al., A Feedbak-driven Proportion Alloator for Real-Rate Sheduling, Oper-ating Systems Designand Implementation, New Orleans, Louisiana, Feb 1999.[21℄ M. Surdeanu, D. Modovan, and S. Harabagiu, Performane Analysis of a Distributed Question/ Answering System,IEEE Trans. on Parallel and Distributed Systems, Vol. 13, No. 6, pp. 579-596, 2002.[22℄ T. Tanaka,Con�gurations of the Solar Wind Flow and Magneti Field around the Planets with no Magneti �eld: Calulationby a new MHD, Journal of Geophysial Researh, pp. 17251-17262, Ot. 1993.[23℄ G. Voelker, Managing Server Load in Global Memory Systems, Pro. ACM SIGMETRICS Conf. Measuring and Modelingof Computer Systems, May 1997.[24℄ M. Willebek-LeMair and A. Reeves, Strategies for Dynami Load Balaning on Highly Parallel Computers, IEEE Trans.Parallel and Distributed Systems, vol. 4, no. 9, pp. 979-993, Sept. 1993.[25℄ X. Wu, V. Taylor, and R. Stevens, Design and Implementation of Prophesy Automati Instrumentation and Data EntrySystem, Pro. of the 13th International Conferene on Parallel and Distributed Computing and Systems, Anaheim, CA,August 2001.

A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 107[26℄ L. Xiao, S. Chen, and X. Zhang, Dynami Cluster Resoure Alloations for Jobs with Known and Unknown MemoryDemands, IEEE Transations on Parallel and Distributed Systems, vol.13, no.3, 2002.[27℄ X. Zhang, Y. Qu, and L. Xiao, Improving Distributed Wrokload Performane by Sharing both CPU and Memory Resoures,Pro. 20th Int'l Conf. Distributed Computing Systems (ICDCS 2000), Apr. 2000.Edited by: Hong ShenReeived: February 27, 2004Aepted: June 6, 2004

AIMS AND SCOPEThe area of salable omputing has matured and reahed a point where new issues and trends require a pro-fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the presentas well as the future of parallel and distributed omputing. The journal will fous on algorithm development,implementation and exeution on real-world parallel arhitetures, and appliation of parallel and distributedomputing to the solution of real-life problems. Of partiular interest are:Expressiveness:
• high level languages,
• objet oriented tehniques,
• ompiler tehnology for parallel omputing,
• implementation tehniques and their e�-ieny.System engineering:
• programming environments,
• debugging tools,
• software libraries.Performane:
• performane measurement: metris, evalua-tion, visualization,
• performane improvement: resoure alloationand sheduling, I/O, network throughput.

Appliations:
• database,
• ontrol systems,
• embedded systems,
• fault tolerane,
• industrial and business,
• real-time,
• sienti� omputing,
• visualization.Future:
• limitations of urrent approahes,
• engineering trends and their onsequenes,
• novel parallel arhitetures.Taking into aount the extremely rapid pae of hanges in the �eld SCPE is ommitted to fast turnaroundof papers and a short publiation time of aepted papers.INSTRUCTIONS FOR CONTRIBUTORSProposals of Speial Issues should be submitted to the editor-in-hief.The language of the journal is English. SCPE publishes three ategories of papers: overview papers,researh papers and short ommuniations. Eletroni submissions are preferred. Overview papers and shortommuniations should be submitted to the editor-in-hief. Researh papers should be submitted to the editorwhose researh interests math the subjet of the paper most losely. The list of editors' researh interests anbe found at the journal WWW site (http://www.spe.org). Eah paper appropriate to the journal will berefereed by a minimum of two referees.There is no a priori limit on the length of overview papers. Researh papers should be limited to approx-imately 20 pages, while short ommuniations should not exeed 5 pages. A 50�100 word abstrat should beinluded.Upon aeptane the authors will be asked to transfer opyright of the artile to the publisher. Theauthors will be required to prepare the text in LATEX2ε using the journal doument lass �le (based on theSIAM's siamltex.lo doument lass, available at the journal WWW site). Figures must be prepared inenapsulated PostSript and appropriately inorporated into the text. The bibliography should be formattedusing the SIAM onvention. Detailed instrutions for the Authors are available on the PDCP WWW site athttp://www.spe.org.Contributions are aepted for review on the understanding that the same work has not been publishedand that it is not being onsidered for publiation elsewhere. Tehnial reports an be submitted. Substantiallyrevised versions of papers published in not easily aessible onferene proeedings an also be submitted. Theeditor-in-hief should be noti�ed at the time of submission and the author is responsible for obtaining theneessary opyright releases for all opyrighted material.

