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and Institute e-Austria Timişoara
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INTRODUCTION TO THE SPECIAL ISSUE: SIMULATION IN EMERGENT
COMPUTATIONAL SYSTEMS

With the fast development of Internet and other new technologies, new computational infrastructures and
paradigms are emerging. Emergent Computational Systems comprise Grid and P2P systems and wireless ad
hoc network among others. The development and analysis of such systems is a challenging task due to many
intrinsically complex features of these systems. Simulation appears again to be the indispensable means for
modeling, performance analysis as well as implementations and analysis of algorithms before deployment in
such systems.

This special issue follows the First International Workshop on Simulation and Modeling in Emergent Com-
putational Systems (SMECS-2008) September 8-12, 2008, Portland, Oregon, USA held in conjunction with the
2008 International Conference On Parallel Processing (ICPP-08).

The papers of the workshop presented innovative methods and techniques related to Simulation, Model-
ing and Performance Evaluation in Emergent Computational Systems. The special issue comprises 9 papers,
organized as follows.

The first paper, Recent Advances on the Simulation Models for Ad Hoc Networks: Real Traffic and Mobility
Models by Doci et al., surveys recent advances on simulation models for wireless ad hoc networks. The paper
stresses the importance of the mobility metrics in the simulation of wireless ad hoc networks.

In the second paper, A Simulation Framework for Dependable Distributed Systems, Dobre et al. present a so-
lution to evaluating the correctness and performance of various dependability-related technologies for distributed
systems using the formalism provided by the modeling and simulation domain. The proposed approach is based
on an extension proposal of the simulation model called MONARC, which is a generic simulation framework
designed for modeling large scale distributed systems.

The third paper by Doci et al., Impact of Mobility in the Connectivity of Wireless Ad Hoc Networks, presents
an approach for assessing the impact of mobility in the dynamic connectivity graph, on both nodes and edges.
The authors introduce an algorithm that computes the Maximum Node Degree, Link Durations, and Path
Durations mobility metrics for the dynamic topology connectivity graphs. Lower and upper bounds for these
mobility metrics are also provided.

In the fourth paper by Pllana et al., Automatic Performance Model Transformation From A Human-
Intuitive to a Machine-Efficient Form, the authors address the issue of the development of performance models
for programs that may be executed on large-scale computing systems. They propose a model to bridge the
gap between the performance modeling and software engineering by incorporating UML. The user specifies
graphically the performance model using UML. Then, the transformation of the performance model from the
human-usable UML representation to the machine-efficient C++ representation is done automatically. The
authors demonstrate the usefulness of their approach by modeling and simulating a real-world material science
program.

The fifth paper by Becker et al., Replay-based synchronization of time stamps in event traces of massively
parallel applications, studies the usefulness of event traces in understanding the performance behavior of message-
passing applications. This study is built on earlier work by the same authors. Here, the parallel design and its
implementation within the SCALASCA trace-analysis framework are presented.

In the sixth paper by Wu et al., Performance Analysis and Optimization of Parallel Scientific Applica-
tions on CMP Cluster Systems the authors present performance analysis in using CMP (Chip multiprocessors)
based cluster systems for large-scale scientific applications. A detailed performance analysis to identify how
applications can be modified to efficiently utilize all processors per node on CMP clusters is presented.

In the seventh paper, Baert et al., Minimization of Variance Download Times in A Distributed VOD System,
examine the problem of minimizing the variance of the download time in a particular Video on Demand System
based on Grid Delivery Network –an hybrid architecture based on P2P and Grid infrastructure. Different
heuristics to solve it in practice, and validation through simulation are provided.

In the eighth paper by Chai et al., Virtual Large-Scale Disk Based on PC Grid, the authors develop the
VLSD (Virtual Large-Scale Disk) toolkit to assist in the construction of large-scale storage using only cheap
commodity hardware and software. To simulate a typical storage system in an educational environment, which
may contain many small files, the authors built GCC on various storage systems and evaluated the performance.
The authors show that the storage system is usable even with many small files.

i
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In the last paper by Yang et al., Performance Evaluation of a Wireless Sensor Network for Mobile and
Stationary Event Cases Considering Routing Efficiency and Goodput Metrics, the authors investigate how
the sensor network performs in the case when the event node moves. They carried out the simulations for
lattice topology and TwoRayGround radio model considering AODV and DSR protocols. For the performance
evaluation, they considered two metrics: routing efficiency and goodput and they compare the simulation results
for two cases: when the event node is mobile and stationary. The simulation results have shown that the routing
efficiency for the case of mobile event node is better than the stationary event node using AODV protocol. Also,
the goodput for the mobile event node case does not change too much compared with the stationary event case
using AODV, but the goodput is not good when the number of nodes is increased.

We are grateful to all authors for submitting their papers to this special issue and to the reviewers for
their feedback to the authors. We would like to thank Marcin Paprzycki (SCPE editor-in-chief) and Alexander
Denisjuk (SCPE technical and managing editor) for the opportunity to edit this special issue and for their
timely support.

Fatos Xhafa,
Technical University of Catalonia,
Department of Languages and Informatics Systems,
C/Jordi Girona 1-3, 08034 Barcelona, Spain
fatos@lsi.upc.edu,

Leonard Barolli,
Department of Information and Communication Engineering,
Fukuoka Institute of Technology (FIT),
3-30-1 Wajiro-Higashi,
Higashi-Ku, Fukuoka 811-0295, Japan
barolli@fit.ac.jp
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RECENT ADVANCES ON THE SIMULATION MODELS FOR AD HOC NETWORKS:
REAL TRAFFIC AND MOBILITY MODELS

ARTA DOCI∗, LEONARD BAROLLI†, AND FATOS XHAFA‡

Abstract. In order to provide credible and valid simulation results it is important to built simulation models that accurately
represent the environments were ad hoc networks will be deployed. Recent research results have shown that there is a disparity
of 30% between protocol performance in real test beds and the one in simulation environments. In this paper we summarize the
recent trends on the simulation models for ad hoc networks. First, we provide a survey of the synthetic and real traffic models
used in ad hoc network simulation studies. Second, we select a representative of the most used mobility synthetic model, the real
pedestrian mobility model, and the real vehicular model (for mixed traffic). We show that the real pedestrian and real vehicular
model share common mobility characteristics: a) The transition matrix on both models illustrate that wireless nodes do not move
from one location to another at random, but they are rather based on activities (work, shopping, college, gym); b) The dynamic
membership property illustrates that nodes join and leave the simulation based on some variable distribution or patterns. Lastly,
via simulations we show that when using realistic simulation models the simulation protocol performance closer reflects with the
real test bed protocol performance.

Key words: wireless ad hoc networks, traffic model, mobility model, performance evaluations.

1. Introduction. Synthetic mobility models are mainly used to evaluate the protocol performance in
wireless networks. The synthetic mobility models [1] are very useful, since they are easy to implement and
mathematically tractable. However, the study at Uppsala University [2] shows that the wireless protocol per-
formance in real test beds drops by 30% from the ones in the simulation platforms. The main reason for the
disparity is the use of synthetic simulation models, including mobility and traffic models, which do not closely
model the environments where the wireless networks will be deployed.

Recently, we have started to see a shift on using more realistic simulation models in the simulation evalua-
tions. For example, the authors of [3] issue a ‘A call to arms: It’s time for REAL mobility models’, thus they
design and implement a more realistic pedestrian mobility model. In addition, to further improve the validity
and credibility of the simulation studies the authors of [4, 5] show that mobility and traffic are interconnected,
as well as, implement a more realistic traffic model. The studies show that under more realistic mobility and
traffic models the simulation protocol performance better reflects the protocol performance of real deployments.

In addition, more realistic vehicular mobility models are implemented [6, 7, 8, 9, 10, 11, 12]. For example, the
authors of [10] implement a more realistic vehicular model by using the publicly available TIGER (Topologically
Integrated Geographic Encoding and Referencing) database from the U.S. Census Bureau, giving detailed street
maps for the entire United States of America, and model the automobile traffic on these maps. First, the model
can be very complex, since it needs to query the database for every location. Second, the database does not
provide any speed limit information for each location. Lastly, the model makes assumptions about the speed
distribution and other pertinent parameters. Specifically, the models do not take into account mixed traffic
conditions [13, 14].

The focus of this paper is placed on the recent advances of the real traffic and mobility models for ad hoc
networks. Specifically, the paper focuses on the more realistic simulation models, which are extracted from real
user trace data on student campuses, GPS mounted devices on vehicles in city roads, and devices mounted on
traffic lights for the mixed traffic conditions. For example, the paper highlights the similarities of real mobility
models extracted from real user data for both the pedestrian and vehicular cases. In addition, it describes the
realistic traffic models.

The contributions of this paper are three fold. First, it provides a survey of synthetic and real traffic
models. Second, it shows that real mobility models for pedestrian and vehicular situations share common
mobility characteristics. Third, it shows via simulations that real simulation models produce performance
results that are closer to the real test beds evaluations, thus proposes that to improve the validity and the
credibility of the ad hoc simulation results the use of real simulation models should be the preferred models.

∗Colorado School of Mines, Colorado, USA (adoci@mines.edu). Also, Head of Wireless Research at UNYT.
†Fukuoka Institute of Technology, Fukuoka 811-0214, Japan (barolli@fit.ac.jp).
‡Technical University of Catalonia, Barcelona, Spain (fatos@lsi.upc.edu).
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2. Simulation Traffic Models. In this section we provide a survey of the synthetic simulation traffic
models that are used in ad hoc network simulation studies. The most used synthetic traffic model is the Constant
Bit Rate (CBR), which is described below. The main reason of the widespread use of the CBR is based on its
simplicity on both design and implementation. In addition, we describe the implementation and design of a
real traffic model. We show that the real traffic model suggests that traffic is not sent on constant streams, but
rather on bursts.

2.1. Synthetic Traffic Models. NS 2 views traffic as a two layer approach (as shown in Figure 2.1).
The first layer implements transport protocols, Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP), while the second layer transmits application level data. For example, FTP and Telnet are
two applications that generate traffic over TCP. On the other hand, Constant Bit Rate (CBR), Exponential,
Pareto, and Poisson are applications that can be used to generate traffic over UDP.

Fig. 2.1. Traffic Generation Process in NS 2.

Traffic modelling can be classified under two main groups. The first group is that of applications that
generate continuous traffic, namely the CBR that is the most used traffic model in ad hoc network simulation
studies [15, 16]. In the second group, there are applications that model packet arrivals under Pareto, Exponential
and Poisson Distribution [17, 18]. The latter, can be considered as applications that generate bursty traffic. We
briefly describe these models next.

2.1.1. Constant Bit Rate Model. In this model source nodes generate traffic at a constant rate that are
sent every interval ∆T seconds, which is defined by the user. For example, many sensor network applications
generate constant bit rate traffic. In most ad hoc network applications wireless nodes do not send traffic
continuously.

2.1.2. Exponential and Poisson Models. The exponential traffic model sends traffic during an ‘on’
state and does not send any traffic during the ‘idle’ state. The traffic is generated during the ‘on’ state with
the following parameters: the packet size, the traffic rate, and the burst time1.

The exponential distribution can be viewed as a Poisson process when setting the variable burst time to zero
and the variable traffic rate to a large value. In general, the packet inter-arrival times in the Poisson process are
exponentially distributed. The probability distribution function is given by Eq. (2.1) and the density function
is given by Eq. (2.2).

F (t) = 1− exp−λt, where λ is arrival rate (2.1)

f(t) = λ exp−λt . (2.2)

2.1.3. Pareto Model. The Pareto traffic model also has the ’on’ and ’idle’ states, as the exponential
traffic model. The packet arrival times of the Pareto distribution are independent and identically distributed,
which means that each arrival time has the same probability distribution as the other arrival times and all are
mutually independent. The two main parameters of the Pareto process are the shape and the scale parameter.
The probability distribution function is given by Eq. (2.3) and the density function is given by Eq. (2.4).

1The mean of the ‘on’ time that is withdrawn from an exponential distribution
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F (t) = 1−

(

b

t

)a

, where a, b ≥ 0 and t ≥ 0 (2.3)

f(t) =
aba

ta+1
for t ≥ b, (2.4)

where a is the shape parameter and b is the scale parameter.

2.2. Real Traffic Model. Real traffic models have not been used much in the simulation evaluations.
The main reason is the lack of the implementation, which are freely available to the research community. In
this section we describe RealTrafficGen [5] model, which stands for real traffic generator. RealTrafficGen is
interconnected with RealMobGen [3] mobility model and retrieves the dynamic membership of the wireless
nodes, but it also adds three new features:

1. The generated traffic is dependent on the location, thus this model introduces distributions for each
hotspot (based on real data).

2. Mobile nodes send more traffic then stationary wireless nodes, due to forwarded traffic from different
hotspots, as well as their own traffic. This is the first model that differentiates the amount of traffic
generated by the type of the node.

3. Traffic is likely to satisfy self-similarity property, rather then stationary distributions, due to diurnal
circle; it is implemented as Weibull distribution.

The model creates HotspotTrafficArray (see an example below). The first and third rows provides the
hotspot number, while the second and forth rows shows the traffic flow on the respective hotspot, which is a
Weibull distribution with parameters the shape (β) and mean (µ). For example, the Weibull distributions for
hotspot 1 and hotspot 8 are shown in Figure 2.2.

1 2 3 4
(0.013, 0.85) (0.028, 0.98) (0.019, 0.95) (0.006, 1.31)

5 6 7 8
(0.005, 1.48) (0.010, 0.74) (0.011, 0.70) (0.007, 0.18)

 

Fig. 2.2. Weibull probability distribution function for hotspot 1 and 8.

3. Mobility Models. The main characteristics of a mobility model are speed, pause distribution, and
direction of movement. In this section we describe one representative of the following simulation mobility
models: synthetic, real pedestrian, and real vehicular (mixed traffic case).

3.1. Synthetic Mobility Model. The most used synthetic mobility model is Random Walk Model
(RWM) [15]. In RWM each node is assigned a randomly distributed initial location (x0; y0). Then, each
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node randomly picks up a destination independent of their initial positions and moves toward it with speed
chosen uniformly on the interval (v0; v1). Nodes pause upon reaching each destination. The process is repeated
until the allotted simulation time is reached.

The main advantage of RWM is its simplicity. On the other hand it has two major drawbacks. First, the
direction of movement is not random. Second, the nodes do not start and remain in the simulation for the
entire simulation time.

3.2. Real Pedestrian Mobility Model. In this section we describe RealMobGen, which is a hybrid
model that is based on Dartmouth’s model of mobile network traces [22] and USC’s WWP [20] survey collected
from the students on campus. The model closely mimics the environments where ad hoc networks will likely
be deployed, since it borrows its characteristics from models derived from real user traces. Another feature of
RealMobGen, that is not existent in any other current mobility model, is the classification of nodes as stationary
(46% of the nodes) and mobile (54% of the nodes). The ratio of stationary vs. mobile nodes was borrowed from
the Dartmouth model.

The stationary nodes select a location based on a transition matrix that defines the probabilities for moving
from one point to another. Once a location is selected, a node is turned on for a time drawn from the exponential
distribution of start time for the stationary nodes. Stationary node stays at the selected location until the
allotted stationary end time. The mobile nodes, also, select a start location based on the transition matrix.
The mobile node enters the simulation at a time drawn from the mobile node start time. The node pauses at
the selected location until the allotted pause time from mobile pause time exponential distribution. After the
pause time is up, the mobile node selects the next location based on the transition matrix and moves there not
in a straight line but following data that supports movements along popular roads and turns. The mobile node
repeats the pattern ’pause-select next location - move there’ until allotted mobile simulation end time.

RealMobGen shows that wireless nodes tend to cluster around popular locations, i. e., cafeteria, gym,
classes, and library. We believe that RealMobGen is the first mobility model (we are not aware of any other
models) that implements the dynamic characteristic of wireless devices in NS 2, devices join and leave the
network at different times. RealMobGen addresses the drawbacks present in the RWM by implementing the
following new features:

Feature 1: Wireless Nodes are clustered around popular hotspots. For example, Figure 3.1 shows a snapshot
of RealMobGen with 150 nodes, which are clustered around 14 hotspots.

Fig. 3.1. 150 Nodes cluster around 14 Hotspots.
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Feature 2: Wireless Nodes posses dynamic membership. For example, Figure 3.2 shows the dynamic mem-
bership of 60 nodes.

Fig. 3.2. Dynamic Membership of 60 Nodes.

Feature 3: Nodes are classified on two flavors, namely stationary and mobile (stationary (46%)of the nodes
and mobile (54% of the nodes). The ratio of stationary vs. mobile nodes was borrowed from the
Dartmouth model.

Feature 4: Moving from one point to another is done via waypoints, instead of a straight line.

3.3. Real Vehicular Mobility Model. MixMobGen [26] is based upon the data collected by the Indian
Institute of Technology [13] and from the Battelle Memorial Institute [14]. Both data sets have automatically
collected mixed traffic data. MixMobGen is the first mobility model, we are not aware of any other one, that
presents mixed traffic conditions by realistically implementing the speed as a bimodal distribution, the direction
of movement based on a probability transition matrix, and the wireless nodes to poses the dynamic membership
property (join and leave the simulation at some random time).

3.3.1. Data Sets. The first data set [13] was collected on 17 different data sections of the national and
state highways in different parts of India, which were chosen to have a wide variation of fast vs. slow moving
vehicles. The data collected on each section involved 2 hours of a typical weekday. (Refer to Figure 3.3 for a
summary of the traffic sample size on each data section). For example, as shown in the Figure 3.3, the sample
size on data section 6 is 1, 407 vehicles.

Fig. 3.3. Number of the vehicles sampled on 17 data sections.

On each data section, different ratios of fast moving vehicles vs. slow moving vehicles were captured. The
hypothesis of the study was:

Hypothesis: Speed Data distribution on mixed traffic conditions does not follow normal distribution.

The collected data supported the hypothesis on 13 out of the 17 (77%) data sections (As shown in Figure 3.4).
For example, the red bars that represent the data sections 1, 3, 8, 12 show that the null hypothesis was rejected
on only four data sections due to the fact that data was better modeled by unimodal distribution, but supported
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on the other 13 data sections. Furthermore, the graph shows that the bimodality of the data is not correlated
to the volume of the fast vs. slow moving vehicles. For example, bimodality is supported when the ratio of slow
moving vehicles was 14% on data section 11 or as high as 31% on data sections 5, 6, and 7. Analogously, the
distribution was unimodal at low ratio of slow moving, i. e., 19% on data section 1 or at high ratio, i. e., 39%
on data section 8.

Fig. 3.4. Ratio of the Slow Moving Vehicles and the Speed Distributions.

The second data set [14] covered the Lexington area of approximately 461 square miles with a total popu-
lation of approximately 350, 000. The sample was comprised of 100 households and included data collected via
GPS mounted systems in the cars, which provides useful information for the mobility parameters that could not
be extracted from the first data set, including direction of movement, trip start times, and dynamic membership
properties.

The second data set reveals that the direction of movement is not random, but rather it is based on person’s
activities. For example, on the case of traveling on local streets the purpose of trips was classified as follow:
Work Place 10%
Social/Recreational Activity 13.8%
Eat Out 15.8%
Shopping 14.9%

In addition, it emphasizes that nodes posses dynamic membership, thus are not in the simulation during
the entire simulation time, but rather a fraction of the simulation time.

3.3.2. MixMobGen Parameters. In this section we discuss the parameters of the MixMobGen and the
implementation choices in NS 2.

Speed Distribution. Speed distribution is extracted from the first data set [13], which shows that on the
13 out of the 17 of the data sections the speed of mixed traffic is best modeled by bimodal distribution. For
example, on the Table 3.1 we show 13 data points collected at data section 6.

We assessed many distributions to graph the data, however we adopted the interpolation [27] method, which
is the process of defining a function that takes on specified values at specified points (As shown in Figure 3.5).
The figure and the study supports that the speed distribution is bimodal with the mean to be 12.5 on the first
peak and the mean to be 37.5 on the second peak.

Direction of Movement. Wireless devices are carried by humans, thus the human movements would be
the best approximation to the mobility patterns of the mobile nodes. We are aware that humans do not move
at random, but rather based on activities. The data collected on Lexington area supports that humans move
based on activities and the findings are summarized in Figure 3.6. We implemented this feature by introducing
a Transitional Destination Prob Matrix, which places a weight of 0.1 on the Shopping and Other Errands
activities, or a weight of 0.26 on the Return Home activity.

Dynamic Membership. The length of the trips, as well as, the start times of the trips were collected.
In Figure 3.7 we see that 50% of the trips were on length of [0, 9] minutes, 30% of the trips were on length of
[10, 19] minutes, 10% of the trips were on length of [20, 29] minutes, 4% of the trips were on length of [30, 39]
minutes, 2% of the trips were on length of [40, 49] minutes, and 4% of the trips were on length of [50, +] minutes.
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Table 3.1
Speed Distribution Data

Speed (kmph) Probability Density

8 8
13 52
16 33
20 8
24 6
28 33
33 36
38 44
40 26
44 18
48 2
52 3
56 2

Fig. 3.5. Shape-preserving interpolation curve on the data collected in data section 6.

In the implementation phase we introduced the array Start time of T rip, which has the percentage of
the nodes that become active at time 0 (of the simulation). For example, 27% of the nodes become active at
time 0), 5, 10, and (increments of 5 until the full hour is reached). In addition, we introduce the array the
Active time of Nodes, which presents the weights of the trip lengths.

3.3.3. Algorithm of MixMobGen. The simulation duration time (T) and the number of nodes (N) are
the inputs entered by the user. First, 11 popular locations are defined, i.e, Shopping, Errands, University, and
Work. In MixMobGen the nodes are distributed based on the weights defined on the Transitional Destination
Prob Matrix. The nodes active state is determined by the values on the arrays Start time of T rip and
Active time of Nodes. The algorithm of the MixMobGen is presented by Algorithm 1.
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Fig. 3.6. Destinations (As % of trips).

Fig. 3.7. Length of Trips.

Algorithm 1 : MixMobGen.

Input: Simulation Time (T); Number of Nodes (N);
1: Compute Transitional Destination Prob Matrix
2: Compute Start time of T rip as a function of N
3: Compute Active time of Nodes as a function of N, T
4: INITIALIZATION
5: for each node ǫ N do
6: InitialLocation from the Transitional Destination Prob Matrix
7: Speed (S) from the BimodalSpeed Distribution
8: ActiveTime from the Active time of Nodes
9: TripStartTime from Start time of T rip

10: end for
11: for each node ǫ N do
12: Select Destination (D) to move to from the Transitional Destination Prob Matrix
13: Move toward D with speed S from Initial Location
14: if upon reaching D the node is still ACTIVE then
15: Select new Destination and Speed
16: Move toward the new destination with the new speed
17: end if
18: end for
Output: Mobility Patterns File
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4. Protocol Performance Evaluations. The MixMobGen mobility was used to generate the movement
pattern of the wireless nodes. mobility. In the routing layer AODV [24] and DSR [21] were selected, since they are
the most used ones in the performance evaluations studies. The propagation model is the two-ray-ground [25].
The parameters that were not varied in the simulations were the number of nodes set to 40, simulation area
900m× 1200m, simulation time set to 900s, the IEEE 802.11 [28] as the protocol for the medium access control
(MAC) layer model.

We summarize in Table 4.1 the parameters used in the simulation.

Table 4.1
Simulation Parameters.

Parameter Value (s)
Routing AODV and DSR
MAC 802.11

Number of Nodes 40
Simulation Area 1200m× 900m
Simulation Time 900 s

Propagation Model Two-Ray-Ground
Radio Range 250 m

Traffic Constant Bit Rate
Mobility MixMobGen

In addition, the derived parameters that are calculated from the number of nodes (40); the simulation area
(900m× 1200m); and the transmission range (R=250m) are provided below (for further explanations on each
of the derived parameters we refer the reader to [29].)

Node Density: Number of nodes divided by the simulation area. In our case it is (900 × 1200)/40, thus 1
node for 27, 000m2.

Coverage Area: Area with the transmission range as radius. In our case it is Π ∗R2=196, 349m2.
Maximum Path Length: The diameter of the rectangle 900m× 1200m equals to 1500.
The network Diameter: The maximum path length divided by the transmission range, which in our case

turns out to be 6 Hops.
Network connectivity no edge effect: The coverage area by the node density, which turns out to be 7.27

Hops.

The performance metric used in this simulation evaluations is Availability, which is a performance metric
that takes into account the dynamic membership and we define it hereby.

Availability: We define Availability as the ratio between the number of packets sent by the source and the
number of packets received by the destination, while the node is active.

MixMobGen shows that nodes are clustered around the main activities and their probabilities are defined by
the Transitional Destination Prob Matrix. For example, Figure 4.1 shows the visualization of MixMobGen
on 40 nodes.

The traffic file is generated with three different sources (10, 20, 30) sources, respectively, 40 nodes, and the
rate of generating packets was set to 4 packets. Each data point represents an average of fifty runs with different
traffic and different randomly generated mobility scenarios. The results of the experiments are summarized in
Table 4.2. The results, also, include the 95% confidence intervals (CI) for validation of the experiments.

Table 4.2
Performance evaluation under MixMobGen.

Number of Availability: 95% CI: AODV Availability: 95% CI: DSR
Sources AODV 95% CI: AODV DSR 95% CI: DSR

30 55.65% 55.65 ± 4.03 56.11% 56.11 ± 4.16

20 66.64% 66.64 ± 4.22 66.48% 66.48 ± 4.68

10 68.49% 68.49 ± 4.14 70.02% 70.02 ± 4.00
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Fig. 4.1. MixMobGen on 40 Nodes.

5. Conclusions. In this paper we first described the synthetic mobility and traffic models. Specifically,
we described in detail three real simulation models, namely: RealTrafficGen, RealMobGen, and MixMobGen.
We believe that the mobility generator should adjust automatically to pedestrian mobility patterns, fast moving
traffic, and mixed traffic. Therefore, in the future plan to design Knob Mobility Generator, which is based on
the context can automatically adjust to the proper mobility model.

Furthermore, MixMobGen and RealMobGen suggest that mobility models that are extracted from real user
data posses mobility characteristics that are rather different from the synthetic mobility models. When we
evaluate the protocol performance using realistic mobility models, the performance drops significantly from the
evaluations done when using synthetic mobility models.

The realistic mobility models shed new light into the ad hoc protocol design, as well. For example, the
realistic mobility models show that nodes tend to cluster around popular locations. When the nodes are within
the cluster they tend to be less mobile, but when they are between the clusters the nodes tend to be more
mobile. However, none of the popular protocols captures this reality. In the future, we are going to address ad
hoc protocol design based from on the real data sets collected for real world scenarios.

Lastly, we believe that realistic simulation models significantly improve the credibility and validity of the
simulation models. This paper shows that when using more realistic simulation models, the protocol performance
more closely reflects the one in the real test beds. In addition, the paper points out that there are similarities
between pedestrian mobility models and mixed traffic condition mobility models. The main similarities are:

• Direction of movement: It is based on people activities.
• Dynamic Membership: Wireless Nodes join and leave the network dynamically.
• Transition Matrix : Moving from one location to another is based on weighted probabilities.

The main reason for the similarities between the simulation models are based on the fact that wireless nodes
are carried by people, thus will closely model the people behavior and movements.
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SIMULATION FRAMEWORK FOR THE EVALUATION OF DEPENDABLE
DISTRIBUTED SYSTEMS

CIPRIAN DOBRE∗, FLORIN POP†, AND VALENTIN CRISTEA‡

Abstract. The use of discrete-event simulators in the design and development of distributed systems is appealing due to their
efficiency and scalability. Their core abstractions of process and event map neatly to the components and interactions of modern-
day distributed systems and allow designing realistic simulation scenarios. MONARC, a multithreaded, process oriented simulation
framework designed for modelling large scale distributed systems, allows the realistic simulation of a wide-range of distributed
system technologies, with respect to their specific components and characteristics. In this paper we present an innovative solution
to the problem of evaluating the dependability characteristic of distributed systems. Our solution is based on several proposed
extensions to the simulation model of the MONARC simulation framework. These extensions refer to fault tolerance and system
orchestration mechanisms being added in order to asses the reliability and availability of distributed systems. The extended
simulation model includes the necessary components to describe various actual failure situations and provides the mechanisms to
evaluate different strategies for replication and redundancy procedures, as well as security enforcement mechanisms.

Key words: dependable distributed systems, grid computing, fault tolerance, simulation, performance analysis.

1. Introduction. Nowadays there is an increasing interest in large scale distributed systems, in both
academic and industrial environments. Today more than ever distributed systems represent the preferred
instruments for developing a wide range of new applications. Due to the offered technological opportunities,
the domains of usage of Grid computing in particular have been extending during the past years from scientific
to commercial applications.

Together with the extension of the application domains, new requirements have emerged for large scale
distributed systems; among these requirements, reliability, safety, availability, security and maintainability, in
other words dependability [1], are needed by more and more modern distributed applications, not only by the
critical ones. However, building dependable distributed systems is one of the most challenging research activities.
The characteristics of distributed systems make dependability a difficult problem from several points of view.
A first aspect is the geographical distribution of resources and users that implies frequent remote operations
and data transfers; these lead to a decrease in the system’s safety and reliability and make it more vulnerable
from the security point of view. Another problem is the volatility of the resources, which are usually available
only for limited periods of time; the system must ensure the correct and complete execution of the applications
even in the situations when the resources are introduced and removed dynamically, or when they are damaged.

The management of distributed systems is also complicated by the constraints that the applications and
the owners of the resources impose; in many cases there are conflicts between these constraints. For example,
an application needs a long execution time and performs database operations, while the owner of the machine
on which the application could be run only makes it available in a restricted time interval and does not allow
database operations.

Solving these issues still represents a research domain and, although numerous projects have obtained
significant results, no complete solution has been fond yet to integrate all requirements involved in obtaining a
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dependable system. The current research in this domain considers several aspects like control of complexity, early
defect detection, rigorous translation, ease of simulation, model checking, productivity gains for teams, wide
applicability [1]. It means collecting informal requirements, requirements translation, build requirement behavior
trees, making requirements integration and integrated behavior tree, and then make simulation, verification and
implementation [2]. In this paper we present a solution to evaluate the correctness and performance of various
dependability-related technologies for distributed systems using the formalism provided by the modeling and
simulation domain. Simulation is a powerful method to perform system analysis, even when the involved system
does not physically exist or if it is very expensive to use it. Our proposed solution is based on an extension
proposal of the simulation model being provided by MONARC, a generic simulation framework designed for
modeling large scale distributed systems.

As described next, no existing simulator that addresses the evaluation of distributed systems related tech-
nologies is mature enough to consider the problem of dependability evaluation in the generic sense, considering
all entities part of such systems, together with the corresponding characteristics. Our model considers the
generic aspects of a wide-range of distributed architectures, preserving their components and characteristics.
Because of this, the model can be used to validate a wide-range of dependability solutions, such as a networking
protocol that can cope with faults in transmissions or a scheduling algorithm designed to consider the case of
resource faults.

The rest of this paper is structured as follows. Section 2 presents related work to the problem of analyzing
dependable distributed systems using simulation. The next section presents the MONARC architecture and
the simulation model. Sections 4 and 5 present the proposed solutions for simulating dependable distributed
systems. Finally, in Section 6 we present some conclusions and future work.

2. Related Work. SimGrid [7] is a simulation toolkit that provides core functionalities for the evaluation
of scheduling algorithms in distributed applications in a heterogeneous, computational Grid environment. It
aims at providing the right model and level of abstraction for studying Grid-based scheduling algorithms and
generates correct and accurate simulation results.

GridSim [8] is a grid simulation toolkit developed to investigate effective resource allocation techniques
based on computational economy.

OptorSim [9] is a Data Grid simulator project designed specifically for testing various optimization tech-
nologies to access data in Grid environments. OptorSim adopts a Grid structure based on a simplification of
the architecture proposed by the EU DataGrid project.

ChicagoSim [10] is a simulator designed to investigate scheduling strategies in conjunction with data loca-
tion. It is designed to investigate scheduling strategies in conjunction with data location.

None of these projects present general solutions to modeling dependability technologies for large scale
distributed systems. They tend to focus on providing evaluation methods for the traditional research in this
domain, which up until recently targeted the development of functional infrastructures. However, lately, the
importance of dependable distributed systems was widely recognized and this is demonstrated by the large
number of research projects initiated in this domain. Our solution aims to provide the means to evaluate a
wide-range of solutions for dependability in case of large scale distributed systems.

Another issue is related to the generic evaluation of dependable distributed systems. A fault occurring in
such systems could lead to abnormal behavior of any of the system’s components. For this reason we argue
that a correct evaluation of dependability in distributed systems should provide a complete state of the entire
distributed system.

Because of the complexity of the Grid systems, involving many resources and many jobs being concurrently
executed in heterogeneous environments, there are not many simulation tools to address the general problem
of Grid computing. The simulation instruments tend to narrow the range of simulation scenarios to specific
subjects, such as scheduling or data replication. The simulation model provided by MONARC is more generic
that others, as demonstrated in [11]. It is able to describe various actual distributed system technologies,
and provides the mechanisms to describe concurrent network traffic, to evaluate different strategies in data
replication, and to analyze job scheduling procedures.

3. A taxonomy of distributed system-based simulation tools. Simulation is applied in many appli-
cation areas, one of which is the design and evaluation of parallel and distributed systems (PDSs). Simulation
tools for PDSs are then differentiated by four taxonomies [5]. Figure 3.1 provides a categorization of simulation
tools. PDS taxonomy identifies the type of target systems to be simulated; usage taxonomy illustrates how the
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tool is used; simulation taxonomy highlights the characteristics of the simulation; design taxonomy describes
the components and features of the simulation tools.

Fig. 3.1. Categorization of simulation tools.

The PDS taxonomy, presented in Figure 3.2, separates the target systems to be simulated into parallel
systems and distributed systems. A parallel system consists of multiple processors in close communication,
normally located within the same machine.

Fig. 3.2. PDS taxonomy.

A distributed system spreads out the computation among autonomous computers, which are physically
distributed in general. Each distributed computer accesses its own local memory and communicates with other
computers through networks such as the Internet. A distributed system supports both resource sharing and
load sharing, and is fault-tolerant through the replication of devices and data in separate physical locations. It
also provides a good price/performance ratio. Simulation tool can be used as a simulator or an emulator (see
Figure 3.3).

A simulator is a tool that can model and represent the actual system. Simulation runs at any speed relative
to the real world and saves information for the entire simulation to facilitate analysis of the simulated behavior
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Fig. 3.3. Usage taxonomy.

of the actual system. Conversely, an emulator is a tool that acts like the actual system. Emulation executes
like the actual system itself and is useful for accurate and reliable testing without having the real system. For
example, the Grid simulation tools described in the next sections are simulators, except MicroGrid [6], which
emulates Globus-based Grid applications.

The characteristics of the simulation highlighted by the simulation taxonomy (see Figure 3.4) consist of
three main properties. Presence of time indicates whether the simulation of a system encompasses the time
factor. A static simulation does not have time as part of the simulation, in contrast to a dynamic simulation.
Basis of value specifies the values that the simulated entities can contain. A discrete simulation has entities
only possessing one of many values within a finite range, but a continuous simulation has entities possessing
one of many values within an infinite range. Behavior defines how the simulation proceeds. A deterministic
simulation has no random events occurring, so repeating the same simulation will always return the same
simulation results. In contrast, a probabilistic simulation has random events occurring, so repeating the same
simulation often returns different simulation results.

Fig. 3.4. Simulation taxonomy.

Every simulation can be classified based on these three properties. An example of a dynamic, discrete and
probabilistic simulation is to generate a path that a data packet moves from a source host to a destination host
in a network. However, simulating the path of a missile given an initial firing velocity and fixed wind resistance
is an example of a dynamic, continuous and deterministic simulation. A chess game simulation comprises static,
discrete and probabilistic properties.

Finally the design taxonomy (Figure 3.1) categorizes simulation tools based on desired components and
features that are necessary to provide simulation of a PDS. These features and components not only provide a
framework for understanding the design of existing simulation tools, but also provide possible ways of improving
the design.

4. MONARC Architecture. MONARC is built based on a process oriented approach for discrete event
simulation, which is well suited to describe concurrent running programs, network traffic as well as all the
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stochastic arrival patterns, specific for such type of simulations [3]. Threaded objects or “Active Objects”
(having an execution thread, program counter, stack. . . ) allow a natural way to map the specific behavior of
distributed data processing into the simulation program. However, due to various optimizations considered, the
threaded implementation of the simulator can be used to experiment with scenarios consisting of thousands of
processing nodes executing a large number of concurrent jobs, as demonstrated in [12].

Fig. 4.1. The Regional center model.

In order to provide a realistic simulation, all the components of the system and their interactions were
abstracted. The chosen model is equivalent to the simulated system in all the important aspects. A first set of
components was created for describing the physical resources of the distributed system under simulation. The
largest one is the regional center (Figure 4.1), which contains a site of processing nodes (CPU units), database
servers and mass storage units, as well as one or more local and wide area networks. Another set of components
model the behavior of the applications and their interaction with users. Such components are the “Users” or
“Activity” objects which are used to generate data processing jobs based on different scenarios.

The job is another basic component, simulated with the aid of an active object, and scheduled for execution
on a CPU unit by a “Job Scheduler” object. Any regional center can dynamically instantiate a set of users or
activity objects, which are used to generate data processing jobs based on different simulation scenarios. Inside
a regional center different job scheduling policies may be used to distribute jobs to corresponding processing
nodes.

One of the strengths of MONARC is that it can be easily extended, even by users, and this is made
possible by its layered structure. The first two layers contain the core of the simulator (called the “simulation
engine”) and models for the basic components of a distributed system (CPU units, jobs, databases, networks,
job schedulers etc.); these are the fixed parts on top of which some particular components (specific for the
simulated systems) can be built. The particular components can be different types of jobs, job schedulers
with specific scheduling algorithms or database servers that support data replication. The diagram in Figure
4.2 presents the MONARC layers and the way they interact with a monitoring system. In fact, one other
advantage that MONARC have over other existing simulation instruments covering the same domain is that
the modeling experiments can use real-world data collected by a monitoring instrument such as MonALISA,
an aspect demonstrated in [13]. This is useful for example when designing experiments that are evaluating the
behavior of existing real distributed infrastructures using various assumed theoretical conditions.

Using this structure it is possible to build a wide range of models, from the very centralized to the distributed
system models, with an almost arbitrary level of complexity (multiple regional centers, each with different
hardware configuration and possibly different sets of replicated data).
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Fig. 4.2. The layers of MONARC.

The superior performance of the simulator was demonstrated in terms of experimenting with a large number
of concurrent threads, evaluation of the interrupt model and in terms of time needed to conduct simulation
experiments of large scale [11]. For example, Figure 4.3 presents the performance results of the simulator in
terms of concurrent threads. The series represents the different architectures on which the evaluation experiment
was conducted. In MONARC all the jobs being concurrently processed by the same processing node are handled
by one thread, and all the messages being concurrently generated from the same host are also managed by one
thread. The obtained results demonstrate the capability of the simulator to cope with experiments describing
distributed systems consisting of thousands of processing nodes and concurrent network links.

Fig. 4.3. Performance of the MONARC simulator in terms of concurrent threads

The maturity of the simulation model was demonstrated in previous work. For example, a number of data
replications experiments were conducted in [3], presenting important results for the future LHC (Large Hadron
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Collider) experiments, which will produce more than 1 PB (petabyte) of data per experiment and year, data
that needs to be then processed. A series of scheduling simulation experiments were presented in [3], [4] and [5].
In [5] we successfully evaluated a simple distributed scheduler algorithm, proving the optimal values for the
network bandwidth or for the number of CPUs per regional centre. In [4] the simulation model was used to
conduct a series of simulation experiments to compare a number of different scheduling algorithms.

Probably the most extensive simulation scenario is the one described in [6]. The experiment tested the
behavior of the tier architecture envisioned by the two largest LHC experiments, CMS and ATLAS. The sim-
ulation study described several major activities, concentrating on the data transfer on WAN between the T0
at CERN and a number of several T1 regional centers. The experiment simulated a number of physics data
production specific activities (the RAW data production, Production and DST distribution, the re-production
and the new DST distribution and the detector analysis activity). We simulated the described activities alone
and then combined. The obtained results indicated the role of using a data replication agent for the intelligent
transferring of the produced data. The obtained results also showed that the existing capacity of 2.5 Gbps was
not sufficient and, in fact, not far afterwards the link was upgraded to a current 40 Gbps.

5. Simulation of Failure Models in MONARC. The characteristics of large scale distributed systems
make the problem of assuring dependability a difficult issue because of several aspects. A first aspect is the
geographical distribution of resources and users that implies frequent remote operations and data transfers;
these lead to a decrease in the system’s safety and reliability and make it more vulnerable from the security
point of view. Another problem is the volatility of the resources, which are usually available only for limited
periods of time; the system must ensure the correct and complete execution of the applications even in situations
such as when the resources are introduced and removed dynamically, or when they are damaged. Another issue
relates to the management of distributed resources. In many cases these are conflicts between the constraints
that the applications and owners of the resources impose. One could consider, for example, the case when the
execution needs of an application are sometimes conflicting with the restrictions imposed by the owners of the
machines on which it should execute.

Solving these issues still represents a research domain and, although numerous projects have obtained
significant results, no complete solution has yet been found to integrate all requirements involved in obtaining
a dependable system.

The means to achieve dependability are fault prevention, fault tolerance, fault removal and fault forecast-
ing [1]. Among these fault tolerance is the most difficult to achieve because of the complexity of the distributed
systems. We consider that the simulation model of MONARC is adequate to be augmented as presented in this
paper to testing various methods, techniques and technologies related to the different phases of fault tolerance
achievement in distributed systems: error and fault detection, recovery and fault masking (redundancy) [2].
Figure 5.1 presents the components of the proposed dependable modeling layer.

The first extension to the simulation model relates to modeling faults appearing inside the modeled dis-
tributed system. In a distributed system failures can be produced at hardware level (abnormalities in the
functionality of hardware components) or software level (the middleware or application deviating from their
normal functionality or delivery of services). We propose extending the simulation model to account for both
hardware, as well as software failures, modeling their occurrences and detection, as well as recovery and masking
(redundancy) mechanisms [1].

At hardware level different distributed components can be modeled as failing: the processing unit, the
network connectivity as well as the storage devices. At software level we consider the faults occurring in a
middleware component (the scheduler behavior could be erroneous, the database server could return wrong
values, etc.) or in the higher-level distributed application (for example the jobs could fail to return correct
results). For all the modeled components being considered by the simulation model we propose adding the
mechanisms to inject faults.

The injection of faults will affect primarily the behavior of the components. In this way we will be able to
model all types of faults: crash faults, omission faults, time faults, as well as Byzantine faults [2]. In order to
cover all possible faults, we propose the use of two mechanisms, as follows.

In the first approach the user will input into the simulation model values for the MTTF (mean time to failure)
parameter in case of the various components involved in a specific simulation experiment. In the simulation
this parameter represents the basis for simulating the haphazardness stimuli coming from external and internal
sources of influence that affect the characteristics of the modeled components and is seen as a probability
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measure of fault occurrence that is supposedly computed for each component prior to its deployment in the
system.

Fig. 5.1. The layers of MONARC.

For modeling the fault injection mechanisms we will use the MTTF together with some mathematical
probability distributions (the simulation model already uses distributions such as binomial, Poisson, Gaussian,
standard uniform, exponential to implement the stochastic behavior of distributed systems). In this way, at
random intervals of time, a component will experience faulty behavior (failures), as well as possible recovery.
Regarding the failures, a component will experience complete crash (the component will not recover anymore
and will not be accessible by modeled entities), omissions (the network model will deliver only partial messages
for example) or delays (the component will experience modeled delays).

The second proposed approach considers a completely random occurrence of fault events, without the user
specifying any value. This is useful in modeling the most disruptive faults, the Byzantine failures that occur
arbitrary in the simulated system, such as in the case of transient hardware faults for example: they appear,
do the damage, and then apparently just go away, leaving behind no obvious reason for their activation in the
first place [14]. For these types of errors the simulation model will allow the resuming of the normal behavior
of the affected component, as it is usually enough to allow successful completion of its execution.

This is also useful for example when modeling the intervention of the human operator restarting or replacing
a faulty component. For modeling this behavior the user usually inputs into the simulation model a MTTR
(mean time to repair) value that, together with a probability distribution, represents the basis of a triggering
mechanism that allows the modeling of a resume operation event. In addition, in order to model a wider range
of possible fault-tolerance based scenarios, a second approach to resuming will consider that the timestamp of
the resuming event can also be based on a completely random decision.

A different faulty situation that needs to be addressed is represented by users or programs trying to gain
access to secured components.

For modeling security technologies we propose adding an extra layer that injects security problems. This
layer includes the mechanisms that are used to construct a special job that communicates with various compo-
nents in the attempt to gain access to restricted data or evaluate security technologies (single authentication,
credentials protection, interoperability with local security solutions, etc.).

6. Simulation of Dependable Distributed System Technologies using MONARC. The fault in-
jection mechanisms presented above will be used together with various fault detection and recovery mechanisms.
For that we propose the addition of an external monitoring component in the simulation model. The moni-
toring component will be responsible for receiving data of interest (such as fault occurrence triggered events),
for taking actions to update the state of the distributed system being modeled and possible inform interested
components of the events occurrences.
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For the purpose of the current proposal one of the roles of this component will be to keep track of the
resource faults in the system and generate appropriate controlling actions. For example, as described before,
based on various fault injection mechanisms, we could trigger the generation of a crash of a processing unit.
The trigger will translate in the generation of a special simulation event that will be received by the monitoring
component. Upon receive of such event the monitoring unit will remove the processing unit from the modeled
system (it will no longer be visible and all its on-going tasks will be forced to stop the state update action) and
inform all interested components of the occurrence of the event. In this approach a scheduler that is interesting
in monitoring the state of the processing unit on which it deployed a task for execution would register with
the monitoring component and, upon triggering of the crash event, will be informed of the failure so that to
take the appropriate correction actions). In this model an omission fault example is the simulation of a crushed
network link, where the monitoring unit will be responsible with generating corresponding interrupt events for
the still-running tasks that were using that modeled link.

For modeling timing faults the monitoring unit will also play an important role. In the simulation model
the boundaries of the action (start of the execution of a task, termination of a task, etc.) are modeled using
simulation events. When the monitoring unit receives a timing fault triggering event it will simply modify
termination events so that to be triggered at a later time in the future. In this way we simply change the
default behavior so that a task will not end when it was supposed to end, but sometimes later in the future.

A modeled fault-tolerant software component could then use timing checks (deadlines) to look for deviations
from the acceptable behavior. For example, the scheduler will also implement a fault-tolerant mechanism,
according to which whenever a new job is submitted the scheduler will also produce a special simulation event
that will be triggered when the timeout occurs (where by timeout we mean an amount of time dependant on
the user specification that will be triggered if the job fails to return results in due time).

The scheduler will then be interrupted by one of two actions: either the job finishes or the timeout event
occurs (which one happens faster in the simulation timeline). The same mechanisms will be implemented to
the network simulation model, a job being informed if a transfer failed to finished in a specified amount of time
(possible due to network congestion for example) in order to consider taking appropriate measures (such as
canceling the transfer for example).

We state that the described extension to MONARC’s simulation model will be useful for testing both
reactive and proactive fault tolerance existing techniques [15]. In case of the reactive fault tolerant systems
the fault monitoring systems is informed after the detection of the failure in order to start the corresponding
recovery processes. This is in concordance with the presented functionality of the proposed modeled monitoring
component. The predictive (proactive) fault tolerant systems predict a fault before its occurrence. Predictive
systems are based on the assumption that faults do show some disruptive effect on the performance of the
system [16]. Much effort has been put recently into developing proactive fault tolerant systems [17], [18]
and [19]. In our approach the user could evaluate the performance of the distributed system in the presence of
various predictive fault tolerance techniques by augmenting the monitoring component with various prediction
algorithms.

In order to allow the evaluation of a wide-range of dependability technologies, the simulation model will
also include the necessary mechanisms to allow the modeling of check-pointing or logging of the system’s state.
These mechanisms will be implemented based on the simulation events and the state of the objects used to
simulate the modeled components. For that the job interface will provide a method that, when called, will
result in the saving of the serialized objects as well as the state of the simulation on the local disk storage. This
will be useful in experiments dealing with both static and dynamic check-pointing strategies.

The simulation model will also include the evaluation of various replication and redundancy mechanisms.
The replication provides mechanisms for using multiple identical instances of the same system or subsystems and
choosing the result based on quorum. The simulation model already allows the simulation of DAG distributed
activities. This construction is also useful in modeling the replication of the jobs, where the same job would be
executed on multiple processing units and another job will be used to receive the outputs and select the correct
result. Another approach could be to model special voter jobs acting at the input of the replicated jobs and
selecting the correct results (as the one described in [15]). We propose augmenting the simulation model with
these approaches as well.

The redundancy is another characteristic that is important to be considered when evaluating dependable
distributed system strategies. The fault-tolerance techniques applicable to software, either single version of
multi-version, are based on their vast majority on the use of redundancy, on the use of resources beyond the
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minimum needed to deliver the specified services [19]. For example, a strategy to achieve reliability could be
that when a storage component fails the system would select a different replica of that storage still functioning
and query it for the data of interest. This is already possible in MONARC, as demonstrated by the experiments
described in [3]. In the experiments we describe how the simulation model already deals with replicating
database storages. We propose to add replication mechanism in case of the simulated jobs and scheduler as
well.

The simulation of security technologies also plays an important part in assessing dependable systems. We
propose adding mechanisms to evaluate various security procedures that are essential in dependable distributed
systems. These mechanisms refer to providing availability for authorized users only, confidentiality and integrity.

The networking model being provided by MONARC can be easily extended to provide the modeling of
all these aspects. The message being transferred among simulated entities can carry inside a wide-range of
information. This can be used to implement various authorization enforcement mechanisms, such as for example
certificates that are provided as input to the modeling experiments and that are automatically verified upon the
receipt of the message. We propose extending the network and job models to incorporate several such security
technologies.

We also propose adding an extra layer to the simulation model, a security layer that could be used to
simulate various security-related procedures. The security layer will provide mechanisms to encrypt the data
that could be used in conjunction with the storage components for example. It will also include various security
protocols (such as SSL and TLS for example, or group key exchange protocols) that could be used of-the-shelf
by users trying to run their own experiments in the presence of various security mechanisms.

7. Conclusions. As society increasingly becomes dependent of distributed systems (Grid, P2P, network-
based), it is becoming more and more imperative to engineer solutions to achieve reasonable levels of depend-
ability for such systems. Simulation plays an important part in the building process of dependable distributed
systems.

MONARC is a generic simulation framework designed for modeling a wide range of distributed systems
technologies, with respect to their specific components and characteristics. Its simulation model incorporates the
necessary components to model various modern-day distributed systems technologies, providing the mechanisms
to describe concurrent network traffic and to evaluate different strategies in data replication or in the job
scheduling procedures. In this paper we described a solution to simulating dependable distributed systems
using MONARC. The solution is able to model failures in distributed systems at hardware level (abnormalities
in the functionality of hardware components) or software level (the middleware or application deviating from
their normal functionality or delivery of services). We aim at extending MONARC to account for types of
failures (at hardware and software levels), modeling their occurrences and detection, as well as recovery and
masking (redundancy) mechanisms.
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IMPACT OF THE DYNAMIC MEMBERSHIP IN THE CONNECTIVITY GRAPH OF THE
WIRELESS AD HOC NETWORKS

ARTA DOCI∗, WILLIAM SPRINGER†, AND FATOS XHAFA‡

Abstract. Mobility Metrics of the connectivity graphs with fixed number of nodes have been presented in several research
studies over the last three years. More realistic mobility models that are derived from real user traces challenge the assumption of
the connectivity graph with fixed number of nodes, but they rather show that wireless nodes posses dynamic membership (nodes
join and leave the simulation dynamically based on some random variable). In this paper, we evaluate the mobility metrics of the
dynamic connectivity graph on both the nodes and the links. The contributions of this paper are two-fold. First, we introduce the
algorithm that computes the Maximum Node Degree. We show that the Maximum Node Degree, which characterizes the dynamic
membership property, impacts the connectivity mobility metrics of the Link and Path Durations of the dynamic connectivity
graphs. Second, we provide the lower and the upper bounds for these mobility metrics.

Key words: wireless ad hoc networks, mobility metrics, connectivity, simulation.

1. Introduction. Many studies have demonstrated that mobility has a significant impact on the perfor-
mance of ad hoc network protocols. Specifically, the authors of [5] provide a framework, which is helpful in
understanding how and what mobility metrics affect the protocol performance. For example, the mobility met-
rics that effect the performance are average shortest path hop count (AspHops) [11], average link durations [2]
and average path durations [13]. In addition, other path and link metrics have been proposed by the authors
of [7, 9, 15] and have been shown to effect performance. All these mobility metrics are derived from synthetic
mobility models, which face two main issues.

First, the connectivity graph of the synthetic mobility models, where the mobile nodes are the vertices
and the communication links are the edges, have been assumed to have static number of mobile nodes for the
simulation duration. The number of vertices |V | represent the order and the number of edges |E| represent the
size of the connectivity graph. In general, the running time of the algorithms are measured in terms of the
order and size of the graph, which is relatively easy to estimate when the number of nodes does not change, but
becomes a cumbersome task when the graph is dynamic on both the vertices and edges.

Second, the current implementations of the synthetic mobility models place the wireless nodes to start the
simulation at time 0 and remain in the simulation until the allotted simulation time is over. On the other hand,
real mobility models [16], which are extracted from real user traces, show that wireless nodes posses dynamic
membership, that is, they join and leave the simulation based on an exponentially distributed random variable.
Under dynamic membership of the nodes, the connectivity graph is dynamic on the number of vertices and
edges. When adding the new dimension of the dynamic membership to simulation mobility models, then the
mobility metrics need to be re evaluated under the new dimension. The focus of this paper is to assess the
mobility metrics of the dynamic connectivity graph.

Maximum Node Degree mobility metric, which represents the maximum number of neighbors for each
node (in graph theory terms it is the number of edges incident to it), can be used to account for the dynamic
membership of the wireless nodes. The contributions of this paper are:

1. Design and implement algorithms that compute the Maximum Node Degree, Average Links, and Av-
erage Path Durations mobility metrics for dynamic topology connectivity graphs.

2. Present the lower and upper bounds for the Maximum Node Degree, Link Durations, and Path Dura-
tions mobility metrics.

2. RealMobGen: A More Realistic Mobility Model. The main characteristics of a mobility model
are speed, pause distribution, and direction of movement. For example, the most used synthetic mobility model
is Random Walk Model (RWM) [3]. In RWM each node is assigned a randomly distributed initial location
(x0; y0). Then, each node randomly picks up a destination independent of their initial positions and moves
toward it with speed chosen uniformly on the interval (v0; v1). Nodes pause upon reaching each destination.
The process is repeated until the allotted simulation time is reached. There are several issues with RWM, which
are addressed in RealMobGen.
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RealMobGen is a hybrid model that is based on Dartmouth’s model of mobile network traces [10] and
USC’s WWP [6] survey collected from the students on campus. The model closely mimics the environments
where ad hoc networks will likely be deployed, since it borrows its characteristics from models derived from real
user traces. Another feature of RealMobGen, that is not existent in any other current mobility model, is the
classification of nodes as stationary (46% of the nodes) and mobile (54% of the nodes). The ratio of stationary
vs. mobile nodes was borrowed from the Dartmouth model.

The stationary nodes select a location based on a transition matrix that defines the probabilities for moving
from one point to another. Once a location is selected, a node is turned on for a time drawn from the exponential
distribution of start time for the stationary nodes. Stationary node stays at the selected location until the
allotted stationary end time. The mobile nodes, also, select a start location based on the transition matrix.
The mobile node enters the simulation at a time drawn from the mobile node start time. The node pauses at
the selected location until the allotted pause time from mobile pause time exponential distribution. After the
pause time is up, the mobile node selects the next location based on the transition matrix and moves there not
in a straight line but following data that supports movements along popular roads and turns. The mobile node
repeats the pattern ’pause-select next location - move there’ until allotted mobile simulation end time.

RealMobGen shows that wireless nodes tend to cluster around popular locations, i. e., cafeteria, gym,
classes, and library. We believe that RealMobGen is the first mobility model (we are not aware of any other
models) that implements the dynamic characteristic of wireless devices in NS 2, devices join and leave the
network at different times. RealMobGen addresses the drawbacks present in the RWM by implementing the
following new features:
Feature 1: Wireless Nodes are clustered around popular hotspots. For example, Figure 2.1 shows a snapshot

of RealMobGen with 100 nodes, which are clustered around 14 hotspots.
Feature 2: Wireless Nodes posses dynamic membership. For example, Figure 2.2 shows the dynamic mem-

bership of 60 nodes.
Feature 3: Nodes are classified on two flavors, namely stationary and mobile (stationary (46%)of the nodes

and mobile (54% of the nodes). The ratio of stationary vs. mobile nodes was borrowed from the
Dartmouth model.

Feature 4: Moving from one point to another is done via waypoints, instead of a straight line.

3. Connectivity graph and Mobility Metrics. In more realistic mobility models the connectivity
graph G = (V, E) is a dynamic graph on vertices that join and leave and edges that appear and disappear due
to mobility. In graph theory terms, when taking into account the dynamic membership of the nodes, there is
an edge between any two nodes (i, j), if the following two conditions are met:

1. Di,j ≤ R, where D is the euclidian distance between nodes (i, j) and R is the transmission range of the
wireless nodes.

2. Ii ∩ Ij 6= ∅, where I represents the active intervals of the nodes.
Thus, when interested on the mobility metrics, i. e., path and link durations, we are basically posing the

shortest path problem in the case of the dynamic topology and edges. Basically, this can be represented as
a graph with edges that are added and removed, as the vertices turn ‘on’ and ‘off’. While the method of
calculating the full graph is polynomial in the size of the input, it is quite inefficient as each movement of a node
can potentially cause n− 1 edge insertions and the same number of deletions. We can obtain better bounds by
restricting the algorithm to only processing the nodes, which are currently relevant.

In order to consider only the nodes that are relevant, first we process the dynamic membership information.
For example, consider two nodes i and j. Since all communication is instantaneous, any communication between
the nodes must occur while both nodes are turned on. If the communication is indirect, then every node that
participates in routing the messages must also be turned on during that period of time. While, we should note
that, this can be O(n) nodes in the worst case, in most cases this allows us to consider only a fraction of the
vertices of the full graph (See Section Maximum Node Degree Mobility Metric).

3.1. Dynamic Membership Graph is an Interval Graph. Given a set of n intervals (which represent
the number of wireless nodes) I = I1, I2, . . . , In, the corresponding interval graph G = (V, E) has the set of
vertexes V = v1, v2, . . . , vn and there is an edge E linking nodes (vi, vj) if and only if Ii∩Ij 6= ∅ (See Figure 3.1).
We will use the interval graphs to calculate the MaximumNodeDegree.

4. Maximum Node Degree Mobility Metric. In order to define the upper bounds of the number of
nodes that are neighbors, we formulate the problem as a coloring problem, where the goal of the algorithm is
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Fig. 2.1. 100 Nodes cluster around 14 Hotspots.

to color each interval with the minimal number of colors in such a way that no two overlapping intervals are
colored with the same color. The minimal number of colors represents the upper bound of the Maximum Node
Degree1 In Figure 4.1, we graph the dynamic membership information, as an interval graph, which is parsed
from the output of RealMobGen with 40 wireless nodes.

In this section we present the algorithm for the Maximum Node Degree. The algorithm reads each interval
and sorts them by the beginning interval times (See Figure 4.1).

The MaximumNodeDegree is derived by the GreedlyMaximumNodeDegree Algorithm (See Algorithm 2).
The input to the algorithm is the dynamic membership of the nodes, which is a series of intervals that are
determined by their beginning and ending time of active nodes. Our goal is to find all the overlapping active
time intervals. The number of overlapping intervals gives us the upper bound of the number of neighbors for
each node. We set the problem as a coloring problem. The goal is to color each interval with the minimal
number of colors in such a way that no two overlapping intervals are colored with the same color.

1The algorithm in this section is similar to independent work in the context of channel routing problem [14].
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Fig. 2.2. Dynamic Membership of 60 Nodes.

Fig. 3.1. A set of four intervals and the corresponding interval graph.

First, the algorithm reads all the intervals and sorts them by their beginning times. After it assigns to the
first interval the Color 1, the algorithm looks at the second interval, in order to figure out whether it overlaps
with any other intervals. If it overlaps, then it calculates what colors have already been used and assigns the
next available color to the interval. On the other hand, if the answer is “no”, then the algorithm assigns the
color of the overlapping interval.

Algorithm 2 : GreedyMaximumNodeDegree.

Input: Active Intervals(”TimeOn”, ”TimeOff”); (N) Intervals
1: sortedIntervals ← sortByTimeOn (Active Intervals).
2: Greedily IntervalColoring (sortedIntervals).
3: loopCounter← 1
4: colorCounter ← 1
5: ColorIntervals(sortedIntervals[loopCounter])← Colour[colorCounter].
6: repeat
7: loopCounter ← loopCounter + 1
8: nextInterval ← sortedIntervals [loopCounter].
9: if nextInterval OVERLAPS previousIntervals then

10: colorCounter ← colorCounter + 1
11: ColorIntervals(sortedIntervals[loopCounter])← (Colour[colorCounter])
12: else
13: ColorIntervals(sortedIntervals [colorCounterOfOverlapping])← (Colour[colorCounterOfOverlapping])
14: end if
15: until loopCounter ≤ N
Output: Active Intervals: (′′T imeOn′′,′′ T imeOff ′′), Interval Color

We illustrate the algorithm by running it in the same example of the 40 nodes used in the previous sections.
For example, in Table 4.1 we show the partial output of the algorithm. The table illustrates that the first
seven intervals overlap, thus the color of the intervals is incremental. On the other hand, the eighth interval
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Fig. 4.1. Dynamic Membership Graph on 40 nodes: Sorted by beginning interval times.

Table 4.1
The partial output of the Algorithm GreedyMaximumNodeDegree.

Time node turns “ON” Time node turns “OFF” Assigned Interval Color

1.28239834 874.2507994 1
9.112384965 35.76696803 2
12.33443828 206.6781021 3
13.96709987 116.2303641 4
15.42727166 212.4065595 5
22.61315476 686.9883725 6
28.87034892 349.2144535 7
39.14919133 269.6973103 2

defined by (39.14919133, 269.6973103) does not overlap with the second one (9.112384965, 35.76696803), thus
gets assigned the same color (Color 2).

The algorithm GreedyMaximumNodeDegree falls in the greedy class of the algorithms, since it takes the
best immediate, or local, solution while finding a global one. The global solution represents the upper bound of
the node neighbors degree, while the average of the local optimum(s) and the global one provides us with the
average node neighbors degree. It can be shown that the algorithm is optimal (following a well known result
from greedy scheduling algorithms [14]).

So far, we have provided the algorithm for the upper bounds of the Maximum Node Degree mobility metric.
Now, we will derive the lower bounds for the metric. The input to the algorithm for the lower bounds is the
Active Intervals: (′′T imeOn′′,′′ T imeOff ′′) and the Interval Color. For each color from the Interval Color,
we compute the pairwise Euclidian distance of the nodes that belong to that color. If the distance is greater
than the transmission range, then the nodes are not neighbors. Else, the nodes are neighbors, thus we increment
the MaximumNodeDegree counter for this pair of nodes. The algorithm is summarized below:

INPUT Active Intervals: (′′T imeOn′′,′′ T imeOff ′′), Interval Color
For each Color from the Interval Color do

• Compute the pairwise Euclidian distance of the nodes that belong to that color.
• If Di,j ≤ R, increment the MaximumNodeDegree counter for this pair of nodes.
• Else, process to the next pair of nodes.

We should mention that in NS 2, in order to maintain the lower bounds over the entire simulation time the
snapshot of the network should be taken every 0.5s and compute the metric for each snapshot. The average of
the metric should be computed in the and over the entire simulation time and used as the lower bound of the
average maximum node degree.

5. Link and Path Durations Mobility Metrics. We make use of dynamic programming to compute
the mobility metrics of link and path durations. In order to compute these metrics, we make optimal solutions
sequentially during the simulation, thus ensuring a global solution in the continuous time. In this section again
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we use the fact that ad hoc network simulations evolve with time; thus, to compute the upper and lower bounds
of link and path durations over the entire simulation time we take a snapshot of the network every 0.5s and
compute the metrics for each snapshot. Then, we average the results of all the individual snapshots and present
the average Maximum Node Degree over the entire simulation. For example, if the simulation time is 900s,
then the first step is to divide the simulation time in small time intervals (for illustration purposes we selected
to divide it into 0.5s time intervals) and take the snapshot of the network for each time interval, which results
into 900s

0.5s
= 1800snapshots.

First, we present the algorithm that provides the lower bounds for the path duration metric. So far, the
research on this area considers the graph static on the number of nodes. Therefore, the run time of the shortest
path(s) on N nodes for each snapshot is O(V 3) (over the simulation for the 900s simulation time it will be
1800 ∗O(V 3) (where |V | = N).

In this section we improve the algorithm complexity to O((V ∗)2logV ∗ + V ∗E∗) for each snapshot (V ∗ rep-
resents the active nodes only and E∗ represents the active edges for each snapshot, thus both are dynamic).
The algorithm takes as input the dynamic membership of the nodes, which is represented by Active Inter-
vals(“TimeOn”, “TimeOff”). On each snapshot we include only the nodes that are active at that time, thus
allowing us to perform the algorithm only for those nodes adjacent to the previously selected nodes [8]. In this
paper we implemented Johnson’s sequential single-source shortest paths algorithm (As shown in Algorithm 3).

Algorithm 3 : JohnsonSingleSourceShortestPaths.

Input: Active Vertices;Active Edges;s
1: PriorityQueue=ActiveVertices
2: for all vǫActiveV ertices do
3: l[v]⇐∞
4: end for
5: l[s]⇐ 0
6: while PriorityQueue 6= 0 do
7: u⇐ findminimum(PriorityQueue)
8: for each vǫAdjacent[u] do
9: if (vǫPriorityQueue) and (l[u] + w(u, v) < l[v])) then

10: l[v]⇐ l[u] + w(u, v)
11: end if
12: end for
13: end while
Output: ShortestPathsMatrix

Let’s illustrate the output of the algorithm through an example. Let’s assume that we are given the
undirected graph and its weights (See Figure 5.1).

We run the algorithm JohnsonSingleSourceShortestPaths, which outputs the matrix

ShortestPathsMatrix =

















0 53 53 45 21 82
53 0 51 66 32 40
53 51 0 15 32 29
45 66 15 0 36 38
21 32 32 36 0 61
82 40 29 38 61 0

















.

In the implementation phase we designed matrix multiplication as addition, while the addition as a mini-
mization operators. In addition, the product of adjacency matric with itself returns shortest pair of length 2
for any pair of nodes. Thus, to get the n shortest paths we compute by doubling powers of the Adjacency,
Adjacency2, Adjacency4,. . . Adjacencyn. Furthermore, we have added the parallel implementation of Johnson’s
Algorithm, which extracts simultaneously p nodes from the priority queue. Each of the nodes will update the
neighbors costs, as well as, augment to the shortest path. The improvement with the parallel algorithm is
|V ∗|

p
∗ log |V ∗|

p
on p processors for each snapshot.

The Link Durations is computed by the algorithm LinkDurations ( See Algorithm 4).
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Fig. 5.1. Illustrate all-pair shortest path algorithm.

Algorithm 4 : LinkDurations.

Input: Active Vertices;Active Edges;
1: for all vǫActiveV ertices do
2: for each vǫAdjacent[u] do
3: if (voverlapsu) and (D(u, v) < R)) then
4: link[u, v]⇐ OverlapT ime[u, v]
5: end if
6: end for
7: end for

Output: LinkDurationsMatrix

So far in this section, we have provided the lower bounds for the Link and Path durations mobility
metric. In order to get the upper bounds of the maximum node degree the algorithm takes as input the
GreedyMaximumNodeDegree algorithm’s output. For each overlapping interval we compute the amount of
the time they overlap. The overlapping time represents the link durations between the two wireless nodes. We
repeat the computation until there are no more overlapping intervals. For the path durations we compute all
the possible paths of the overlapping intervals and add the corresponding link durations. Lastly, we average all
the individual snapshot results and present the average Link and Path Durations over the entire simulation.

6. Case Study: Efficiency using Maximum Node Degree. In order to demonstrate how to use the
Maximum Node Degree mobility metric to improve algorithm efficiency we illustrate it by a case study that is
the incentive protocols in ad hoc networks.

6.1. Incentive Ad Hoc Protocols. Ad hoc networks are self-organizing and multi-hop networks with
no central authority. Thus, every aspect of the configuration and operation of an ad-hoc network is distributed.
Another characteristic is that nodes are power and energy constrained. Thus, each node running a distributed
protocol must make its own decisions (possibly relying on information from other nodes). Those decisions
maybe constrained by the rules or algorithms of a protocol, but ultimately each node would have some leeway
in setting parameters or changing the mode of operation. These nodes are autonomous agents, making decisions
about transmit power, packet forwarding, back off time, and so on.

In the presence of the selfish nodes, the goal of each wireless device is to maximize its welfare: WELFARE =
Profit−Costs, where profit is the payments received for forwarding traffic and the costs are the incurred energy
loss of the node by transmitting packets for other nodes and sending its own traffic; and the payments to others
that forwarded its own traffic. On the other hand the goal of the incentive protocol designer is to provide
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Table 6.1
RealMobGen Simulation Parameters.

Parameter Value

Simulation Duration 900 s
Simulation Area 900× 1200 m
Number of Hotspots 14
Number of Nodes (nn) nn ∈ (40, 60, 90)

incentives to the wireless nodes to relay traffic, such that nodes will have no incentives to deviate from the
protocol, since doing so will not bring them a higher welfare.

In the presence of selfish nodes most of the proposed protocols are based on the well known Vickrey-Clarke-
Groves (VCG) mechanism. Below we describe one such protocol based on VCG. Vickery auction is most familiar
because it is the foundation of eBay’s auction design. In the Vickrey auction the high bidder wins, but pays
the second-highest bid. This is why the Vickrey auction is called a second-price auction: the price is not the
highest bid, but the second-highest bid. Desirable properties of auction protocols are given in [12], which include
Strategy-Proofness, Pareto Efficiency, Individual Rationality, and Budget-Balance.

In [1, 4, 17] the authors propose incentive protocols that ensure that the participating wireless nodes will
have no reason to deviate from the protocol, since doing so will not bring them a higher welfare. For example,
in [1] the authors propose the Ad-Hoc VCG protocol, which is a reactive routing protocol that achieves the
design objectives of truthfulness. Reactive protocols seek to set up routes on-demand, thus topology information
is only transmitted by nodes on-demand. In this protocol vertexes represent the nodes and weighted directed
edges represent the payments an emitting node has to receive. Nodes are awarded payments for forwarding a
message, thus cover the cost for forwarding a unit-size packet: Payment = ci ∗ P emit, where ci is the cost-of
energy of $/Watt and P emit is emission signal strength in watt.

Payment = DeclaredCost + (LCPwiththenode − LCPwithoutthenode). (6.1)

The protocol can be thought as it is run on two phases. Firstly, route discovery, where nodes communicate to
destination P emit and ci. Then, the destination computes Lowest Cost Path (LCP). Secondly, data transmission,
packets are forwarded along the shortest path route and payments are made to the intermediate nodes.

The algorithm complexity for the proposed protocols [1, 17] is O(N3), for each time snap of the network
during simulation time. In [4] the authors try to reduce the complexity to O(M2 ∗ d), where d is the diameter
and M is some upper bound for the node degree. However, the value of M was not computed. We computed M
by using the GreedyMaximumNodeDegree Algorithm. Next, we present the efficiency introduced by taking
into account the value of M, which is the maximum node degree.

6.2. Efficiency. We propose the metric Efficiency , as a metric to evaluate the gains in the algorithm
complexity of incentive protocols.

In this section, we run the GreedlyDynamicMembership with several scenarios. The scenarios are gener-
ated using RealMobGen mobility model. The inputs to the RealMobGen are the simulation duration set to 900
seconds; simulation area of 900 × 1200 meters; number of hotspots set to 14, while the number of nodes was
varied 40, 60, 100 (the parameters are summarized in Table 6.1).

For each set of nodes, we run the simulation 10 times and present the results in Table 6.2. We define a new
metric, namely Efficiency, that calculates the improvement of real mobility metric algorithms over the synthetic
ones, i. e., in terms of relevant comparisons (See Eq.( 6.2)).

Efficiency =

(
P

T
MaxNodeDegree

T

N

)

∗ 100. (6.2)
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For example, from the table we have the Efficiency for 40, 60, 100 number of nodes to be respectively
54.75, 54.33, 52.30, which demonstrates that we need to compare only half of the nodes, instead of the full graph
when computing the mobility metrics (N2).

Table 6.2
Number of necessary comparisons on 40, 60, 100 nodes.

MaxNodeDegree on 40 Nodes MaxNodeDegree on 60 Nodes MaxNodeDegree on 100 Nodes

24 33 50
21 27 55
16 28 49
25 35 55
21 32 53
25 34 55
20 37 48
23 32 51
21 29 54
23 39 53

Efficiency = 54.75% Efficiency = 54.33% Efficiency = 52.30%

7. Conclusions. In this paper we demonstrated that when introducing dynamic topology in wireless adhoc
networks, the current mobility metrics need to be re evaluated. We introduced Maximum Node Degree as a
mobility metrics, which can be used to improve algorithm efficiency in wireless adhoc networks. In addition,
we re-evaluate the link and path durations mobility metrics and provided their lower and upper bounds. The
usefulness of the Maximum Node Degree mobility metric for improving the efficiency is illustrated by a case
study of incentive protocols in ad hoc networks. We have defined a new metric, namely Efficiency, to characterize
the improvement of real mobility metric algorithms over the synthetic ones. The results are validated trough
simulations.
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AUTOMATIC PERFORMANCE MODEL TRANSFORMATION FROM
A HUMAN-INTUITIVE TO A MACHINE-EFFICIENT FORM

SABRI PLLANA, SIEGFRIED BENKNER∗, FATOS XHAFA†, AND LEONARD BAROLLI‡

Abstract. We address the issue of the development of performance models for programs that may be executed on large-scale
computing systems. The commonly used approaches apply non-standard notations for model specification and often require that
the software engineer has a thorough understanding of the underlying performance modeling technique. We propose to bridge the
gap between the performance modeling and software engineering by incorporating UML. In our approach we aim to permit the
graphical specification of performance model in a human-intuitive fashion on one hand, but on the other hand we aim for a machine-
efficient model evaluation. The user specifies graphically the performance model using UML. Thereafter, the transformation of the
performance model from the human-usable UML representation to the machine-efficient C++ representation is done automatically.
We describe our methodology and illustrate it with the automatic transformation of a sample performance model. Furthermore,
we demonstrate the usefulness of our approach by modeling and simulating a real-world material science program.

Key words: performance modeling, model transformation, UML, simulation.

1. Introduction. It is impractical and costly to use a large-scale computing system for performance tuning
during the program development. Furthermore, in the case of large-scale computing systems the program
developer commonly has access to only a part of the computing system resources and for only a limited time.
The model-based performance analyzes may be used to overcome these obstacles [17]. Based on the model, the
performance can be predicted and design decisions can be influenced without time-consuming modifications of
large portions of an implemented program. In the past the performance evaluation of computing systems was
a preoccupation of many computer scientists [8, 17]. However, most of approaches [1, 9, 6, 13, 21, 10, 7] for the
performance modeling of parallel and distributed programs are of limited use to support performance-oriented
software engineering because of the following reasons: (1) the use of a notation that is not based on widely
accepted standards, and (2) the requirement that the software engineer has a thorough understanding of the
underlying performance modeling technique.

In our approach we aim to bridge the gap between the performance modeling and the software engineering
by using the Unified Modeling Language (UML) [2]. We have developed an extension of UML for the domain
of performance-oriented parallel and distributed programs [18, 19]. Our UML extension provides a set of
UML building blocks that model some of the most important concepts of message passing and shared memory
programming paradigms, which can be used to develop models for large and complex parallel and distributed
programs. To provide tool support for our approach we have developed the Performance Prophet [16], which
is a performance modeling and prediction system. Performance Prophet provides a UML based graphical user
interface, which alleviates the problem of specification and modification of the performance model. In the
context of Performance Prophet we aim to permit the graphical specification of performance model in a human-
intuitive fashion on one hand, but on the other hand we aim for a machine-efficient model evaluation. The
user specifies graphically the performance model using UML. Afterwards, Performance Prophet automatically
transforms the performance model from UML to C++ and evaluates it by simulation.

In this paper we describe our methodology for automatic transformation of performance models from UML
to C++. We show how we may develop a UML-based performance model for a given program code, and there-
after we explain how the UML representation of the performance model is transformed to the corresponding
C++ representation. Furthermore, we present and explain our algorithm for the performance model transfor-
mation from UML to C++, which is implemented in the Performance Prophet. We illustrate our methodology
with the transformation of a sample performance model using the Performance Prophet. The usefulness of our
approach is demonstrated by modeling and simulating LAPW0, which is a real-world material science program
that comprises about 15,000 lines of code.
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The rest of this paper is organized as follows. Section 2 describes how we customized the UML for per-
formance modeling and outlines the architecture of the Performance Prophet. Our performance model trans-
formation methodology is presented in Section 3. Section 4 exemplifies the model transformation using the
Performance Prophet. The usefulness of our approach is demonstrated in Section 5 by modeling and simulating
a real-world material science program. Finally, Section 6 concludes the paper and briefly describes the future
work.

2. Preliminaries. In this section we describe our approach for customization of the UML for performance
modeling of parallel and distributed programs and give an overview of the architecture of Performance Prophet.

2.1. UML-Based Performance Modeling. UML [2, 14] is a graphical language that is primarily used
for visualizing, specifying, and documenting the software-intensive systems. In order to make possible the
modeling of different types of systems, UML modeling elements are defined in UML specification in an abstract
manner without conceptual connection with a particular domain. For instance, the UML specification defines
the modeling element Action as follows: “an action is the fundamental unit of behavior specification” [14].
Such an abstract definition allows us to use an action to model various kinds of behavior such as addition of
two numbers in a computer system, or acceleration of a vehicular system. However, too generic semantics of
UML modeling elements may present an obstacle for using UML in a specific domain. For this reason, UML
specification defines the mechanisms for specializing semantics of modeling elements for a particular domain.
UML extension mechanisms include stereotypes, tagged values, and constraints.

The UML may be extended by defining new modeling elements, stereotypes, based on existing elements,
base classes (i. e. metaclasses). A stereotype is defined as a subclass of an existing UML metaclass, with
the associated tagged values (i. e. metaattributes) and constraints. Stereotypes are notated by the stereotype
name enclosed in guillemets <<StereotypeName>>, or by a specific graphic icon. Stereotypes may improve the
readability of models by distinguishing modeling elements of the same shape with different stereotype names.

id : Integer
type : String

time : Double

«stereotype»
action+

«metaclass»
Action

(a) Definition

SampleAction
«action+» {id = 1,

type = SAMPLE,

time = 10}

(b) Usage

Fig. 2.1. Definition and usage of the stereotype <<action+>>.

Figure 2.1(a) depicts the definition of stereotype <<action+>> based on the UML metaclass Action. The
list of tag definitions includes id, type, and time. Tag id can be used to uniquely identify the modeling element
<<action+>>; tag type specifies the type of <<action+>>, and tag time the time spent to complete <<action+>>.
We are using <<action+>> (see example in Figure 2.1(b)) to model various types of single-entry single-exit code
regions. Commonly we use tags to describe performance relevant information, such as the estimated or the
measured execution time (see the tag time in Figure 2.1(b)). The set of tag definitions is not limited to those
shown in Figure 2.1(a), but it can be arbitrarily extended to meet the modeling objective. In this manner we
have extended the UML for performance modeling of parallel and distributed programs [18, 19].

2.2. Performance Prophet. Performance Prophet [16] is a performance modeling and prediction sys-
tem for parallel and distributed computing systems. The architecture of Performance Prophet is depicted in
Figure 2.2. The main components of Performance Prophet are Teuta and Performance Estimator. Teuta is a
platform independent tool for graphical modeling of parallel and distributed programs. The role of Performance
Estimator, in the context of Performance Prophet, is to estimate the performance of a program on a computing
machine.

Teuta comprises the following parts: Model Checker, Model Traverser, Graphical User Interface (GUI), and
the components for Performance Visualization (see Figure 2.2). The GUI of Teuta is used for the development
of performance model based on the UML [14]. The Model Checker is used to verify whether the model conforms
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Teuta

Animator Charts TF

PMP

(C++)

Models

(XML)
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Model
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Menu

Drawing

Space

Toolbars

Model
Tree

Code
Editor

Element

Properties

Graphical User Interface

SP
MCF

(XML)

CF

(XML)

Constructs

(XML)

Performance Estimator

Simulation

Manager

Workload

Elements

Machine

Elements

System Elements

CSIM

Simulation Engine

Fig. 2.2. The architecture of Performance Prophet. Abbreviations: Model Checking File (MCF), Configuration File (CF),
Performance Model of Program (PMP), System Parameters (SP), Trace File (TF).

to the UML specification. The Model Traverser is used for generation of different model representations (XML
and C++). The Performance Visualization components are used for visualization of the performance results.

Element MCF indicates the XML file, which is used for the model checking. The XML files that are used
for the configuration of Teuta are indicated with the element CF.

The Performance Estimator estimates the performance of a parallel and distributed program on a target
computer architecture. As input for the Performance Estimator serve the program model and architectural
parameters that are specified in Teuta. The Performance Estimator generates automatically the machine model
based on the specified architectural parameters. The program model is integrated with the machine model to
create the model of the whole computer system. The Performance Estimator evaluates the integrated model of
computing system and generates the corresponding performance results.

The communication between Teuta and the Performance Estimator is done via elements PMP, SP and TF.
Element PMP indicates the C++ representation of the program’s performance model. PMP is generated by
Teuta and serves as input information for the Performance Estimator. Element SP indicates a set of system
parameters. The parameters of system include the number of computational nodes, the number of processors
per node, the number of processes, and the number of threads. The Performance Estimator uses SP for building
the model of system, whose performance is estimated. Element TF represents the trace file, which is generated
by the Performance Estimator as a result of the performance evaluation. Teuta uses TF for the visualization of
performance results.

3. Methodology. In this section we describe conceptually the transition: (1) from the program code
to the UML based performance model, and (2) from the UML representation to the C++ representation of
performance model. Thereafter, we present our algorithm that takes as input the UML representation, and
automatically generates the C++ representation of the performance model.

Commonly, scientific programs are written in imperative languages such as Fortran or C. This type of
programs is executed on parallel and distributed computing systems, which may consist of multiple nodes (each
node may have multiple processors), in order to solve large problems or to reduce the time to solution for a single
problem [4]. The MPI [22, 12] is usually used to express the inter-node parallelism, whereas OpenMP [3, 15]
is used to express the intra-node parallelism. We have identified that UML activity diagrams are suitable for
modeling scientific imperative programs [19]. Therefore, we usually model a scientific program with one or more
activity diagrams. Activity diagrams may be annotated with performance-relevant information. For instance,
cost functions that model the execution time of program actions may be associated with ActionNodes of the
activity diagram.

During the process of performance modeling are considered only the code blocks that strongly influence
the overall performance of program. We may identify, for an existing program, code blocks that determine the
overall program performance by using a profiling tool.

Figure 3.1(a) shows a code block of a Fortran program. This code block is known as kernel 6 of the
Livermore Fortran kernels [11]. Since the performance of a scientific program is strongly influenced by loops,
it is important to consider loops during the development of performance model. Figure 3.1(b) shows the UML
model of kernel 6, which is a fragment of an activity diagram. But, this detailed UML representation of the
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DO  L = 1, M

 DO  i = 2, N

  DO  k = 1, i-1

   W(i) = W(i) + B(i,k) * W(i-k)

  END DO

 END DO

END DO

Kernel 6

(a)

W

[L = 1,M]

[i = 2,N]

[k = 1,i-1]

(b)

Kernel6
«action+»

T
K6

 = F
K6

(...)

(c)

Fig. 3.1. From the program code to the UML based performance model.

kernel 6 is not necessary, since we are interested on the rough performance estimation. Therefore, we model the
performance of the kernel 6, that is depicted in Figure 3.1(a), with the action Kernel6, which is an instance of
the stereotype action+ (see Figure 3.1(c)). The associated cost function FK6(. . . ) models the execution time
TK6 of kernel 6.

The UML based representation of performance model of the kernel 6, that is depicted in Figure 3.1(c), is
simple and intuitive. We have developed this graphical representation to streamline the specification process
of performance models. However, while the UML representation is suitable as human-usable notation for
performance model specification, it is not adequate for an efficient model evaluation. Therefore, we need to
transform the UML representation to a form that is suitable for evaluation.

Kernel6
«action+»

(a)

ActionPlus

properties

execute()

(b)

ActionPlus kernel6(...);

kernel6.execute(...,FK6(...));

(c)

Fig. 3.2. From the UML representation to the C++ representation of performance model.

Figure 3.2 depicts an example of transition from the UML representation to the C++ representation of
performance model. For the illustration of this transformation process serves the model of kernel 6 that we
introduced in Figure 3.1. We use the stereotype action+ to represent a code block of a program. In Figure 3.2(a)
the action Kernel6, which is an instance of stereotype action+, represents the kernel 6. For the modeling element
action+ we have defined the corresponding class ActionPlus (see Figure 3.2(b)). In the context of Performance
Prophet, the class ActionPlus is implemented as a C++ class. The properties of modeling element action+

are mapped to properties of the class ActionPlus. The performance behavior of the modeling element action+
is defined in the method execute() of the class ActionPlus. Figure 3.2(c) depicts the textual representation of
the model of kernel 6. We may observe that the name of the instance of modeling element (in our example
Kernel6 ) is mapped to the name of the instance of class ActionPlus (in our example kernel6).

Figure 3.3 depicts our algorithm for the automatic model transformation from UML to C++ representation.
As input serves the UML model of a program. The algorithm generates C++ representation of the model.
The UML model, with its diagrams and modeling elements, forms a tree data structure. During the model
transformation process the tree is programmatically traversed, which makes possible to visit each modeling
element and read its properties (see Figure 3.4). Lines 1–8 of the algorithm determine the performance relevant
modeling elements of the UML model based on the element’s property stereotype name. For instance, modeling
elements with the stereotype name action+ are used to model the performance of sequential code blocks. In
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Input: uml_mod_rep, UML based model representation

Output: c++_mod_rep, C++ based model representation

Method: A tree structure, which contains the model

with its diagrams and modeling elements, is

traversed during the model transformation process.

Performance relevant modeling elements of the UML

model are identified based on the stereotype name

for instance, <<action+>>).

 1: // Identify and select performance modeling

       elements

 2: FORALL(is diagram of uml_mod_rep) DO

 3:  FORALL(is element of diagram) DO

 4:    IF(element is performance modeling element)

 5:      add element to perf_elements;

 6:    ENDIF

 7:  ENDFOR

 8: ENDFOR

 9: // Globals

10: FORALL(variable of uml_mod_rep is global) DO

11:  add variable to c++_mod_rep;

12: ENDFOR

13: // Cost functions

14: FORALL(is element of perf_elements) DO

15:  IF(element has function)

16:    add function to c++_mod_rep;

17:  ENDIF

18: ENDFOR

19: // Program

20: // Locals

21: FORALL(variable of uml_mod_rep is local) DO

22:  add variable to c++_mod_rep;

23: ENDFOR

24: // Declare performance modeling elements

25: FORALL(is element of perf_elements) DO

26:  identify the type of element;

27:  add element declaration to c++_mod_rep;

28: ENDFOR

29: // Define performance modeling elements and

       their control flow

30: FORALL(is diagram of uml_mod_rep) DO

31:  FORALL(is element of diagram) DO

32:    identify the type of element;

33:    add the corresponding c++ representation to

       c++_mod_rep;

34:  ENDFOR

35: ENDFOR

Fig. 3.3. The algorithm for model transformation from UML to C++.

the C++ model representation are included the global variables, cost functions, and the model structure (that
is performance modeling elements and their flow). Lines 9–12 of the algorithm are responsible for generation of
C++ representation of the global variables. Lines 13–18 generate C++ representation of the cost functions (for
instance, double FA1(){ ...};). The model structure is defined in the lines 19–35. If there are local variables
defined in the UML model, then their C++ representation is generated in the lines 20–23. Lines 24–28 declare
the performance modeling elements (for instance, ActionPlus A1(...);). In the lines 25–35 it is defined
the execution flow of modeling elements. The algorithm generates the C++ code that for each performance
modeling element invokes its execute() method (for instance, A1.execute(uid, pid, tid, FA1());). The
execution order of performance modeling elements is in accordance with the specified flow in the UML model.

Figure 3.4 shows the UML communication diagram of the model traversing procedure, which provides
the possibility to walk programmatically through the model, to visit each modeling element, and to access its
properties. We use the model traversing for the generation of various model representations. Model traversing
involves three entities: the Traverser, the Navigator and the ContentHandler. During the model traversing
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procedure, first, the Traverser sends the navigation command to the Navigator. Then, the Traverser obtains
the current element ce from the Navigator. Finally, the Traverser asks the ContentHandler to visit the element
ce and generate the corresponding code.

:Navigator:Traverser

:ContentHandler

1: navigationCommand()

3: visitElement(ce)

2: ce := getCurrentElement()

Fig. 3.4. The UML communication diagram of the Performance Prophet model traverser.

The Navigator, the Traverser, and the ContentHandler are independent of each other in the sense that they
only communicate via well-defined interfaces (see Figure 3.4). Therefore, each implementation of one of these
components can be combined with any implementation of the other two components. Performance Prophet
provides the necessary interfaces and base classes and default implementations of the Navigator, Traverser
and ContentHandler. Commonly, the extension of Performance Prophet for the generation of a specific model
representation involves only a specific implementation of the ContentHandler interface.

In the following section we illustrate our methodology with an example using the Performance Prophet.

4. Example. Figure 4.1 depicts the process of UML based specification of a sample performance model
for a hypothetical program. The user specifies the type of performance modeling elements and their flow.
Furthermore, the user may associate a code fragment and a cost function to each performance modeling element.
Each performance modeling element corresponds to a code block of a hypothetical program, whose performance
is modeled. The example in Figure 4.1(a) illustrates the hierarchical modeling capabilities of Performance
Prophet. On the left hand side of Figure 4.1(a) is depicted the main activity diagram, which comprises a set of
instances of stereotypes action+ and activity+. After the execution of action A1 is completed, based on the
value of variable GV, it is decided whether to execute the activity SA or the action A2. While an action is not
further decomposed into other elements, an activity contains a set of elements. The content of an activity is
described with an activity diagram. The content of activity SA, which is an instance of stereotype activity+, is
depicted in the undocked diagram SA in Figure 4.1(a). Activity SA comprises performance modeling elements
SA1 and SA2.

It is possible to associate global and local variables to the model. The name and the type of global and
local variables may be specified as properties of the model. On the right-down corner of Figure 4.1(a), in the
list of properties of sample model, we may observe that variables GV and P are specified as global variables of
the model. We are aware that this sample model could be expressed without the use of global variables, but
nevertheless we opted for this solution for illustration purposes.

Figure 4.1(b) depicts an example of the code association to a performance modeling element. This feature
can be used to complement C++ representation of the performance model. In this example we have associated
a code fragment to the performance modeling element A1, which assigns values to global variables GV and P.

Figure 4.1(c) depicts an example of the association of a cost function to a performance modeling element.
A cost function models the execution time of the code block that is represented by the performance modeling
element. A cost function may use local or global variables as parameters. Moreover, a cost function may be
composed using other functions that are defined in the performance model. In this example we have associated
a simple parameterized cost function to the performance modeling element A1.

Figure 4.2 depicts the C++ representation of the sample model, which is automatically generated by the
Performance Prophet based on the UML representation. The model transformation from UML to C++ repre-
sentation is based on the algorithm that we presented in Figure 3.3.

Figure 4.2(a) depicts an excerpt of the C++ model representation that includes two code sections: (1) global
variables, and (2) cost functions. Lines 24–25 declare the global variables GV and P. In our sample model the
variable GV is used to make the decision whether to execute activity SA or action A2 (see Figure 4.1(a)). The
variable P is used as a parameter of cost functions. We may observe that, in this example, for each performance
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(a) The performance modeling elements and their flow

(b) Code fragment association (c) Cost function association

Fig. 4.1. The UML based specification of a sample model.

modeling element {A1, A2, A4, SA1, SA2} it is defined a cost function {FA1, FA2, FA4, FSA1, FSA2} (code
lines 31–54). As parameters of cost functions may be used the properties of system components (such as number
of processors, or the ID of process). For instance, the cost function FSA2 takes pid as a parameter, which is
the process ID. Please note that the cost functions presented here serve the purpose of illustration of various
forms of expressing cost functions, and that these cost functions are not derived from a real-world program.

Figure 4.2(b) depicts the declaration of performance modeling elements and their execution flow. Lines
64–68 declare the performance modeling elements {A1, A2, A4, SA1, SA2}. We may observe that the C++
code that represents activity SA (lines 79–82) is nested within the C++ code of the main activity (lines 71–
89). Lines 72–75 represent the code that is associated with the element A1 (the code association is depicted in
Figure 4.1(b)). A performance modeling element is executed by invoking its execute() method. The execution of
a performance modeling element models the performance behavior of a code block during the program execution.
Each performance modeling element corresponds to a code block of the program, whose performance is modeled.
For instance, the line 76 in Figure 4.2(b) executes the performance modeling element A1. We may observe that
one of the parameters of method execute() is the name of the cost function FA1 that is associated with the
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(a) Global variables and cost functions

(b) Execution flow of performance modeling elements

Fig. 4.2. The C++ representation of the sample model.

element A1. The branch control flow of the UML model representation (see Figure 4.1(a)) is mapped to the
if-else-if statement in C++ model representation (lines 77–87).

The C++ representation that is presented in Figure 4.2 is used as input for the Performance Estimator.
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5. Case Study. In this section we demonstrate the usefulness of our approach by modeling and simu-
lating a real-world material science program. For our case study we use LAPW0, which is a part of WIEN2k
package [20]. WIEN2k is a program package for calculation of the electronic structure of solids based on the
density-functional theory. It is worth to mention that the 1998 Nobel Prize in Chemistry was awarded to Walter
Kohn for his development of the density-functional theory. LAPW0 calculates the effective potential within a
unit cell of a crystal. The code of LAPW0 program is written in Fortran 90 and MPI [5]. LAPW0 comprises
about 15,000 lines of code.

A1

A2

A4

A5

A7

A8

A10

A11

A0 A3 A6 A9

Process 0 Process 1 Process 2 Process 3

Fig. 5.1. An instance of LAPW0 domain decomposition. Number of atoms (NAT) is 12; number of atoms per process (PNAT)
is 3.

LAPW0 is executed in SPMD fashion (all processors execute the same program) on a multiprocessor
computing system. A domain decomposition approach is used for parallelization of LAPW0 (see Figure 5.1).
The unit of material, for which LAPW0 calculates the effective potential, comprises a certain number of atoms
(NAT ). Atoms are evenly distributed to the available processes. This means that each process is responsible
for calculation of the effective potential for a subset of atoms. For NP available processes, each process obtains
PNAT = NAT/NP atoms. LAPW0 uses an algorithm that aims to distribute a similar (if not the same)
number of atoms to each process for any given positive integer values of the number of atoms and the number
of processes.

. . .

Node 1

(SGI 1450)

4 x Pentium III

Xeon 700MHz,

2GB ECC RAM

Node 2

(SGI 1450)

4 x Pentium III

Xeon 700MHz,
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(SGI 1450)
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2GB ECC RAM

Myrinet

Fast Ethernet

Fig. 5.2. Experimentation platform. Gescher cluster has 16 SMP nodes. Each node has four processors.

Figure 5.2 depicts the architecture of Gescher cluster, which is located at Institute of Scientific Computing,
University of Vienna. Gescher is a 16 node SMP cluster. All nodes of Gescher are of type SGI 1450. Each node
of the cluster has four Pentium III Xeon 700MHz processors , and 2GB ECC RAM. The nodes of Gescher are
interconnected via a 100Mbit/s Fast Ethernet network and a Myrinet network. For our experiments we have
used the Fast Ethernet network. Gescher serves as our platform for performance measurement experiments of
LAPW0.

In what follows in this section we develop and evaluate the model of LAPW0 with Performance Prophet.
We validate the model of LAPW0 by comparing simulation results with measurement results.

Figure 5.3 illustrates the procedure for the development of performance model of LAPW0 with Performance
Prophet. Due to space limitations, in Figure 5.3 it is depicted just a fragment of the UML model of LAPW0. We
developed the model of LAPW0 by using the modeling elements that are available in the toolbar of Performance
Prophet. Basically, Performance Prophet permits to associate to each modeling element a cost function. A
cost function models the execution time of the code block that is represented by the performance modeling
element. Figure 5.3 depicts the association of cost function CalcMPM to action Calculate Multipolmoments.
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Fig. 5.3. Performance modeling of LAPW0.

This cost function was generated based on measurement data by using regression. Regression is a technique for
fitting a curve through a set of data values using some goodness-of-fit criterion.

Fig. 5.4. An excerpt of C++ representation of performance model of LAPW0.

Figure 5.4 depicts an excerpt of C++ representation of performance model of LAPW0 that is generated
by Performance Prophet based on the specified UML model. We may observe that C++ representation of
performance model includes 302 lines of code. This C++ representation is used as input for the Performance
Estimator of Performance Prophet.

We validated the performance model of LAPW0 by comparing simulation results with measurement results
for two problem sizes and four system configurations. The problem size is determined by the parameter NAT ,
which indicates the number of atoms in a unit of the material. We have validated the performance model of
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Table 5.1
Simulation and measurement results for LAPW0. In NxPy, x denotes the number of nodes N , and y denotes the total

number of processes P . Ts is simulated time, Tm is measured time, and Te evaluation time. All times are expressed in seconds [s].

NAT = 32
System Ts [s] Tm [s] Te [s] Tm/Te Error [%]
N1P4 280 264 0.01 26,400 6
N2P8 170 166 0.02 8,300 2
N4P16 126 131 0.04 3,275 3
N8P32 98 113 0.08 1,413 13

NAT = 64
System Ts [s] Tm [s] Te [s] Tm/Te Error [%]
N1P4 543 501 0.01 50,100 8
N2P8 314 264 0.02 14,700 7
N4P16 211 197 0.04 4,925 7
N8P32 184 164 0.09 1,822 12

LAPW0 for NAT = 32 and NAT = 64. The system configuration is determined by the number of nodes and
the number of processing units. We have validated the performance model of LAPW0 for the following system
configurations: one node and four processes (N1P4), two nodes and eight processes (N2P8), four nodes and
16 processes (N4P16), eight nodes and 32 processes (N8P32). Each node comprises four processors. On each
processor is mapped one process.

Table 5.1 depicts simulation and measurement results for LAPW0. The second column of table, which is
indicated with Ts, shows the performance prediction results for LAPW0 that we have obtained by simulation.
Measurement results of LAPW0 are presented in the third column, which is indicated with Tm. The column
that is indicated with Te presents the CPU time needed for evaluation of the performance model of LAPW0
by simulation. All simulations were executed on a Sun Blade 150 (UltraSPARC-IIe 650MHz) workstation. We
compare the time needed to execute the real LAPW0 program on our SMP cluster with the time needed to
evaluate the performance model on a Sun Blade 150 workstation in the column that is indicated with Tm/Ts.
We may observe that model-based performance evaluation of LAPW0 with Performance Prophet was several
thousand times faster than the corresponding measurement-based evaluation. The rightmost column of the
table shows the percentage error, which serves to quantify the prediction accuracy of Performance Prophet. We
have calculated the percentage error using the following expression,

Error[%] =
|Ts − Tm|

Tm

100,

where Ts is the simulated time and Tm is the measured time. We may observe that the prediction accuracy of
Performance Prophet for LAPW0 was between 2% and 13%. The average percentage error was 7%. Simulation
and measurement results for LAPW0 are graphically presented in Figure 5.5.

6. Conclusions. In this paper we have described our methodology for the development of performance
models of programs. Our approach supports the graphical specification of performance models in a human-
intuitive fashion on one hand, and on the other hand is amenable to the machine-efficient model evaluation. The
model transformation, from the graphical human-intuitive form (that is, UML representation), to the form that
can be efficiently evaluated by machine (that is, C++ representation), is performed automatically. We have
illustrated our methodology with the transformation of a sample performance model using the Performance
Prophet modeling system.

The usefulness of our approach has been demonstrated by modeling and simulating LAPW0, which is a
real-world material science program that comprises about 15,000 lines of code. In our case study, the model
evaluation with Performance Prophet on a single processor workstation was several thousand times faster
than the execution time of the real program on our SMP cluster. We validated the model of LAPW0 by
comparing the simulation results with measurement results for two problem sizes and four system configura-
tions.

In future we plan to extend our approach to enable the automatic generation of the program code based
on the UML model.
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Fig. 5.5. Simulation and measurement results for LAPW0.
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REPLAY-BASED SYNCHRONIZATION OF TIMESTAMPS IN EVENT TRACES OF
MASSIVELY PARALLEL APPLICATIONS

DANIEL BECKER∗, JOHN C. LINFORD†, ROLF RABENSEIFNER‡, AND FELIX WOLF∗

Abstract. Event traces are helpful in understanding the performance behavior of message-passing applications since they
allow in-depth analyses of communication and synchronization patterns. However, the absence of synchronized hardware clocks
may render the analysis ineffective because inaccurate relative event timings can misrepresent the logical event order and lead
to errors when quantifying the impact of certain behaviors. Although linear offset interpolation can restore consistency to some
degree, inaccuracies and time-dependent drifts may still disarrange the original succession of events—especially during longer runs.
In our earlier work, we have presented an algorithm that removes the remaining violations of the logical event order postmortem
and, in addition, have outlined the initial design of a parallel version. Here, we complete the parallel design and describe its
implementation within the Scalasca trace-analysis framework. We demonstrate its suitability for large-scale applications running
on more than thousand application processes and evaluate its accuracy by showing that it eliminates inconsistent inter-process
timings while preserving the length of local intervals.

1. Introduction. Event tracing is a popular technique for the postmortem performance analysis of mes-
sage-passing applications because it can be used to investigate temporal relationships between concurrent ac-
tivities. Obviously, the accuracy of the analysis depends on the comparability of timestamps taken on different
processors. Inaccurate timestamps may cause a given interval to appear shorter or longer than it actually was,
or change the logical event order, which requires a message to be received only after it has been sent. This is
also referred to as the clock condition. Besides leading to false conclusions during performance analysis when
the impact of certain behaviors is quantified, clock condition violations may confuse the user of trace visualiza-
tion tools such as Vampir [30] by causing arrows representing messages to point backward in time-line views
(Figure 1.1(a)). Moreover, automatic trace-analysis tools such as Scalasca [19] may produce not only inaccurate
but outright inconsistent results when calculating certain global metrics that rely on the correct logical order
of message events. For example, the output of Scalasca shown in Figure 1.1(b) suggests that the difference
between the total time spent in barrier synchronization (i. e., collective synchronization) and the time spent in
the barrier before and immediately after the actual synchronization has taken place is negative, which cannot
be true.

To avoid clock-condition violations, the error of timestamps should ideally be smaller than one half of
the message latency. A typical clock quartz with a drift of only 1 min/year will cause a deviation of 2 µs
already after 1 second. While some systems such as ibm Blue Gene offer a relatively accurate global clock,
many other systems including most pc clusters provide only processor-local clocks that are either entirely
non-synchronized or synchronized only within disjoint partitions (e.g., smp-node or multicore-chip). Clock
synchronization protocols such as ntp [29] can align the clocks to a certain degree, but are often not accurate
enough for our purposes. Assuming that every local clock on a parallel machine runs at a different but constant
speed (i. e., with a different but constant drift), the (global) time of an arbitrarily chosen master clock can be
calculated locally as a linear function of the local time. However, as the assumption of constant drifts is only
an approximation, violations of the clock condition may still occur - especially when the offset measurements
needed for the interpolation are taken with long intervals in between. For example, temperature variations may
cause variations of the drift rate of more than 10−8, which will cause synchronization errors of more than 1 µs
after 100 seconds execution time. Figure 1.2 shows clock offsets after linear end-to-end interpolation measured
using a simple benchmark program that was executed for 500 seconds. One can see that the non-linearity of
local clocks caused clock errors larger than the send-receive and allreduce latency.

While the errors of single timestamps are hard to assess, clock-condition violations can be easily detected
and offer a toehold to increase the fidelity of inter-process timings. In our earlier work [3], we have presented
an algorithm that retroactively corrects timestamps violating the clock condition in event traces of mpi appli-
cations. However, in view of rapidly increasing parallelism combined with advances in scalable trace-analysis
technology [5, 19, 6], it is crucial that the algorithm scales to large numbers of application processes. For
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(a) Time-line visualization of a message exchange in backward direction.

(b) A global time metric that must not be negative.

Fig. 1.1. Inconsistent trace analyses due to insufficiently synchronized timestamps.

this reason, we have designed and implemented a parallel version of the algorithm and integrated it into the
Scalasca performance-analysis framework [1, 18]. Instead of sequentially processing a single global trace file, we
follow Scalasca’s scalable trace-analysis approach [19] and process separate process-local trace files in parallel
by replaying the original communication on as many cpus as have been used to execute the target application
itself. Since trace processing capabilities (i. e., processors and memory) grow proportionally with the number
of application processes, we can achieve good scalability at very large scales.

Fig. 1.2. Non-linear offsets of physical clocks measured on an Infiniband cluster in comparison to the send-receive and
allreduce latency.

The outline of this article is as follows: After reviewing related work in Section 2, we briefly describe the
serial version of the algorithm in Section 3. In Section 4, we complete the parallel design outlined in [3] and
explain its implementation within the Scalasca trace-analysis infrastructure. We evaluate the scalability of the
parallel version in Section 5, where we also show that the collaterally introduced deviations of local interval
lengths remain within acceptable limits. Finally in Section 6, we conclude our paper and give an outlook on
future work.

2. Related Work. This article describes an approach to retroactively synchronizing timestamps in event
traces of parallel programs for the purpose of accurate program observation. While a detailed introduction to
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event-based program observation as discussed here can be found in Riek et al. [35], we restrict our account of
related work to the topic of clock synchronization.

Network-based synchronization protocols aim at synchronizing distributed clocks before reading them.
Clocks distributed across the network query the global time from reference clocks, which are often organized in a
hierarchy of servers. For instance, ntp [29] uses widely accessible and already synchronized primary time servers.
Secondary time servers and clients can query time information via both private networks and the Internet. To
reduce network traffic, the time servers are accessed only at regular intervals to adjust the local clock. Jumps
are avoided by changing the drift while leaving the actual time unmodified. Unfortunately, varying network
latencies limit the accuracy of ntp to about one millisecond compared to a few microseconds required to satisfy
the clock condition for mpi applications running on clusters equipped with modern interconnect technology.

Time differences among distributed clocks can be characterized in terms of their relative offset and drift
(i. e., the rate at which the offset changes over time). In a simple model assuming different but constant drifts,
global time can be established by measuring offsets to a designated master clock using Cristian’s probabilistic
remote clock reading technique [7]. After estimating the drift, the local time can be mapped onto the global
(i. e., master) time via linear offset interpolation. Offset values among participating clocks are measured either
at program initialization [13] or at initialization and finalization, and are subsequently used as parameters of
the linear correction function [22, 27]. So as not to perturb the program, offset measurements in between are
usually avoided, although a recent approach proposes periodic offset measurements during global synchronization
operations while limiting the effort required in each step by resorting to indirect measurements across several
hops [10]. While linear offset interpolation might prove satisfactory for short runs (or interpolation intervals),
measurement errors and time-dependent drifts may create inaccuracies and clock-condition violations during
longer runs. Additionally, repeated drift adjustments caused by ntp may impede linear interpolation, as they
deliberately introduce non-constant drifts.
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Fig. 2.1. Algorithms that calculate the clock errors through the differences of the message transfer time in both directions
between two processes.

If linear interpolation alone turns out to be inadequate to achieve the desired level of accuracy, error estima-
tion allows the retroactive correction of clock values in event traces after assessing synchronization errors among
all distributed clock pairs. First, difference functions among clock values are calculated from the difference be-
tween clock values of receive and send events (plus the minimum message latency). Second, a medial smoothing
function can be found and used to correct local clock values because for each clock pair two difference functions
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exist. Regression analysis and convex hull algorithms have been proposed by Duda et al. [12] to determine
the smoothing function. Using a minimal spanning tree algorithm, Jezequel [25] adopted Duda’s algorithm
for arbitrary processor topologies. In addition, Hofmann [21] improved Duda’s algorithm using a simple mini-
mum/maximum strategy and further proposed that the execution time should be divided into several intervals
to compensate for different clock drifts in long running applications. Figure 2.1 shows the principles underlying
Duda’s and Hofmann’s algorithms. Using a graph-theory algorithm to calculate the shortest paths, Hofmann
and Hilgers [23] simplified Jezequel’s algorithm for handling multi-processor topologies. A modification aimed at
handling cases of non-existing communication relations between some of the application processes is described
in [33]. Biberstein et al. [4] rewrote Hofmann’s and Hilgers’ algorithm for use on the Cell be architecture
using a short and intelligible notation. Their version solves the clock condition problem only for short intervals
(i. e., without splitting into sub-intervals for handling a non-linear drift of the physical clocks). Babaoǧlu and
Drummond [2, 11] have shown that clock synchronization is possible at minimal cost if the application makes a
full message exchange between all processors at sufficiently short intervals. However, jitter in message latency,
nonlinear relations between message latency and message length, and one-sided communication topologies limit
the usefulness of error estimation approaches. References to additional error estimation approaches can be
found in a survey by Yang and Marsland [37].

In contrast, logical synchronization uses happened-before relations among send and receive pairs to syn-
chronize distributed clocks. Lamport introduced a discrete logical clock [26] with each clock being represented
as a monotonically increasing software counter. As local clocks are incremented after every local event and the
updated values are exchanged at synchronization points, happened-before relations can be exploited to further
validate and synchronize distributed clocks. If a receive event appears before its corresponding send event,
that is, if a clock-condition violation occurs, the receive event is shifted forward in time according to the clock
value exchanged. Lamport’s discrete logical clock [26] can be used directly for monitoring [8]. Moreover, an
algorithm to prevent the drift between the logical clocks has been proposed by Raynal [34]. As an enhancement
of Lamport’s discrete logical clock, Fidge [15, 16] and Mattern [28] proposed a vector clock. In their scheme,
each processor maintains a vector representing all processor-local clocks. While the local clock is advanced with
each local event as before, the local vector is updated after receiving a message using an element-wise maximum
operation between the local vector and the remote vector that has been sent along with the message. The vector
clock is used in some monitoring tools [9, 14] and, in a modified form, also to distinguish in event traces between
primary wait states and secondary ones that are merely caused by propagation [24]. Furthermore, global events
are introduced in [20], while in [31] spontaneous events (e.g. collisions on a network) are taken into account.
Finally, limits of the logical clock and the vector clock are illustrated in [36].

3. Controlled Logical Clock. The controlled logical clock (clc) algorithm by Rabenseifner [32, 33]
retroactively corrects clock condition violations in event traces of message-passing applications by shifting mes-
sage events in time while trying to preserve the length of intervals between local events. The algorithm restores
the clock condition using happened-before relations derived from message semantics. The clock condition, given
in Equation (3.1), requires that a receive event occurs at the earliest lmin after the matching send event, with
lmin being the minimum message latency.

trecv ≥ tsend + lmin (3.1)

If the condition is violated for a send-receive event pair, the receive event is moved forward in time. To preserve
the length of intervals between local events, events following or immediately preceding the corrected event
are moved forward as well. These adjustments are called forward and backward amortization, respectively.
Note that the accuracy of the adjustment depends on the accuracy of the original timestamps. Therefore, the
algorithm benefits from weak pre-synchronization such as the aforementioned linear offset interpolation.

Figure 3.1 illustrates the different steps of the clc algorithm using a simple example consisting of two
processes exchanging a single message. The subfigures show the time lines of the two processes along with their
send (S) and receive (R) events, each of them enclosed by two other events (Ei). Figure 3.1(a) shows the initial
event trace based on timestamps measured with insufficiently synchronized local clocks. The trace exhibits a
violation of the clock condition by having the receive event appear earlier than the matching send event. To
restore the clock condition, R is moved forward in time to be lmin ahead of S (Figure 3.1(b)). Since now the
distance between R and E4 becomes too short, E4 is adjusted during the forward amortization to preserve
the length of the interval between the two events (Figure 3.1(c)). However, the jump discontinuity introduced
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by adjusting R affects not only events later than R but also events earlier than R. This is corrected by the
backward amortization which shifts E2 closer to the new position of R, see Figure 3.1(d).

While the forward amortization is at least initially applied to all events following R, the backward amor-
tization applies a linearly increasing correction to a limited amortization interval before R. However, in order
to avoid new violations of the clock condition, the correction must not advance any send event located in this
interval farther than the matching receive event (minus the minimum message latency). In such a case, we
apply the linear correction piecewise, advancing the send events as far as possible and calculating a different
slope for each subinterval before, after, or between those sends [3, 33].
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Fig. 3.1. Backward and forward amortization in the controlled logical clock algorithm.

Note that the algorithm only moves events forward in time. To prevent an increase of the overall time
represented by the trace that may occur as a result of a domino-style propagation of forward amortizations,
the algorithm applies scaling factors (i. e. control variables) to ensure that the overall error remains within
predefined boundaries. The clc algorithm always tries to advance all processor clocks to the fastest clock
when correcting the non-linearity of the clocks. Given that the original timestamps may be logically wrong,
this correction leads to logically correct timestamps with marginal local inaccuracies. As a result, timestamp
differences between events on different processes normally become more accurate than the original ones because
the clocks are advanced to the fastest one. In comparison, the aforementioned algorithms of Duda, Hofmann,
and colleagues align the timestamps with the average of the local clocks. However, for monitoring purpose this
difference is not significant because it is in the range of the drift rates among local clocks (i.e, in the range of
about 10−6 − 10−4). Combined with linear offset interpolation between program start and end, the expected
differences are in the range of 10−8.

Since the original (clc) algorithm takes only point-to-point messages into account, it has been extended in
our earlier work [3] to make it applicable to realistic mpi applications that perform not only point-to-point but
also collective communication. In our event model, a collective operation instance consists of multiple pairs of
enter and exit events (i. e., one pair for each participating process). The basic idea behind extending the clc
algorithm to collective communication is to map collective communication onto point-to-point communication.
For this purpose, we consider a single collective operation as a composition of multiple point-to-point operations,
taking the semantics of the different flavors of mpi collective operations into account (e.g. 1-to-N, N-to-1, etc.).
For instance, in an N-to-1 operation one root process receives data from N other processes. Given that the
root process is not allowed to exit the operation before it has received data from the last process to enter the
operation, the clock condition must be observed between the last enter event and the exit event of the root
process. Depending on the flavor of the collective operation, different enter and exit events are mapped onto
send and receive events, respectively. In reference to the fact that our method is based on logical clocks, we call
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the send and receive event type assigned during this mapping the logical event type as opposed to the actual
event type (e.g., enter or collective exit) specified in the event trace.

Until recently, only a serial implementation of the original (clc) algorithm existed. In the next section, we
describe how the extended version of the algorithm has been parallelized and how the parallel version has been
integrated into the Scalasca trace-analysis framework.

4. Parallel Timestamp Synchronization. Scalasca, which has been specifically designed for large-scale
systems, scans event traces of parallel applications for wait states that occur when processes fail to reach
synchronization points in a timely manner, for example, as a result of an unevenly distributed workload.
Such wait states can present severe challenges to achieving good performance, especially when trying to scale
communication-intensive applications to large processor counts. As a first step towards reducing their impact,
Scalasca provides a diagnostic method that allows their localization, classification, and quantification, in par-
ticular at larger scales. Scalability is achieved by analyzing the process-local traces in parallel, making Scalasca
a parallel program in its own right.

Similar to the wait-state analysis [19] performed by Scalasca, the clc algorithm requires comparing events
involved in the same communication operation, which makes it a suitable candidate for the same parallelization
strategy. Instead of sequentially processing a single global trace file, Scalasca processes separate process-local
trace files in parallel by replaying the original communication on as many cpus as have been used to execute the
target application itself. Since trace processing capabilities (i. e., processors and memory) grow proportionally
with the number of application processes, we can achieve good scalability at very large scales. During the replay,
sending and receiving processes exchange relevant information needed to analyze the communication operation
being replayed. The parallel clc algorithm is divided into two replay phases: a forward phase for the forward
amortization and a backward phase for the backward amortization. The backward phase is only needed if clock
condition violations appear during the forward phase.

4.1. Integration with Scalasca. Almost all the postmortem trace-analysis functionality of Scalasca
including the parallel clc algorithm is implemented on top of pearl [17], a parallel library that offers higher-
level abstractions to read and analyze large volumes of trace data. A typical pearl application is a parallel
program having as many processes as the target application had that generated the trace data, resulting in a
one-to-one mapping of target application and analysis processes. All analysis processes read the trace data of
“their” application process into main memory and traverse the traces in parallel while exchanging information
at synchronization points.

Local

event traces

Parallel execution

of target application

Parallel

analysis

Linear interpolation & 

controlled logical clock

Local

event traces
Trace

visualization

rewrite

Fig. 4.1. Parallel trace-analysis process. Grey rectangles denote programs and white rectangles with the upper right corner
turned down denote files. Stacked symbols denote multiple instances of programs or files running or being processed in parallel.

In Scalasca, the parallel clc algorithm is applied after the traces have been loaded and before the wait-
state analysis takes place. To increase the fidelity of the clc outcome, the timestamps first undergo a pre-
synchronization step. This step performs linear offset interpolation based on offset measurements taken during
initialization and finalization of the target application. Once the offset values are known to each analysis
process, the interpolation operation is performed locally and does not require any further communication.
As an alternative to the native Scalasca wait state analysis, the traces can also be rewritten with modified
timestamps, converted, and visualized using Vampir. The full analysis process is illustrated in Figure 4.1.

4.2. Forward Amortization. During the forward phase, the communication replay proceeds in the same
direction as it did in the target application. For every pair of logical send and receive events, the sending process
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sends the timestamp of the logical send event to the receiving process, which compares it to the timestamp of
the matching logical receive event (minus the minimum message latency) and, if necessary, applies the forward-
amortization equation described in [3]. Recall that, in addition to actual send and receive events, events
pertaining to entering or leaving collective communication operations may be classified as logical send or receive
events. In this case, the logical event type is derived from the name of the collective operation and the role
(e.g., root) a particular process plays in the operation.

In its treatment of events the algorithm distinguishes between (logical) send or receive events and internal
events that neither send nor receive any kind of message. A different action is performed for each of the three
types. Since the correction of an internal event does not require any extra communication, the timestamp
adjustment is immediately applied. A send event is adjusted locally and the new timestamp is sent via forward-
replay to the receiving process. On the receiver side, the order of these two steps is reversed. The adjusted
send timestamp must be obtained from the sender, before the correction can be performed. Finally, the receiver
saves detected clock condition violations temporarily along with the associated error so that this information
can be reused during the backward amortization phase.

While the direction of inter-process exchange of timestamps is determined by the (logical) type of an event
(i. e., send or receive), the actual communication operation invoked to accomplish the transfer depends on the
operation originally used by the target application. For this purpose, communication operations are classified
according to the number of peers involved on either side: point-to-point, 1-to-N, N-to-1, N-to-N, and two special
classes for scan and exscan operations. In brief, point-to-point operations are replayed using point-to-point
communication, while collective operations are replayed using different flavors of collective communication.

For the sake of simplicity, our current implementation uses two different values for the minimum message
latency lmin (see Equation (3.1)): the minimum inter-node and the minimum intra-node latency. Following
a conservative approach aimed at avoiding overcorrection, we refrained from considering an extra collective
latency, as the duration of collective operations may depend on many factors that are hard to identify, some
of them even hidden inside the underlying mpi implementation. Thus, the algorithm requires exchanging the
timestamps and the node identifiers to know which of the two latency values must be used.

As mentioned earlier, the clc algorithm uses so-called control variables. Control variables are scaling factors
that are applied to interval expressions when calculating new event timestamps with the purpose of preserving
the length of local intervals and avoiding an avalanche-like propagation of corrections [3]. Usually, the control
variables are kept less than 1 minus the maximal drift of the clocks. To determine their exact value, however,
a global view of the trace data is needed, which is too expensive to establish in our parallel scheme as global
communication would be required for every single event. Instead, we approximate a (single) suitable value for
all control variables by performing multiple passes of forward replay through the trace data until the maximum
error is below a predefined threshold. In practice, more than one pass is seldom needed.

4.3. Backward Amortization. The purpose of the backward amortization phase is to smooth jump
discontinuities introduced during the forward amortization by slowly building up the ascension to the jump.
This is achieved by applying a process-local linear correction to the interval immediately preceding the jump.
However, to preserve the clock condition, the algorithm must not advance the timestamp of any send event
located in this interval farther than that of the matching receive event (minus the minimum message latency),
leading to the piecewise linear interpolation mentioned earlier. In addition to what has already been stated
in our initial design [3], determining these upper limits requires a backward replay, starting at the end of the
trace with communication proceeding in backward direction to avoid the danger of deadlocks. While replaying
the communication backward, we store with each logical send event the timestamp of the matching receive
event after forward amortization. With this information available, an appropriate piecewise linear interpolation
function can be calculated for the amortization interval behind every receive event shifted during the forward
replay. Note that during the backward amortization the roles of sender and receiver are reversed: the timestamp
of a receive event must be available at the process of the matching send event.

4.4. Remark. Given that most mpi implementations use binomial tree algorithms to perform their col-
lective operations, our replay-based approach reduces the communication complexity of replaying collectives
automatically to O(log N). Moreover, the stepwise parallel replay during the backward amortization phase
can, in theory, be replaced by a single collective operation per communicator for the entire trace, but would
impose impractical memory requirements. For the actual operations used during both replay phases and the
timestamps being exchanged, please refer to [3].
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5. Experimental Evaluation. Here we evaluate the scalability and accuracy of the parallel controlled
logical clock algorithm and also give evidence of the frequency and the extent of clock condition violations in
event traces of a realistic mpi application. We ran experiments on the following two platforms:
MareNostrum consists of 2560 js21 blade computing nodes, each with 2 dual-core ibm 64-bit Powerpc 970mp

processors running at 2.3 ghz. The computing nodes of MareNostrum communicate primarily through
a Myrinet network with Myrinet adapters integrated on each server blade. The measured mpi inter-node
latency was 7.7µs, the measured mpi intra-node latency was 1.3µs.

CACAU consists of 200 compute nodes, each with 1 dual-core Intel Xeon em64t cpu running at 3.2ghz.
The nodes are linked with a Voltaire Infiniband Network and a Gigabit Ethernet. The measured mpi
inter-node latency was 4.7µs, the measured mpi intra-node latency was 1.0µs.

As a test application, we used the mpi version of the asc smg2000 benchmark, a parallel semi-coarsening
multigrid solver that uses a complex communication pattern and performs a large number of non-nearest-
neighbor point-to-point communication operations. Applying a weak scaling strategy, a fixed 16 × 16 × 8
problem size per process with five solver iterations was configured.

While linear interpolation can remove most of the clock condition violations in traces of short runs, it is
usually insufficient for longer runs. We therefore emulated a longer run by inserting sleep statements immediately
before and after the main computational phase so that it was carried out ten minutes after initialization and
ten minutes before finalization. This corresponds to a scenario, in which only distinct intervals of a longer
run are traced with tracing being switched off in between. Since full traces of long running applications may
consume a prohibitive amount of storage space, the “partial” tracing emulated here mimics the recommended
practice of tracing only pivotal points that warrant a more detailed analysis. For our purposes, the artificial
chronological distance to the offset measurements on either end of the run adjusted the interpolation interval to
roughly twenty minutes execution time. However, with many realistic codes running for hours, this can still be
regarded as an optimistic assumption. Compared to true partial tracing of a longer smg2000 run, our method
had the advantage that the total runtime including the actual computational activity and therefore the distance
between the two offset measurements was roughly the same for all configurations.
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Fig. 5.1. Percentage of messages with the order of send and receive events being reversed, of messages with clock condition
violations, and of clock condition violations explicitly corrected by the clc algorithm during forward amortization.
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Table 5.1
Average and maximum errors of message events in reversed order.

Platform Avg. error [µs] Max. error [µs]
MareNostrum 2.6 323
Cacau 4.3 186

Figure 5.1 shows the frequency of clock condition violations on MareNostrum and Cacau for a range of scales.
Since the number of violations varies between runs, the numbers represent averages across three measurements
for each configuration. The numbers show the percentage of messages with the order of send and receive
events being reversed in the original trace, of messages with clock condition violations (trecv < tsend + lmin) in
the original trace, and of clock condition violations explicitly corrected by the clc algorithm during forward
amortization. We also counted logical messages that can be derived by mapping collective communication onto
point-to-point semantics. When visualized, messages with the order of send and receive events being reversed
seem to flow backward in time. The number of violations explicitly corrected by the clc algorithm is usually
smaller than the initial number of violations because some of them are already implicitly removed during forward
amortization before a correction can be applied. On MareNostrum, around 1% of the messages flow backward
in time, while on Cacau the percentage ranges between 1 and 6%. Higher latencies on MareNostrum offer
a potential explanation for the smaller number of violations detected on this system because higher latencies
naturally insert a larger temporal distance between send and receive events of the same message. Although the
number of inconsistent messages on Cacau seem to decrease with growing numbers of processes, the results on
MareNostrum do not confirm a clear correlation between the two indicators. Table 5.1 lists the average and
maximum displacement errors (i. e. the time the receive event appears earlier than the send event) of message
events in backward order, as seen in the original trace.

5.1. Scalability. Because it is the larger system, we evaluated our algorithm’s scalability on MareNostrum.
According to Figure 5.2, the parallel timestamp synchronization, the Scalasca wait-state analysis, and the
execution time of smg2000 itself exhibit roughly equivalent scaling behavior - a result of the replay-based
nature of the two analysis mechanisms and the communication-bound performance characteristics of smg2000.
The fact that the total time needed by the integrated Scalasca analysis (synchronization and wait-state analysis)
including loading the traces grows more steeply suggests that i/o will increasingly dominate the overall behavior
beyond 1024 processes, rendering the additional cost of the synchronization negligible.
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5.2. Accuracy. The transformation performed by the clc algorithm raises the question of how accurate
the modified traces actually are. To answer this question, it must first be acknowledged that traces with clock-
condition violations are inaccurate because they are inconsistent. The behavior they reflect violates causation
and is therefore impossible. The clc algorithm eliminates these inconsistencies, improving the accuracy of
inter-process timings. A very simple metric quantifying this improvement is the fraction of clock-condition
violations found in the original trace (second row in Figure 5.1), which are removed in the modified trace.

However, the necessary corrections applied in the course of the algorithm also modify—as a collateral
effect—relative process-local event timings, which may lead to differences in the lengths of local intervals when
comparing the original with the modified trace. Again, since the original timestamps have been taken with
clocks that exhibit unstable drifts, there is, of course, no guarantee that the measured interval lengths are
correct, although the deviation can be expected to be small in comparison to the total interval length. In
addition, the original timings are all we “know” about the target application’s local execution behavior. For
this reason, we decided to evaluate how this knowledge has been preserved in the modified trace.

To assess the fidelity of process-local timings after applying the clc algorithm, we determined the relative
deviation of local interval lengths, considering two different types of intervals: (i) intervals between an event
and the first event of the same process, which roughly corresponds to the timestamp of an event relative to the
begin of the trace and (ii) intervals between adjacent process-local events (i. e., intervals between an event and
its immediate successor). We refer to the first interval type as the event position and to the second interval type
as the event distance.

The maximum relative deviation of the event position across all our measurements was below 0.0001 %;
the maximum absolute deviation was 425.18 µs, roughly corresponding to the maximum displacement error
observed (Table 5.1). Table 5.2 shows the relative deviation of the event distance across different combinations
of platform and number of processors. The numbers in individual columns are percentages and are rounded to
two digits after the decimal point. They represent the maximum across three measurements. To account for
the relatively long “correct” stretches artificially introduced by the sleep statements before and after the main
computation, only the middle section of the trace between the sleep statements was considered. Furthermore,
since deviations in larger intervals are more relevant to performance analysis than those in smaller intervals,
the average was calculated using

∑

|∆t|/
∑

|t| to assign appropriate weight to larger intervals, with ∆t being
the absolute deviation and t being the original interval length.

Table 5.2
Relative deviation of event distance. All numbers are given in percent and rounded to two digits after the decimal point.

MareNostrum Cacau
# CPUs 64 128 256 512 1024 32 64 128

Average 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00
Maximum 27.17 461.74 411.52 311.64 974.44 82.78 69.31 16.77

Percentage of intervals with deviation above threshold

> 0% 80.80 96.21 97.34 98.23 99.07 92.43 93.67 24.27
> 0.01% 0.15 0.63 0.39 0.48 0.81 0.47 0.27 0.04
> 0.1% 0.15 0.61 0.38 0.46 0.79 0.45 0.26 0.04
> 1% 0.01 0.10 0.06 0.07 0.18 0.09 0.04 0.00
> 10% 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Percentage of execution time consumed by intervals

with deviation above threshold

> 0% 80.51 96.22 96.86 92.20 95.17 50.37 92.50 23.00
> 0.01% 0.41 0.95 0.58 0.71 0.72 0.24 0.68 0.05
> 0.1% 0.20 0.23 0.28 0.21 0.24 0.19 0.55 0.04
> 1% 0.01 0.02 0.03 0.02 0.02 0.04 0.11 0.00
> 10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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It can be seen that in spite of very small averages, deviations of occasionally more than 100% are still
possible. Although the backward amortization is designed to smooth sudden jumps introduced by the forward
amortization, it can happen that a send event cannot be advanced far enough without causing a new clock
condition violation when passing the corresponding receive event. To evaluate frequency and extent of such
situations, we calculated (i) the percentage of intervals whose deviation exceeds a certain threshold and (ii) the
percentage of execution time (accumulated across all processes) consumed by intervals whose deviation exceeds
the threshold. The results given in Table 5.2 indicate that larger deviations are rare and that their influence on
performance-analysis results will usually be negligible.

6. Conclusion. Event traces of parallel applications may suffer from inaccurate timestamps in the absence
of synchronized hardware clocks. As a consequence, the analysis of such traces may yield wrong quantitative
and even qualitative results or confuse the user of time-line visualizations with messages flowing backward in
time. Because linear offset interpolation based on offset measurements can account for such deficiencies only
for very short runs, we have designed and implemented a parallel algorithm for the retroactive correction of
timestamps based on logical clocks that eliminates inconsistent inter-process timings while only marginally
changing the length of local intervals. Our replay-based implementation scales easily to more than thousand
application processes and shows potential for even larger configurations. The algorithm has been incorporated
into the Scalasca framework to facilitate trace analyses of longer runs on larger cluster systems. In the future,
we want to extend our algorithm to hybrid applications employing a mix of message passing and shared-memory
parallelism, which will require paying attention to happen-before relationships, for example, imposed by Openmp
barrier or lock event semantics.
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PERFORMANCE ANALYSIS AND OPTIMIZATION OF PARALLEL SCIENTIFIC
APPLICATIONS ON CMP CLUSTERS
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Abstract. Chip multiprocessors (CMP) are widely used for high performance computing. Further, these CMPs are being
configured in a hierarchical manner to compose a node in a cluster system. A major challenge to be addressed is efficient use of
such cluster systems for large-scale scientific applications. In this paper, we quantify the performance gap resulting from using
different number of processors per node; this information is used to provide a baseline for the amount of optimization needed
when using all processors per node on CMP clusters. We conduct detailed performance analysis to identify how applications can
be modified to efficiently utilize all processors per node using three scientific applications: a 3D particle-in-cell, magnetic fusion
application Gyrokinetic Toroidal Code (GTC), a Lattice Boltzmann Method for simulating fluid dynamics (LBM), and an advanced
Eulerian gyrokinetic-Maxwell equation solver for simulating microturbulent transport in plasma (GYRO). In terms of refinements,
we use conventional techniques such as loop blocking, loop unrolling and loop fusion, and develop hybrid methods for optimizing
MPI Allreduce and MPI Reduce. Using these optimizations, the application performance for utilizing all processors per node was
improved by up to 18.97% for GTC, 15.77% for LBM and 12.29% for GYRO on up to 2048 total processors on the CMP clusters.

Key words: performance analysis, performance optimization, chip multiprocessors (CMP), clusters, parallel scientific appli-
cations

1. Introduction. The current trend in high performance computing systems has been shifting towards
cluster systems with CMPs (chip multiprocessors). Further, the CMPs are usually configured hierarchically (e.g.,
multiple CMPs compose a multi-chip module and multiple multi-chip modules compose a node) to compose a
node of a CMP cluster. For example, each node of DataStar P690 at the San Diego Supercomputing Center
(SDSC) consists of four multi-chip modules for which each module consists of four CMPs, and each CMP
consists of two cores [13]. SDSC DataStar p655 has one multi-chip module per node. When using these clusters
to execute a given application, one issue to be addressed is how to efficiently utilize all processors per node
given the significant sharing of node resources (e.g., caches, networks) among the processors within the node.
In this paper, we quantify the performance gap resulting from using different number of processors per node for
application executions. Further, we use the detailed performance results to identify performance optimizations
that can be made to these applications for efficient execution using all processors per node.

Other work in this area has focused on using all processors per node. Phillips et al. [10] presented the
performance results for 4 processors per node and 3 processors per node on Lemieux Alpha cluster at Pittsburgh
Supercomputing Center that has a maximum of 4 processors per node, and noted that leaving idle one processor
per node reduces performance variability. Petrini et al. [9] found that application execution times may vary
significantly between 3 processors per node and 4 processors per node on a large scale supercomputer, ASCI Q.
They concluded that system noise within the nodes was the source of the performance variability, and used a
discrete-event simulator to evaluate the contribution of each component of the noise to the overall application
behavior. In our previous work [20], we quantified the performance gap resulting from using different number
of processors per node for the NAS parallel benchmarks on SMP clusters. In this paper, however, we identify
optimizations that result in efficient use of all processors per node on the CMP clusters for large-scale scientific
applications.

The three large-scale, scientific applications used for our experimental analysis are as follows: a 3D particle-
in-cell application Gyrokinetic Toroidal Code (GTC) in magnetic fusion [2], a Lattice-Boltzmann Method
for simulating fluid dynamics (LBM) [19], and an advanced Eulerian gyrokinetic-Maxwell equation solver for
simulating microturbulent transport in core plasma (GYRO) [3]. The Prophesy system [17, 16] is used to
collect all application performance data. The programming environments and problem sizes used in the three
applications are shown in Table 1.1. The test case studied for GTC is 100 particles per cell and 100 time steps.
The problem size for LBM is a 3D mesh computational domain. B1-std and B2-cy are two benchmark datasets
for GYRO.

The experiments conducted in this work utilize systems with different number of processors per node.
DataStar P655 has 8 processors per node and P690 has 32 processors per node. Bassi has 8 processors per node
and Seaborg has 16 processors per node at the DOE National Energy Research Scientific Computing Center
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Table 1.1
Programming environments and problem sizes of GTC, LBM and GYRO

Application Discipline Problem Sizes Programming Environments
GTC Magnetic Fusion 100 particles per cell Fortran90, MPI, OpenMP
LBM Fluid Dynamics 128x128x128 C, MPI

512x512x512
GYRO Plasma Physics B1-std: 6x140x4x4x8x6 Fortran90, MPI

B2-cy: 6x128x4x4x8x6

(NERSC) [8]. BlueGene/L at the Renaissance Computing Institute has 2 processors per node [11]. Further,
each system has a different node memory hierarchy. The experimental results indicate that large performance
gaps can exist. For example, the performance gap for LBM using 32 processors corresponds to an increase of
23.53% when using 32 processors per node versus using 8 processors per node (resulting from resource conflicts)
for a problem size of 128x128x128 on the P690.

Much of the computation involved in parallel scientific applications occurs within nested loops. Therefore,
loop optimization is fundamentally important for these applications. In this paper, we use loop blocking, loop
unrolling and loop fusion to optimize three scientific applications. We also develop hybrid methods to optimize
MPI Allreduce and MPI Reduce, which are very common communication subroutines. For a given optimization
of GTC, the application performance was improved by up to 18.97% on up to 2048 processors. For a given
optimization of LBM, the application performance was improved by up to 15.77% when utilizing all processors
per node. For a given optimization of GYRO, the application performance was improved by up to 12.29% when
utilizing all processors per node. This is important because with CMP clusters, the only way to access a large
number of processors is to use all processors per node.

The remainder of this paper is organized as follows. Section 2 discusses the architecture and memory
hierarchy of the five supercomputers used in our experiments, and presents their MPI performance when utilizing
different configurations of the node hierarchy. Section 3 discusses application optimization methods used to refine
the applications. Section 4 investigates performance characteristics of GTC, and presents our optimization
results. Section 5 discusses performance characteristics and optimization results of LBM. Section 6 explores
performance characteristics and optimization results of GYRO. Section 7 concludes this paper. In the remainder
of this paper, we describe a processor partitioning scheme as MxN whereby M denotes the number nodes
with N processors per node (PPN). The job scheduler for each supercomputer always dispatches one process
to one processor. All experiments were executed multiple times to insure consistency of the performance data.

2. Execution Platforms and Corresponding MPI Performance. Details about the five supercom-
puters used for our experiments are given in Table 2.1. These systems differ in the following main features:
number of processors per node, configurations of node memory hierarchy, CPU speed, multi-core processors,
and communication networks.

DataStar P655 [13] has 176 (8-way) compute nodes with 1.5GHz POWER4 and 16GB memory, and 96
(8-way) compute nodes with 1.7GHz POWER4 and 32GB memory. Each node of P655 has one MCM (Multiple-
Chip Module) with 4 chips per MCM. DataStar P690 has 7 (32-way) compute nodes. Each node of P690 has
four MCMs with 4 chips per MCM. The use of 8-way nodes for P655 is exclusive. The use of 32-way nodes on
P690 is shared among users, and the access to P690 is limited to at most five nodes.

UNC RENCI BlueGene/L [11] is a system-on-chip supercomputer, and is designed to achieve high perfor-
mance for low cost and with low power consumption. The BlueGene/L has 1024 dual 700 MHz PowerPC 440
nodes with 1GB memory per node. Note that L2 cache is a prefetch buffer that holds 16 128-byte lines.

Seabog [8] is a distributed memory computer with 6,080 processors available to run scientific applications.
The processors are distributed among 380 compute nodes with 16 PPN and a shared memory pool of size
16-64GB (312 nodes have 16GB; 64 nodes have 32GB; 4 nodes have 64GB) per node. The use of 16-way nodes
is exclusive. Bassi [8] is a distributed shared memory computer with 888 processors available to run scientific
applications. The processors are distributed among 111 compute nodes with 8 PPN and a shared memory pool
of 32GB per node. The use of 8-way single-core POWER5 nodes is also exclusive. Only Bassi is configured to
use 20GB large page on each node. The large page uses hardware prefetch mechanisms to eliminate costly TLB
misses at the expense of an increase in process start-up time.
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Table 2.1
Specifications of five supercomputer architectures

Configurations P655 BlueGene/L P690 Seaborg Bassi
Number of Nodes 272 1024 7 380 111

MCMs/Node 1 NA 4 NA NA
chips/MCM 4 NA 4 NA NA
Cores/chip 2 2 2 1 1
CPUs/Node 8 2 32 16 8
CPU type 1.5,1.7GHz 700 MHz 1.7GHz 375MHz 1.9GHz

POWER4 PowerPC POWER4 POWER3 POWER5
Memory/Node 16,32GB 1GB 128GB 16-64GB 32GB
L1 Cache/CPU 64/32 KB 32KB 64/32 KB 32/64 KB 64/32 KB
L2 Cache/chip 1.41MB 128-byte lines 1.41MB 8MB 1.92MB
L3 Cache/chip 32MB 4MB 32MB NA 36MB

Network Federation 3D Torus Federation Colony Federation

2.1. Multi-Chip Module and Processor Affinity. In this section, we address processor affinity (i. e.,
how processes are dispatched to processors) and its policy in the following CMP clusters: P655, P690, and
BlueGene/L. Although Bassi is POWER5 system, it is configured with only one active core per POWER5 chip.
Seaborg is a POWER3 system with one processor per chip.

Fig. 2.1. A logical view of a MCM [1]

Fig. 2.1 shows the logical view of a POWER4 MCM. The MCM is used as an eight-way basic building
block. Each MCM has four POWER4 chips; the two processors on the same chip share L2 and L3 caches. The
logical interconnection of four POWER4 chips is point-to-point with uni-directional buses connecting each pair
of chips to form an 8-way SMP with an all-to-all interconnection topology. P655 has one MCM per node. With
the single MCM configuration, each chip always sends requests, commands and data on its own bus, but snoops
all buses for requests or commands from other MCMs. Multiple MCMs can be interconnected to form larger
SMPs, such as P690 with four MCMs, by extending each bus from each module to its neighboring module in
one direction.

The processor affinity policy for POWER4 and POWER5 is discussed in [4]. When a virtual processor is
dispatched, it is first dispatched onto the same physical processor that it last ran on. Otherwise, it will be
dispatched onto the first available processor in the following order: on the same chip, then to another chip on
the same MCM, then to a chip on the same node.

Fig. 2.2 presents the bi-directional MPI bandwidth comparison on P690 using processor binding (e.g., we
use IBM AIX command bindprocessor to implement processor binding and use Intel’s IMB benchmark Sendrecv
to measure bi-directional bandwidth). We use the term PPM to denote processors per MCM and PPC to
denote processors per chip. We measure the MPI bandwidth at the following levels: within a chip (Same),
across two chips on one MCM (Chips), across two MCMs (MCMs) or across two nodes (Nodes) on P690.
The results indicate that using two processors within a chip results in much better bandwidth than using one
processor per chip (on the same MCM) or using one processor per MCM or per node for small or medium
message sizes in the range of 1 byte to 256KB messages. It is interesting to note that the bandwidth for the
message size of 256KB or larger on P690 is very similar for using two processors in the same chip or using two
processors across different chips (but on the same MCM) or using two processors on the different MCMs of the
same node; using two nodes still resulted in poor bandwidth for large message sizes.
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Fig. 2.2. Bi-directional bandwidth comparison on P690 using processor binding

3. Application Optimization Methods.

3.1. Loop Optimizations. Much of the computation involved in scientific applications such as LBM,
GTC and GYRO occurs within nested loops. Therefore, loop optimization is fundamentally important for such
applications. In this section, we discuss loop blocking, loop unrolling and loop fusion to optimize the scientific
applications.

Loop blocking is a well-known loop optimization technique to aid in taking advantage of memory hierarchy;
its main purpose is to eliminate as many cache misses as possible. This technique transforms the memory
domain of an application into smaller chunks, such that computations are executed on the chucks that easily fit
into cache to maximize data reuse. The optimal loop block size varies with different applications on different
systems. In this paper, we apply the following loop block sizes: 2x2, 4x4, 8x8 and 16x16 to the three scientific
applications to measure which loop block size is optimal. Our experimental results indicate that the optimal
loop block size is 2x2 on BlueGene/L and 4x4 on P655 for GTC, and 16x16 on BlueGene/L and 4x4 on P655
for LBM and GYRO.

Loop unrolling is a well-known code transformation technique that replicates the original loop body multiple
times, adjusts the loop termination code and eliminates redundant branch instructions. Outer loop unrolling
can increase computational intensity and minimize load/stores, while inner loop unrolling can reduce data
dependency and eliminate intermediate loads and stores. We combine inner and outer loop unrolling to optimize
the scientific applications. For examples, we unroll the inner loops four times for four major double nested loops
in GTC code so that we reconfigure the double nested loops into the single loops, then use compiler directives
for further loop unrolling.

The performance for the hand-tuned scientific codes using loop blocking and unrolling can be further
improved by using compiler directives, which are hardware-specific. The IBM XL Fortran compiler provides
some hardware-specific directives for performance optimization, such as –qdirective=UNROLL AND FUSE [4].
The UNROLL AND FUSE directive instructs the compiler to allow loop unrolling and fusion where applicable.
Loop fusion is also a code transformation technique. It minimizes the required number of loop iterations, and
improves data locality by increasing data reuse in registers and cache. For each execution environment used in
this study, we utilize the appropriate compiler directives to further optimize the code.

3.2. Hybrid Methods for MPI Allreduce and MPI Reduce. In this section, we present our hybrid
methods to optimize MPI Allreduce and MPI Re-duce, which are common in GTC and GYRO. In scientific
applications, especially GTC and GYRO, MPI Allreduce dominates the most communication time. In order to
optimize MPI Allreduce, we incorporate the following hybrid method that we implemented:

• Use Intel’s MPI benchmarks to measure the performance of the original MPI Allreduce with different
message sizes on each cluster,
• Measure the performance of Rabenseifner’s algorithm for allreduce in [14] with different message sizes

on the same cluster,
• Compare both performance to decide message size ranges for the best performance,
• Implement a hybrid method for MPI Allreduce based on the message size ranges (basically using the

original algorithm at small message sizes and the Rabenseifner’s algorithm otherwise).



Performance Analysis and Optimization of Parallel Scientific Applications on CMP Clusters 65

Table 4.1
Datasets with scaling the number of processors for GTC

Processors 2 4 8 16 32 64 128 256 512 1024 2048
micell 100 100 100 100 100 100 200 400 800 1600 3200
mecell 100 100 100 100 100 100 200 400 800 1600 3200

mzetamax 2 4 8 16 32 64 64 64 64 64 64
npartdom 1 1 1 1 1 1 2 4 8 16 32

Rabenseifner’s algorithm performs a reduce-scatter followed by an allgather for MPI Allreduce, and the
algorithm also performs a reduce-scatter followed by a gather for MPI Reduce. The hybrid method takes
different systems and message sizes into account in order to optimize MPI Allreduce. We also use the similar
hybrid method to optimize MPI Reduce. A MPI program is required to be recompiled with our own MPI
library for the two subroutines Allreduce and Reduce.

4. Gyrokinetic Toroidal Code (GTC). The Gyrokinetic Toroidal code (GTC) [2] is a 3D particle-in-cell
application developed at the Princeton Plasma Physics Laboratory to study turbulent transport in magnetic
fusion. GTC is currently the flagship SciDAC fusion microturbulence code written in Frotran90, MPI and
OpenMP. Fig. 4.1 shows a visualization of potential contours of microturbulence for a magnetically confined
plasma using GTC. The finger-like perturbations (streamers) stretch along the weak field side of the poloidal
plane as they follow the magnetic field lines around the torus [12]. Fig. 4.2 presents the basic steps in the GTC
code.

Fig. 4.1. Potential contours of microturbulence for a magnetically confined plasma [12]

Fig. 4.2. Particles in cell (PIC) steps [2]

The test case for GTC studied in this paper is 100 particles per cell and 100 time steps. The problem sizes
for the GTC code are listed in Table 4.1, where micell is the number of ions per grid cell, mecell is the number
of electrons per grid cell, mzetamax is the total number of toroidal grid points, and npartdom is the number of
particle domain partitions per toroidal domain.

4.1. Application Performance Analysis. In this section, we investigate how different number of PPN
impacts the application performance. Runtime (unit: seconds) indicates the total application execution time,
which also includes I/O time. Table 4.2 provides the performance results from P655 for dispatching two processes
to two processors on the same chip, two processors on different chips on the same MCM, and two processors
across two nodes. The percentage given next to runtime corresponds to the increase in runtime comparing
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Table 4.2
Performance comparisons of GTC on 2 processors on P655

Across 2 nodes Across 2 chips Within a chip
Metrics 2x1/1PPC 1x2/1PPC 1x2/2PPC

Runtime (% difference) 984.26 (baseline) 990.02 (0.59%) 1114.32 (13.21%)
L1 hit rate 92.356% 92.375% 92.386%

TLB miss rate 0.005% 0.005% 0.005%
L2 bandwidth/processor 4618.906MB/s 4582.185MB/s 4071.585MB/s

% accesses from L2 2.228% 2.214% 2.235%

Table 4.3
Performance comparisons of GTC on 2 processors on P690

Across 2 nodes Across 2 MCMs Across 2 chips Within a chip
Metrics 2x1/1PPM-1PPC 1x2/1PPM-1PPC 1x2/2PPM-1PPC 1x2/2PPM-2PPC
Runtime 980.23 994.58 1001.49 1009.66

(% difference) (baseline) (1.46%) (2.17%) (3.00%)
L1 hit rate 92.515% 92.48% 92.457% 92.475%

TLB miss rate 0.005% 0.005% 0.005% 0.005%
L2 bandwidth 4578.505 MB/s 4499.834 MB/s 4491.888 MB/s 4457.119 MB/s

/processor
% accesses 2.211% 2.181% 2.177% 2.16%
from L2

to the baseline configuration corresponding to using one processor per node (or the least amount of sharing
of node resources). There is 13.21% increase in execution time when using two processors within the same
chip (1x2/2PPC) due to contention resulting from the sharing of resources, such as L2 and L3 caches. For
the case of using one processor per chip with two chips in the same MCM (1x2/1PPC), there is a very small
increase in execution time (only 0.59%). Recall that each node on P655 has one MCM, which consists of four
dual-core POWER4 chips. Table 4.2 also presents the hardware counters’ performance using hpmcount [5]. The
hardware counters indicate large difference (11.85%) in L2 bandwidth per processor for the two cases of using
one processor per node versus using two processors within the same chip. Hence, there is significant contention
for L2 when using two processors within the same chip.

Table 4.3 shows the performance results for dispatching two processes to two processors on the same chip,
on two different chips on the same MCM, or two different chips on two different MCMs on P690 for two
processors, respectively. Each node on P690 has four MCMs with four dual-core POWER4 chips per MCM
shown in Table 2.1. There is only a 3.00% increase in execution time when using two processors within the
same chip (1x2/2PPC) due to contention resulting from the sharing of resources, such as L2 and L3 caches.
Comparing Table 4.3 with Table 4.2, it is clear that L2 bandwidth per processor accounts for the performance
difference when using two processors within one chip (1x2/2PPC) versus using two processors across nodes
(2x1/1PPM-1PPC).

Table 4.4 indicates the performance gaps resulting from using different PPN on a total of 64 processors on
five supercomputers. As expected, the smallest times corresponds to the minimum amount of sharing of node
resources. With increasing number of PPN, the application execution time increases. The performance data in
Table 4.4 utilized default processor affinity described in Section 2.1. For example, with the 16x4 configuration
on P655 (16 nodes with 4 PPN), the 4 processors per node were dispatched such that the only two chips were
used, whereby both cores per chip were used. The time difference between the schemes 64x1 and 8x8 is 8.51%
on P655. The time difference between the schemes 64x1 and 4x16 is 6.44% on Seaborg. The time difference
between the schemes 32x2 and 8x8 is 2.23% on Bassi. The time difference between the schemes 4x16 and 2x32 is
7.18% on P690. Because the GTC code could not be executed on UNC RENCI BlueGene/L with 2 PPN (in VN
mode) except 2048 processors, we could not collect any data for using 2 PPN on the machine. We find that the
subroutines pushi and chargei in GTC take more than 90% of the application execution time on 64 processors,
and are sensitive to different memory access patterns and communication patterns for different PPN.

Table 4.5 illustrates that impact of using processor binding to reduce contention of chip resources. Using 1
processor per chip (1PPC) results in approximately 3% decrease in execution time versus using 2 processors per
chip (2PPC) for both 32x2 and 16x4 configurations. While the difference is small, it is the case that processor
binding can aid task schedulers in maximizing the application performance in dedicated usage of CMP nodes.
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Table 4.4
Execution times (seconds) of GTC for different PPN on 64 processors

System 64x1 32x2 16x4 8x8 4x16 2x32
Seaborg 3545.08 3549.41 3574.92 3617.47 3773.43 NA
P655 1203.32 1253.83 1266.49 1305.74 NA NA

BlueGene/L 3937.46 – NA NA NA NA
Bassi – 875.11 886.54 894.64 NA NA
P690 NA NA NA NA 1210.26 1297.12

Table 4.5
Performance comparisons of GTC on P655 using processor binding

32x2 16x4
2PPC 1PPC % difference 2PPC 1PPC % difference

1253.83 1218.31 2.92 1266.49 1230.47 2.93

4.2. Application Performance Optimization. Much of the computation involved in GTC, especially
the subroutines pushi and chargei, occurs within nested loops. Therefore, we use loop blocking, loop unrolling
and loop fusion to optimize the application. We also use the hybrid method for MPI Allreduce to optimize
MPI Allreduce. Further, MPI Allreduce dominates the most communication time of the code on large number
of processors. Therefore, we use the hybrid method described in Section 3 to optimize the MPI Allreduce.
The range of message sizes are defined on different systems as follows: for P655, the hybrid method uses the
original algorithm for the message sizes of less than 1KB and the Rabenseifner’s algorithm otherwise. For
BlueGene/L, because GTC could only be executed on the number of processors with 1PPN, the hybrid method
uses the Rabenseifner’s algorithm for the message sizes of between 256 bytes and 2KB and the original algorithm
otherwise.

Our experimental results indicate that the optimal loop block size for GTC is 2x2. This block size is used
to optimize outer loops of the triple nested loops in GTC code. We also unroll the inner loops four times for
four major double nested loops in the subroutines pushi and chargei such that the double nested loops are
reconfigured into single loops. Further, we used the compiler options consistent with that given in [2].

The results of applying the aforementioned optimizations are given in Tables 4.6 and 4.7 for BlueGene/L
and P655, respectively. We performed the optimization in series so that we could quantify the results of each
optimization. These results are not given in this paper due to space. The results, however, indicated that
majority of the optimization for GTC resulted from hand-tuned loop unrolling and blocking. We achieve up to
18.97% performance improvement on BlueGene/L. It should be noted that the performance gap for P655 using
64x1 versus 8x8 was 8.51% in Table 4.4. Using the aforementioned optimizations we were able to reduce the
execution time for using all PPN by 4.99%.

5. LBM Application. The Lattice Boltzmann Method (LBM) [19] is widely used for simulating fluid
dynamics; this method has the ability to deal efficiently with complex geometries and topologies. The LBM
application is computation intensive. In our simulations, we use the D3Q19 lattice model (19 velocities in 3D)
with the collision and streaming operations. The LBM application code is divided into six kernels, which are
given below in Fig. 5.1.

Fig. 5.1. Program control flow with kernels for the LBM code
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Table 4.6
Execution time (seconds) comparison of GTC between the original and the optimized on BlueGene/L

Processors (MxN) original optimized % improvement
8 (8x1) 3804.03 3082.54 18.97%

16 (16x1) 3834.98 3124.80 18.52%
32 (32x1) 3869.60 3166.56 18.17%
64 (64x1) 3937.46 3221.31 18.19%

128 (128x1) 3919.06 3202.81 18.28%
256 (256x1) 3913.07 3208.95 17.99%
512 (512x1) 3820.28 3120.65 18.31%

1024 (1024x1) 3788.49 3096.36 18.27%
2048 (1024x2) 3808.03 3108.40 18.37%

Table 4.7
Execution time (seconds) comparison of GTC between the original and the optimized on P655

Processors (MxN) original optimized % improvement
8 (1x8) 1207.07 1144.73 5.16%
16 (2x8) 1242.56 1174.80 5.45%
32 (4x8) 1273.75 1203.32 5.53%
64 (8x8) 1305.73 1240.52 4.99%

128 (16x8) 1263.71 1201.99 4.88%
256 (32x8) 1237.22 1177.27 4.85%
512 (64x8) 1228.28 1172.25 4.56%

The description of each kernel is given below:

• Initialization: reads input files and sets up the initial parameter values.
• Collision: computes the effect of the collisions, which occur during the particle movement.
• Communication: is to communicate the needed data among neighboring blocks.
• Streaming: moves particles in motion to new locations along their respective velocities.
• Physical: calculates macroscopic variables such as fluid density, which are used in the collision and

streaming steps.
• Finalization: cleans up the program after everything is done, and outputs the results.

The kernels Collision, Communication, Streaming, and Physical stay in a loop with the number of iterations
of 200. The kernels Initialization and Finalization are executed once. The problem size for the LBM application
is a 3D mesh computational domain. In this paper, we use two problem sizes of 128x128x128 and 512x512x512
for the LBM application in our experiments.

5.1. Application Performance Analysis. Table 5.1 provides the execution times of the LBM application
with problem sizes of 128x128x128 and 512x512x512 for different PPN on a total of 32 processors across the
five supercomputers. The performance data was collected using the default processor affinity described in
Section 2.1. With increasing number of PPN, the application execution time increases significantly on Seaborg,
P655, and P690; there is very little difference in execution times on Bassi. For example, the time difference
between 1 PPN and 16 PPN on Seaborg is 21.3% for the problem size of 512x512x512, and 15.83% for the
problem size of 128x128x128. The time difference between the scheme 1 PPN and 8 PPN on P655 is 20.73% for
the problem size of 512x512x512, and 10.03% for the problem size of 128x128x128. The time difference between
the scheme 8 PPN and 32 PPN on P690 is 17.79% for the problem size of 512x512x512, and 23.53% for the
problem size of 128x128x128.

Table 5.2 indicates the results from using processor such that only one core per chip is used thereby
minimizing resource sharing. The results indicate a 4.71% decrease in execution time for the 16x2 configuration
and a 6.75% reduction in execution time for the 8x4 configuration. This indicates that processor binding can
aid task schedulers in maximizing the application performance in dedicated usage of CMP nodes.

Table 5.3 provides the following details about the performance characteristics for LBM with problem size
of 512x512x512: the L1 hit rate, L2 bandwidth (per processor), and percentage accesses from L2. Because
BlueGene/L does not support hpmcount, we did not collect its hardware level performance. With increasing
PPN, the L1 hit rate varies very little across all systems because of equal workload per processor. On P655,
the L2 bandwidth and percentage accesses from L2 decrease with an increase of PPN; this is especially the case
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Table 5.1
Execution times (seconds) of LBM for different PPN on 32 processors

System Name Problem size 32x1 16x2 8x4 4x8 2x16 1x32

Seaborg
128x128x128 94.21 94.42 95.29 98.72 109.12 NA
512x512x512 6247.87 6307.41 6418.77 6722.31 7578.84 NA

P655
128x128x128 33.09 33.38 34.57 36.41 NA NA
512x512x512 2154.94 2224.76 2361.67 2601.66 NA NA

P690
128x128x128 NA NA NA 29.15 30.35 36.01
512x512x512 NA NA NA 2198.90 2248.62 2590.18

Bassi
128x128x128 21.43 21.92 21.14 21.78 NA NA
512x512x512 1379.63 1382.30 1380.32 1384.84 NA NA

BlueGene/L
128x128x128 33.40 33.42 NA NA NA NA
512x512x512 2252.99 2253.27 NA NA NA NA

Table 5.2
Performance comparisons of LBM on P655 using processor binding

16x2 8x4
2PPC 1PPC % difference 2PPC 1PPC % difference

2224.76 2124.66 4.71 2361.67 2212.28 6.75

for the L2 bandwidth. For example, the L2 bandwidth for the 32x1 scheme is more than 11% larger than that
for the 4x8 scheme. On Bassi, there is very small difference in percentage accesses from L2 across different
PPN due to 20GB large page size, which uses hardware prefetch mechanisms to eliminate costly TLB misses.
Further, Bassi has the highest memory bandwidth and MPI bandwidth, which result in very little change in
communication rate for the different configurations. Hence, the execution time is flat for the different PPN
on Bassi. It is interesting that Bassi has the lowest L1 hit rate and correspondingly, the highest percentage
accesses from L2.

5.2. Application Performance Characteristics and Optimization. In this section, we use the LBM
application with the problem sizes of 128x128x128 and 512x512x512 to utilize the information learned from the
previous section to determine how to optimize the application.

Fig. 5.2. Execution times of LBM for different PPN on 32 processors on P655

Figs. 5.2, 5.3 and 5.4 indicate the similar performance trend for LBM with the problem size of 128x128x128
using different PPN on 32 processors on P655, Seaborg, and P690, that is, the total application execution time
increases as the number of PPN increases, and the performance of the kernel Streaming follows the pattern
of the total application execution time on P655, Seaborg, and P690. It means that the kernel Streaming is
the main cause of the increase in the total execution time. One major reason for this increase is the memory
bottleneck, which results in that large number of processors on each node have to compete for a shared memory
while the application requires enough memory for the dataset. It is interesting to see that the performance for
the kernel Communication does not change much with increasing the number of PPN, and the performance for
the dominated kernel Collision remains flat. The similar performance trend also occurs for the problem size of
512x512x512.
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Table 5.3
Memory performance for LBM with the size of 512x512x512

System Metrics 32x1 16x2 8x4 4x8 2x16

P655

L1 hit rate 98.13% 98.15% 97.99% 97.69%

NA
L2 bandwidth (MB/s) 1127.01 1098.07 1082.61 1015.14
% accesses from L2 0.618% 0.602% 0.593% 0.541%

Bassi

L1 hit rate 94.93% 92.82% 95.33% 95.85%

NA
L2 bandwidth (MB/s) 3.035 4.788 2.523 2.145
% accesses from L2 5.069% 7.177% 4.669% 4.147%

Seaborg

L1 hit rate 99.14% 99.00% 98.93% 98.88% 99.14%
L2 bandwidth (MB/s) 0.069 0.066 0.064 0.060 0.050
% accesses from L2 0.332% 0.380% 0.409% 0.420% 0.340%

Fig. 5.3. Execution times of LBM for different PPN on 32 processors on P690

Figs. 5.2, 5.3 and 5.4 also indicate how the LBM code and its kernels are sensitive to different memory
access patterns and communication patterns on the CMP clusters. This kind of performance characteristics
of the LBM code could not be found in most application performance analysis just based on a single run on
a given number of processors. The kernel collision dominates most of the application execution time, but the
performance trend for the kernel Streaming is similar to that for the total runtime on P655. Optimizing the
kernel collision does not eliminate the performance impact using different number of PPN. Hence, we focus
on optimizing Streaming, which entails moving particles in motion to new locations along their respective 19
velocities [19]. This kernel requires a significant number of memory copy operations, which causes memory
congestion when large numbers of PPN are used. In particular, Streaming consists of five triple-nested loops.
We focus on using loop blocking to optimize the outer two loops of each triple-nested loop. For the sake of
simplicity, we just present results for the large problem size of 512x512x512.

Table 5.4
Execution time (seconds) comparison of LBM between the original and the optimized on P655

Processors (MxN) original optimized % improvement Optimal block size
32 (4x8) 2601.66 2191.28 15.77% 4x4
64 (8x8) 1306.55 1110.71 14.99% 4x4

128 (16x8) 653.31 561.56 14.04% 4x4
256 (32x8) 319.71 287.71 10.01% 4x4
512 (64x8) 163.44 157.53 3.62% 16x16

1024 (128x8) 83.9 79.37 5.40% 16x16
2048 (256x8) 48.56 45.3 6.71% 16x16

Table 5.4 provides the performance comparison between the original code and the optimized for the problem
size of 512x512x512 on P655 using all PPN. The optimized code with the block size of 4x4 achieved the best
performance on 32, 64, 128 and 256 processors, but the optimized code with the block size of 16x16 obtained the
best performance on 512, 1024, and 2048 processors. For only optimizing the kernel Streaming in the original
application code, the percentage of performance improvement is up to 15.77%. Compare to the results for
different PPN on P655 in Table 5.1, where there is 20.73% time difference between the scheme 32x1 and the
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Fig. 5.4. Execution times of LBM for different PPN on 32 processors on Seaborg

4x8, our optimization reduces execution time by 15.77%. This is a big improvement. Note that the performance
improvement percentage trend decreases with increasing the number of total processors for the optimal block
size of 4x4 because of the decrease of workload per processor and the increase of the communication percentage
with increasing the number of processors. For the problem size of 512x512x512, the LBM application can only
be executed on 32 processors or more because of the large sufficient memory requirement.

Table 5.5
Execution time (seconds) comparison of LBM between the original and the optimized on BlueGene/L

Processors(MxN) original optimized % improvement Optimal Block size
32 (16x2) 2253.27 1954.95 13.24% 16x16
64 (32x2) 1280.72 1092.11 14.73% 16x16
128 (64x2) 699.71 606.83 13.27% 16x16
256 (128x2) 356.09 311.35 12.56% 16x16
512 (256x2) 153.95 150.73 2.09% 2x2

Table 5.5 provides the performance comparison between the original code and the optimized for the problem
size of 512x512x512 on RENCI BlueGene/L using all PPN. The optimized code with the block size of 16x16
achieved the best performance on 32, 64, 128 and 256 processors, but the optimized code with the block size of
2x2 obtained the best performance on 512 processors. For only optimizing the kernel Streaming in the original
application code, the percentage of performance improvement is up to 14.73%. Compare to the results for
different PPN on BlueGene/L in Table 5.1, this is a big improvement.

Hence, for the same problem size and same total number of processors, the loop blocking optimization
resulted in much larger performance improvement of the LBM application when using all the processors per
node versus one processor per node.

6. GYRO Application. GYRO [3] is an advanced Eulerian gyrokinetic-Maxwell equation solver that is
capable of facilitating a better understanding of plasma microinstabilities and turbulence flow in the tokamak
geometry. GYRO is used widely in simulating microturbulent transport in core plasma. In this section, we use
GYRO with two benchmark datasets: the Waltz Standard benchmark, B1-std, consisting of grids of size 6 x
140 x 4 x 4 x 8 x 6, and the Cyclone Base Benchmark, B2-cy, consisting of grids of size 6 x 128 x 4x 4 x 8 x 6.

6.1. Application Performance Analysis. Table 6.1 provides the execution times of the GYRO appli-
cation with B1-std and B2-cy for different PPN on a total of 32 processors. The performance data was collected
using the default processor affinity described in Section 2.1. With increasing number of PPN, the application
execution time increases significantly on Seaborg, P655, P690, and Bassi. For example, for the problem size of
B1-std, there is a 55.79% increase in the execution time with increasing the PPN from 8 to 32 on P690, 42%
increase in the execution time with increasing the PPN from 1 to 8 on P655, 9.15% increase with increasing the
PPN from 1 to 8 on Bassi, and 4.86% increase with increasing the PPN from 1 to 16 on Seaborg.

In GYRO, the subroutine get RHS, which calculates the periodic and non-periodic boundary conditions,
requires extensive global communication through the use of MPI Alltoall and MPI Allreduce operations. The
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Table 6.1
Execution times (seconds) of GYRO for schemes on 32 processors

System Problem 32x1 16x2 8x4 4x8 2x16 1x32
Name size

Seaborg
B1-std 9177.38 9208.42 9280.395 9322.49 9623.39 NA
B2-cy 21108.59 21132.95 21245.59 21441.89 21849.849 NA

P655
B1-std 390.14 449.75 484.13 554.24 NA NA
B2-cy 910.09 972.17 1046.47 1158.01 NA NA

BlueGene/L
B1-std 1378.41 1379.20 NA NA NA NA
B2-cy 2983.37 2988.42 NA NA NA NA

Bassi
B1-std 310.62 318.04 325.67 341.917 NA NA
B2-cy 697.79 714.17 724.49 765.25 NA NA

P690
B1-std NA NA NA 443.64 501.01 691.15
B2-cy NA NA NA 987.61 1146.11 1489.69

MPI Alltoall and MPI Allreduce subroutines account for more than 95% of the total communication across all
platforms. It is noted that the performance of these routines are highly inefficient for using all PPN on P655,
and the communication rate increases from 8.52% to 11.33% with increasing the PPN. We find that kernel 3
which computes the RHS of the electron and ion GKEs for both periodic and nonperiodic boundary conditions,
and kernel 5 which computes the newly needed RHS in GYRO, dominate the application execution time, and
are sensitive to memory access patterns and communication patterns for different processors per node.

Table 6.2
Performance comparisons of GYRO on P655 using processor binding

16x2 8x4
2PPC 1PPC % difference 2PPC 1PPC % difference
449.75 423.36 5.89 484.13 449.48 7.16

Table 6.2 indicates that using processor binding can achieve the better results for the 16x2 and 8x4 schemes.
Using one processor per chips results in a 5.89% decrease in execution time for the 16x2 configuration and a
7.16% decrease in execution for the 8x4 configuration. This indicates that processor binding can aid task
schedulers in maximizing the application performance in dedicated usage of CMP nodes.

6.2. Application Performance Optimization. In this section, we use the GYRO application with the
problem size of B1-std to utilize the information learned from the previous performance analysis to determine
how to optimize the application. It is noted that similar results occur for the problem size of B2-std.

Given the results of the application characterization and the kernel performance, we focus on optimizing
the MPI Allreduce implementation to take advantage of the CMP clusters. In particular, we consider the
communication architectures and message sizes to develop an adaptive communication pattern to optimize
the MPI Allreduce. Such improvements impact kernels 3 and 5. The results shown in Table 6.3 illustrate
the improvements that have been achieved utilizing a hybrid implementation of the MPI Allreduce routine
for different message size ranges. The message size ranges for MPI Allreduce are defined on P655 as follows:
the hybrid method uses the original algorithm for the message sizes of less than 1KB and the Rabenseifner’s
algorithm otherwise. This optimization also consists of loop blocking the outer nested loops of the get RHS
subroutine used in kernel 3 and kernel 5 with the optimal block size of 4x4. The compiler optimization utilizing
the UNROLL AND FUSE option is applied to the entire code.

It is noted that the performance improvements in Table 6.3 are representative of an optimization on a
small segment of the GYRO code, with respect to the get RHS subroutine. The results indicate performance
improvement up to 9.33% on P655 and up to 12.29% on BlueGene/L. It is noted that, however, from Table 6.1
a performance difference of 42% on B1-std when increasing the PPN from 1 to 8 on P655 using a total of 32
processors. In Table 6.3, however, the performance improvement is 7.81%. The performance improvement is
very good when we consider that only part of the GYRO code, kernels 3 and 5, were optimized. Further, only
about one third of each of these two kernels was optimized. The improvement illustrates proof of concept. To
achieve close to the 42% performance gap, we need to optimize the entire GYRO code.

Performance improvements on BlueGene/L are a result of using a hybrid MPI All-reduce scheme, loop
blocking (with the optimal block size of 16x16) to kernel 3 and kernel 5, and a compiler optimization using
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the UNROLL AND FUSE option shown in Table 6.4. Note that the MPI Alltoall routine did not significantly
impact the performance on the BlueGene/L system. The message size ranges for MPI Allreduce are defined on
BlueGene/L: the hybrid method uses the original algorithm for the message sizes of less than 256 bytes and the
Rabenseifner’s algorithm otherwise.

Note that the performance improvement percentage trend decreases with increasing the number of processors
in Tables 6.3 and 6.4 because of the decrease of workload per processor and the increase of the communication
percentage with increasing the number of processors and the fixed problem size.

Table 6.3
Execution time (seconds) comparison of GYRO between the original and the optimized on P655

Processors (MxN) original optimized % improvement
16 (2x8) 1130.2923 1024.7543 9.33%
32 (4x8) 554.24 510.93 7.81%
64 (8x8) 276.78 260.58 6.21%

128 (16x8) 146.91 136.79 6.88%
256 (32x8) 84.81 81.05 4.43%
512 (64x8) 61.46 58.939 4.10%

Table 6.4
Execution time (seconds) comparison of GYRO between the original and the optimized on BlueGene/L

Processors (MxN) original optimized % improvement
16 (8x2) 2746.85 2409.21 12.29%
32 (16x2) 1379.20 1210.66 12.22%
64 (32x2) 761.45 697.09 8.45%
128 (64x2) 410.70 372.69 9.25%
256 (128x2) 235.09 214.00 8.97%
512 (256x2) 161.02 150.01 6.83%
1024 (512x2) 121.38 114.37 5.77%

7. Conclusions. This paper used three large-scale, scientific applications, GTC, LBM and GYRO , to an-
alyze the performance impact of the sharing of node resources on five supercomputers, P655, P690, BlueGene/L,
Seaborg and Bassi. The experimental results indicated that there can be a significant difference in execution
time when using different numbers of processors per node and using different numbers of cores per chip, chips
per MCM, and different numbers of MCMs. Memory bandwidth contention, especially L2 cache, is the primary
source of performance degradation. Using the loop optimization techniques which aids in taking advantage of
advanced memory hierarchy and the hybrid communication optimization methods, the performance can be im-
proved by up to 18.97% for GTC, up to 15.77% for LBM, and up to 12.29% for GYRO on up to 2048 processors
when utilizing all processors per node. Hence, understanding the application and system characteristics can
lead to optimization that aids in the efficient use of all processors per node. Future work is focused on further
optimizing the entire GYRO code by considering how its kernels interact with each other using kernel coupling
techniques [15, 18].
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MINIMIZATION OF DOWNLOAD TIME VARIANCE IN A DISTRIBUTED VOD SYSTEM∗

ANNE-ELISABETH BAERT†, VINCENT BOUDET†, ALAIN JEAN-MARIE†, AND XAVIER ROCHE†

Abstract. In this paper, we examine the problem of minimizing the variance of the download time in a particular Video on
Demand System. This VOD system is based on a Grid Delivery Network which is a hybrid architecture based on P2P and Grid
Computing concepts. In this system, videos are divided into blocks and replicated on hosts to decrease the average response time.
The purpose of the paper is to study the impact of the block allocation scheme on the variance of the download time. We formulate
this as an optimization problem, and show that this problem can be reduced to finding a Steiner System. We analyze different
heuristics to solve it in practice, and validate through simulation that a random allocation is quasi-optimal.

Key words: performance evaluation, video on demand, approximation algorithms, constraint optimization problem, simula-
tion.

1. Introduction and Problems. This paper is about the replication of data in a particular Grid Delivery
Network (GDN). A GDN is a distributed data delivery system that is able to provide video services, among
which Video On Demand (VOD). The idea of VOD is to allow users to request video documents at any time,
without a preestablished time schedule. One of the main challenge of GDN system resides therefore in ensuring
that users can download video at any time with guaranteed, pre-established download time.

The recent literature has pointed out the interest of using distributed systems for massive video distribution
[9, 12, 13]. Documents replication and repartition can also solve some performance problems for video distri-
bution, and is an effective way to improve the performance of video download time. Those problems have been
studied extensively in the literature [2, 13, 10]. Ibaraki et al. employed a replication optimization technique
borrowed from the theory of resource allocation problems [5]. Chou et al. gave a comparison of scalability and
reliability characteristics of servers by the use of stripping and replication [2].

Venkatasubramanian et. al. proposed a family of heuristic algorithms for dynamic load balancing in a
distributed VOD server [10]. Zhou et al. formulate the problem of video replication and placement on a
distributed storage cluster as a combinatorial optimization problem [13].

For a popular document, increasing its replication may decrease its download time. However, as the
total storage of the system is usually fixed, increasing its replication implies to decrease the replication of
other documents. Video replication and placement algorithms based on popularity were therefore developed in
[4, 9, 12]. In these algorithms, the most popular videos are all duplicated on the servers, the problem is then
to find how much the less popular documents should be replicated. The response waiting time problem is then
restricted to certain videos. In [8], the authors analyzed the impact of the division of the documents into blocks
on availability and average download time in a general, BitTorrent-like P2P file systems.

As this brief review of the literature shows, there already exist many replication and placement algorithms
aimed at optimizing the average download time for videos. However: on the one hand, none of these models
applies directly to the GDN architecture, and on the other hand, no attention has been given yet to optimizing
the variance (or the standard deviation) of download times. Yet, the system can foresee statistically and
guarantee the download time only if this variance is small. This is the question we address in the present paper.
We have shown in a previous work [1] that with an appropriate replication factor, the average download response
time is independent of the allocation methods. On the other hand, we showed that the allocation methods have
a direct impact on the variance of response waiting time.

The remainder of this paper is structured as follows. In Section 2, we briefly describe the architecture
of the system, we also summarize some of the most important differences between GDN and traditional P2P
approaches for VOD. In Section 3, we formulate the problem of minimizing the variance of the waiting time as
a combinatorial optimization problem called MINVAR. We study this objective function and show the difficulty
of this problem. We compute a lower bound on the optimal value for this objective function. In Section 4 we
analyze some heuristics to solve the MINVAR problem. We evaluate them in Section 5 our algorithms using
extensive simulations representing different situations. Section 6 concludes the paper.
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2. Grid Delivery Network description. The system under study is a hybrid architecture based on
ideas from P2P Networking and “Grid Computing” called the Grid Delivery Network (GDN). This concept
uses the principle of Grid Computing to keep the control of this centralized network. However, to optimize the
data transmission and to propose a document delivery network within guaranteed time, this network uses the
transport capacity of Peer to Peer networks, through its capacity of multi-source data delivery.

Fig. 2.1. Grid Delivery network’s architecture

The particular GDN system analyzed in this paper is an implementation described in [11] (see also [1]) and
represented in Figure 2.1. It is composed of a central server which manages the whole network and hosts which
are “partners” of the GDN and deliver the documents to customers. In this GDN, each host is assumed to be
a personal computer of the Grid Computing network, which is bound by contract to provide some resources to
the system. Nevertheless, hosts are not available all the time to the network; the proportion of time each host
is online is denoted with δ.

Documents are divided into pieces called “blocks”, which are distributed and replicated over the partners,
in order to improve reliability and decrease response time see Figure 2.2.

Fig. 2.2. Document Delivery in the GDN

The operation of the system is as follows. When some client wants to download a document on the GDN,
it first contacts the central server. The server sends a download plan which specifies, for each block of the
document, the identity of some host on which the block is stored. The client then executes this plan, by
downloading the blocks in parallel from the partners which are online. Then, all missing blocks are downloaded
directly from the central server (or some backup data storage).

In [1], we have proposed a probabilistic model of this GDN, and we have shown that, under appropriate
assumptions, the download time for a whole document is given by

R = a − bN , (2.1)



Minimization of download times in a VOD system 77

where N is the number of blocks of the document that happen to be available on the network, and a, b are
positive constants.

By replicating a block on several hosts, the GDN increases the probability that some available host owns
this block, and therefore that the download time will be smaller. However, as the total hosts capacity of the
GDN is limited it is not possible to replicate every document on every host. We have studied in [1] the problem
of minimizing the average response time, by picking the replication factor of each document appropriately, in
function of their popularity, and under memory constraints. We have proved that the average download time
is independent of the particular way the replicated blocks are assigned to distinct partners. On the other hand,
it turns out that this assignment has a very strong impact of the variance of the download time. Since the
Quality of Service objective of the GDN is to guarantee the download time to customers, it is important to find
assignments which minimize this variance.

3. Response waiting time optimization.

3.1. Variance of the response waiting time. We begin with computing the variance of the download
time of a particular document. According to Eq. (2.1), the variance of R is proportional to the variance of N ,
on which we concentrate in the remainder.

Let us consider a particular document D, segmented into T blocks. Let B1, · · · , BT be these blocks. Assume
that the optimal replication factor L has been computed so as to optimize the average download time [1]. Define
Uj = 1 if the block Bj is available on some online partner, 0 otherwise. Assuming that the hosts’ on-time is
uniformly distributed over time, and that hosts are independent, we have:

P(Uj = 1) = 1−
L
∏

i=1

(1− δ)

= 1− (1− δ)L .

Let N be the number of available blocks of the document D. We have N =
∑T

j=1 Uj. The variance of N is
given by:

Var(N) =

T
∑

j=1

Var(Uj) +
∑

k 6=j

Cov(Uk, Uj) . (3.1)

We denote by L(j) the list of hosts which own the block Bj . It is known that, using the notation δ̄ = 1− δ,

Cov(Uk, Uj) = E(UkUj)− E(Uk)E(Uj)
(3.2)

= δ̄|L(k)∪L(j)| − δ̄|L(k)|+|L(j)| .

The variance of Uj is given by :

Var(Uj) = E(Uj
2)− E(Uj)

2

(3.3)
= δ̄|L(j)| − δ̄2|L(j)| .

We have :

|L(k) ∪ L(j)| = |L(j)|+ |L(k)| − |L(k) ∩ L(j)| .

We use the assumption that the replication factor is the same for each block i. e. |L(j)| = L , ∀j, we obtain for
Eq. (3.1):

Var(N) = Tγ−L(1− γ−L) + γ−2L
∑

k 6=j

(

γ|L(k)∩L(j)| − 1
)

where γ = (1− δ)−1.
Accordingly, minimizing Eq. (3.1) is equivalent to minimizing the following objective function

∑

k 6=j

γ|L(k)∩L(j)| .
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3.2. The MINVAR Problem. In this part, we define the MINVAR problem in the language of combi-
natorial optimization.

Definition 3.1. Given a bipartite graph G = (T ,P , E), where T , P are a set of vertices and E the set of
edges, we define the interference function as

J(G, γ) =
∑

b6=b′∈T
γ|L(b)∩L(b′)| , (3.4)

where L(b) denotes the neighborhood of b. Obviously, the problem does not depend on the nature of the sets
T and P but only on their size.

Our problem is the following:
Definition 3.2. The MINV AR(T, P, L, γ) optimization problem consists in finding one bipartite graph

G = (T ,P , E) with |T | = T and |P| = P , which minimizes the interference function J(G, γ) under constraints

∀b ∈ T , |L(b)| = L . (3.5)

3.3. Complexity of MINVAR. Now, we turn on the complexity of the MINVAR problem.
Definition 3.3 ([3, 7]). A Steiner system S(B, L, P ) is a collection of L-subsets (also called blocks) of a

P -set such that each B-tuple of elements of this P -set is contained in a unique block.
We have the following:
Theorem 3.4. There is a Steiner system S(B, L, P ) iff there is a solution G of the MINV AR(T, P, L, γ)

problem with

T =
P !(L−B)!

L!(P −B)!
and γ = T (T − 1) + 1 (3.6)

that satisfies J(G, γ) < γB.
Proof.
If there is a collection C solution of the Steiner system S(B, L, P ), then we can assign to each vertex b ∈ T

the neighborhood that matches one of the subsets of C. There is exactly

P !(L−B)!

L!(P −B)!

subsets in C. So each pair (b, b′) ∈ T 2, b 6= b′ shares at most (B − 1) neighbors. We have created a solution G
such as

J(G, γ) ≤ T (T − 1)γB−1

< γB .

On the contrary, if there is a solution G of the MINVAR problem, i. e.,

T =
P !(L−B)!

L!(P −B)!
, and γ = T (T − 1) + 1 (3.7)

with J(G) < γb then we define a solution of S(B, L, P ) such as the collection C = {L(b)|b ∈ T }. As J(G) < γB,
each subset of P of size L appears at most once in C. Furthermore, we have

P !(L−B)!

L!(P −B)!

(

L

B

)

=

(

P

B

)

then each subset of P of size L appears; we have a Steiner system S(B, L, P ).
Remark 1. In fact, finding the optimal solution of MINV AR(T, P, L, γ) with

T =
P !(L −B)!

L!(P −B)!
and γ > T (T − 1)

is equivalent to know if there exists a Steiner system S(B, L, P ).
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It is well-known that Steiner systems are very difficult to find. Therefore Problem MINV AR(T, P, L, γ) is
a complex problem in the general case with no obvious efficient algorithmic solution.

We now provide a lower bound for the interference function J(G, γ), which will be useful later to validate
solution heuristics.

Theorem 3.5. For every bipartite graph G = (T ,P , E) with |T | = T and |P| = P and such that |L(b)| = L
for all b ∈ T , we have:

J(G, γ) ≥ T (T − 1) γ

T 2L2/P − TL + q(P − q)/P

T (T − 1) , (3.8)

where q = (TL) mod P .
Proof. We have, using the convexity of the power function f(x) = γx:

J(G, γ)

T (T − 1)
=
∑

b6=b′

1

T (T − 1)
γ(|L(b)∩L(b′)|)

≥ γ(
P

b6=b′
1

T (T−1)
|L(b)∩L(b′)|) .

Using the notation 1b,p = 1 if p ∈ L(b) and 0 otherwise,

∑

b6=b′∈T
|L(b) ∩ L(b′)| =

∑

b6=b′∈T

∑

p∈P
1b,p1b′,p

=
∑

p∈P

∑

b6=b′∈T
1b,p1b′,p

=
∑

p∈P
δ(p)× (δ(p)− 1)

=
∑

p∈P
δ(p)2 − T × L .

The square function is convex and the minimum of

∑

p∈P
δ(p)2 , under constraint

∑

p∈P
δ(p) = T × L ,

is obtained for values of δ(p) = ⌊TL/P ⌋ or δ(p) = ⌈TL/P ⌉.
We decompose TL = Pr + q with 1 ≤ q < P , and any vector (δ(p))p which components are q times the

value r + 1 and P − q times the value r minimizes the function while obeying the constraint. Evaluating the
function for such vectors gives the lower bound.

4. Heuristics. In this part, we analyse heuristics to solve MINV AR(T, P, L, γ) problem. We propose
differents algorithms: a greedy algorithm, two algorithms based on the round-robin paradigm, and two based
on random choices.

Algorithm 1: Greedy

Data: T , P , L and γ
Result: A bipartite graph G
begin
G = ∅
for k ∈ {1 · · ·L} do

for i ∈ {0 · · ·T − 1} do
j = argmin

j

{J(G ∪ (i, j), γ) + J((G ∪ (i, j))c), γ)}

G = G ∪ (i, j)

end
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4.1. Greedy Algorithm. This algorithm begins with an empty graph and, at each iteration, finds the
edge which minimizes J(G, γ)+J(Gc, γ), where Gc is the complementary bipartite graph of G. It turns out that
this algorithm gives better results than a simple greedy algorithm that would minimize J(G, γ) at each step.
This is illustrated by the example (where L = 2 and γ = 3) given by Figure 4.1 .

Fig. 4.1. A greedy example for L = 2 and γ = 3

Starting from the graph represented with continuous edges, choosing any of the dotted edges gives the same
result for J(G, γ), but only the edge (3, 2) minimizes J(G, γ)+ J(Gc, γ). It turns out that this is the only choice
towards the optimal solution. Minimizing J(G, γ)+ J(Gc, γ) therefore guides the choice of edges towards better
solutions.

4.2. Round-Robin Algorithm. Round-robin algorithms are generally based on a cyclical scan of vertices
or edges. We propose two variants.

Algorithm 2: Blocks Round-Robin (BRR)

Data: T , P and L
Result: A bipartite graph G
begin
G = ∅ ; j = 0
for i ∈ {0 · · ·T − 1} do

for k ∈ {1 · · ·L} do
G = G ∪ (i, j) ;j = j + 1 mod P

end

In this Blocks Round-Robin (BRR) algorithm, we give as neighborhood to each vertex of T , the L “next”
vertices of P .

Algorithm 3: Mixed Round-Robin (MRR)

Data: T , P and L
Result: A bipartite graph G
begin
G = ∅
j = 0
for k ∈ {1 · · ·L} do

for i ∈ {0 · · ·T − 1} do
while (i, j) ∈ G do

j = j + 1 mod P

G = G ∪ (i, j)
j = j + 1 mod P

end
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In the Mixed Round-Robin (MRR) algorithm, we scan simultaneously the vertices of T and P , and select
the corresponding edge unless it is already in the graph; in that case the corresponding partner is skipped. After
L turns, each vertex of T has a complete neighborhood.

4.3. Random Algorithms. The RandomSubset algorithm computes for a vertex b its neighborhood
of size L among the P possible vertices. It draws uniformly at random one neighborhood among the

(

P

L

)

possibilities.

Algorithm 4: RandomSubset

Data: b, P and L
Result: L vertices from a vertex b
begin

S = ∅
while |S| < L do

j = random(1 · · ·P )
S = S ∪ (b, j)

end

The Random Algorithm simply performs such a choice, independently, for each b ∈ T .

Algorithm 5: Random

Data: T , P and L
Result: A bipartite graph G
begin
G = ∅
for b ∈ {0 · · ·T − 1} do

S=RandomSubset(b, P , L)
G = G ∪ S

end

We show now that it is possible to compute the average value of the objective function for such randomly
generated solutions. The key result for this is the distribution of the number of common partners in two
neighborhoods.

Theorem 4.1. Let Xbb′ = |L(b)∩L(b′)| be the number partners common to both neighborhoods. For every
b 6= b′, the distribution of Xbb′ is given by:

P(Xbb′ = k) =

(

L

k

)(

P−L

L−k

)

(

P

L

) and

E(Xbb′) =
L2

P
.

Proof. If k elements of P are common between L(b) and L(b′), the set L(b′) is formed by adding L − k
elements chosen among the L−P elements that are not in L(b′) (see the interpretation of the Chu-Vandermonde
convolution in e.g. [6, p. 56]). Hence the formula for P(Xbb′ = k). As a consequence,

E(Xbb′) =
L
∑

k=0

kP(Xbb′ = k) =
L
∑

k=0

(L− k)

(

L

k

)(

P−L

k

)

(

P
L

)

= L

L
∑

k=0

(

L

k

)(

P−L

k

)

(

P

L

) −
L
∑

k=0

k

(

L

k

)(

P−L

k

)

(

P

L

)

= L− (P − L)

(

P−1
L−1

)

(

P

L

) =
L2

P
.
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Remark 2. In practical cases, Theorem 4.1 gives us the average number of the blocks in common for a
given number of partners in the GDN. For example, if the number of partners is 100 and if L < 10, we can
conclude that this number of blocks in common is less than 1 in the GDN.

Corollary 4.2 gives the average value of the objective function for this algorithm.
Corollary 4.2. If G is the graph generated by Algorithm 5, then the average interference function is

E(J(G, γ)) =
T (T − 1)
(

P

L

)

L
∑

k=0

γk

(

L

k

)(

P − L

L− k

)

.

If we are convinced that it is possible to find a solution where |L(b) ∩ L(b′)| ≤ K for each b, b′ ∈ T ,
then we may improve the random algorithm : we refuse to accept a neighborhood that has more than K
vertices in common with the previous neighborhoods. After Nb Max unsuccessful tries, we increase K to
accept neighborhoods more easily.

For example, if we consider 100 partners and the replication L = 30, we obtain by theorem 4.1 an average
intersection of 9. We may want to consider the following constraint: forbid an intersection number greater than
K = 5. We come back to the effectiveness of this idea in Section 5.

Thus we obtain the variant fully described in the following Algorithm named Random2.

Algorithm 6: Random2

Data: T , P , L, Nb Max and K
Result: A bipartite graph G
begin
G = ∅
for b ∈ {0 · · ·T − 1} do

OK=false
nb=0
while !OK do

S=RandomSubset(b, P , L)
OK=true
for b′ ∈ {0 · · · b− 1} do

if |L(b′) ∩ S| > K then
OK=false
nb=nb+1

if nb > Nb max then
nb=0
K=K+1

G = G ∪ S

end

5. Experimental Evaluation. We proceed now to determine how well these algorithms perform. Since
the optimal solution to problem MINVAR is not known, we compare the outcome of the algorithms with an
ideal situation given by the theoretical lower bound given in Theorem 3.5. In this section, we describe the
experimental settings and then discuss the results.

5.1. General settings. We have built a specific simulator for the heuristics of Section 4. The program
implements the three deterministic algorithms, and for the random algorithms, it allows to generate any specified
number of independently drawn samples. We have carried out extensive experiments to evaluate the respective
performance of the algorithms. In all simulations, we assume γ = 2, which corresponds to an availability of
δ = 50% for hosts. The size of documents ranges from T = 100 to 1000 blocks. The number P of hosts is 10 or
100, see the figure’s captions.

5.2. Comparison. Figures 5.1, 5.2 and 5.3 display the ratio of the objective function to the lower bound of
Proposition 3.5, for various sets of parameters. We observe on those figures that the two round robin algorithms
have a relatively bad performance, which becomes very bad for large values of L.
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Fig. 5.1. Algorithms Performance for P=100, L=4
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Fig. 5.2. Algorithms Performance for P=100, L=10

In real data distribution schemes, these two algorithms are often used because of their simplicity. It is
interesting to see that for the present optimization problem, their performance is very far from the lower bound.
In addition, the result of MRR appears to suffer sometimes from large fluctuations of arithmetic nature.

Another information is that the performance of the greedy algorithm is very dependent on the data. For
some values of T , its results are better but for some other worst, than the random algorithms. Generally, the
algorithm seems to perform well for small L and P parameters. When P gets large, the algorithm performs
relatively well if L is small (ex. L = 4), but degrades if L is larger (ex. L = 10).

The figures also show that the greedy algorithm and the two random algorithms are very close to the lower
bound when L is not too large.

We investigate this issue more closely using Figure 5.4, which is a zoom on Figure 5.3. This figure, as
well as Figure 5.1, top, suggest that all three algorithms have an asymptotically robust performance when T
is large, in the sense that their performance ratio remains bounded. However, the greedy algorithm turns out
to be numerically unstable. Evaluating the J function is very hard for large values of T , L and P . Another
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Fig. 5.3. Algorithms Performance for P=10, L=4
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Fig. 5.4. Best algorithms comparison

disadvantage for the greedy algorithm is its algorithmic complexity: it is O(PLT 3) whereas the complexity of
the random algorithms is O(PLT ).

It appears therefore that the random algorithms are the best choice to determine a good block allocation.

5.3. Analysis of the random algorithm. Focusing now on the random algorithms, we compare in
Figure 5.5 the average of the 1000 experiments with the best allocation found among them. For the Random2
algorithm, we take Nb Max = 1000.

We observe that the ratio is very close to 1; the standard deviation is actually very small. We conclude
that in practice, the first allocation obtained by a random algorithm is probably already close to the optimal
solution.

Finally, in Figure 5.6, we compare the Random and Random2 algorithms, through the ratio of their average
and best performances.

In general, these two algorithms give similar results, but in some particular cases, there is a real improvement
for Random2. In this figure, we have P = 100, L = 30 and γ = 3 : the average interference number for each
couple of blocks is 9 (see corollary 4.2). Still, rejecting neighborhoods with more than 5 vertices in common with
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the previous neighborhoods turns out to be possible and this improves the block allocation found by 20− 40%
for a large range of document sizes. For a smaller range of documents size (between 100 and 400), we can say
that we obtain an average improvement of 80%.

6. Conclusion and future work. In this paper, we have proposed, and analyzed by simulation, various
algorithms for optimizing the variance of download times in a particular distributed architecture, by placing
appropriately replications on distributed data servers. In particular, we have shown that conventional Round
Robin algorithms do not perform well in general, and that random algorithms are the best practical choice. Our
methods have been applied to a real GDN deployment, and we are currently investigating their effectiveness in
practice.
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Abstract. With the recent flood of data, one of the major issues is the storage thereof. Although commodity HDDs are now
very cheap, appliance storage systems are still relatively expensive. As a result, we developed the VLSD (Virtual Large-Scale Disk)
toolkit to assist in the construction of large-scale storage using only cheap commodity hardware and software. As an experiment in
using the VLSD toolkit, storage was created for an educational environment. This paper presents an evaluation of the performance
of the storage by performing a GCC build on the trial production storage system both during trouble-free operation and failure.
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1. Introduction. Large-scale storage has become a necessity as we are flooded with information. Large-
scale storage is needed for research in areas involving large amounts of data, such as the Human Genome Project
or calculation engineering. In addition, a large amount of data is used privately for video and music storage, etc.
Virtual machines such as VMware and Microsoft Virtual PC 2004 allow students to learn how to maintain Linux
servers safely and are very useful in higher education, but they have large disk space requirements. VMware
recommends 8GB as the HDD capacity for running Linux and 16GB for Windows. In our experiments, we
found that running Windows actually requires 24GB HDD capacity. This means that 40-120TB HDD capacity
is needed to support 5000 students (Figure 1.1).

To service this requirement, we considered an appliance file server, with 70TB capacity. The quote for such
a file server was 250 million yen (about 2 million dollars). However, we already have 500 PCs. If we added
180GB HDDs to each PC at a cost of 150 dollars per HDD, the 70TB distributed file server could be realized at
a cost of just 75 thousand dollars. This represents a cost ratio of 1:33, making the cost saving more important
than any other factor such as performance, dependability or maintainability. Thus we proposed a distributed
storage system and have developed a toolkit that can assist in constructing such a system. We call this the
VLSD (Virtual Large-Scale Disk) toolkit. [3], [4].

When we set about constructing a large-scale storage system, we tried mounting several isolated disks using
a distributed file system such as SMB/CIFS or NFS. There are, however, two fundamental problems with this
file system based approach. The first problem is not being able to utilize the full storage capacity. For example,
when we construct 70TB of storage using 180GB HDDs, the maximum size of any file must be less than 180GB.
The total size of all files in a directory must also be less than 180GB. In addition, for some OSs it is impossible
to create a file greater than 4GB in such a physical file system. The second problem is linked to the Linux OS
platform. Almost all distributed file systems are based on the NFS protocol, which is not suited to Windows.
Windows clients have a larger capacity for HDDs than a Linux server. Thus a file system based on a distributed
storage system such as NFS can neither stripe physical storage nor concatenate disks. We therefore used a disk
based approach, in which a virtual disk was created in a distributed physical file system.

VLSD can concatenate multiple virtual disks, thus increasing the storage capacity. VLSD also supports
typical RAID classes such as RAID0, 1, 4, 5, and 6. It can construct multiple hierarchies of RAID combining
any RAID class with any other RAID class.

VLSD is independent of platform because it is written in 100% pure Java. Using a VLSD, we constructed
a trial 70TB storage system consisting of 484 PCs, with each PC providing 180GB free disk space. This system
realizes an acceptable MTTF using RAID66, which is 2 layered RAID6.

In an educational environment storage system, a great number of small files tend to be generated. This
corresponds to the Small Read and Small Write on the VLSD system. The performance of the storage built using
a VLSD was evaluated both during normal operation and at times of failure. During disk failure, performance
drops for the Small Read as illustrated by the graph in Fig. 3.9. This paper therefore, evaluates performance
by performing a GCC build on the trial storage system during times of both trouble-free service and failure.

This paper is organized as follows. Section 2 summarizes related works. Section 3 describes the VLSD,
while Section 4 explains the build and evaluation of GCC. Finally, we present our conclusions.

∗This research was assisted by department laboratory grant: “Research(195000066) of high trust by the PC grid and highly
effectivedecentralized virtual storage”.

†Department of Information and Computer Sciences, Toyo University, 2100 Kujirai, Saitama, 3508585, Japan
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Fig. 1.1. University PC classroom

2. Related Work.

2.1. RAID. RAID (Redundant Arrays of Inexpensive Disks) [1] is used to raise the reliability of large-scale
storage. It is a technique that increases the performance and fault-tolerance of data storage. These goals can
be combined and are achieved by distributing data and creating data redundancy for recovering data on two or
more hard disk drives. RAID levels are designated by integers from 0 to 6 each denoting a different structure
of data redundancy and distribution.

RAID0 is striping without redundancy and thus capacity is increased with the addition of drives. RAID1
implements mirroring. Capacity therefore does not increase with the addition of a second drive. In a RAID2
array, a disk is made to distribute each bit and data errors are corrected by ECC. Since there is little improvement
compared with a parity based system, RAID2 is hardly used. RAID3 uses parity to correct errors and carries
out striping per bit or per byte. Usually, parity is saved on a separate disk. RAID3 and RAID4 differ only in
the point at which striping is performed. Both record parity on a separate disk, which can become a bottleneck.
RAID5 distributes where parity is saved. Since a bottleneck does not occur, performance is high. RAID5 is
however, susceptible to mistakes where an operator removes the drive under drive, causing two drives to fail
simultaneously. RAID6 is an extension of RAID5 and can sustain a double failure by copying parity data twice
in two separate ways. Under RAID6 it is possible to recover without losing data even if two disks fail at the
same time.

RAID arrays are classified into software (SW) and hardware (HW) systems. HW RAID is predominant,
as SW RAID is considered to have lower performance than HW RAID and adds load to the CPU. However,
the latest CPUs have higher performance than a HW RAID controller. CPU control of SW RAID is effective
in machines such as file servers that can concentrate on the RAID operation. Moreover, SW RAID is the only
option for implementing RAID across a network.

2.2. RAID6. There are two types of parity in RAID6, namely P parity and Q parity. [5] P parity is
generated by XORing the block data of all the disks, while the Q parity used by RAID6 is more complicated
to calculate. Generation of Q parity is by a Galois Field (GF) operation. Although a GF is called a limited
object in algebra, it is also called a Galois object or region in computer-related fields. A GF is a set of values
containing a finite number of elements. The GF of a 28 piece element is denoted as GF (28), and contains an
integer element from 0 to 28 − 1.

There are two types of parity in RAID6 (P parity and Q parity) [5]. P parity is generated from XORing the
block data of all the disks. Q parity used by RAID6 is more complicated to calculate than P parity. Generation
of Q parity is by Galois Field (GF) operation. Although a GF is called a limited object in algebra, it is also
called a Galois object or region in computer-related fields. A GF is a set of values containing a finite number
of elements. The GF of a 28 piece element is denoted as GF (28), and there is an element from an integer 0
to 28−1.

Four cases can be considered when two disks fail in RAID6: P and data drive failure, Q and data drive
failure, P and Q drive failure, and failure of two data drives.

2.3. NBD. NBD [6] is a virtual disk system that can be compiled into the Linux kernel. The block
device that this remote server offers can be handled as a local drive by clients. An arbitrary file system can
be constructed in a high-order layer because it inputs and outputs at the block level. ISCSI etc. offers similar
block level I/O. Because NBD has been adopted by Linux as standard it is far simpler to install compared with
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the alternatives. Moreover, mounting the protocol is simple and easy. The proposed system, however, does not
depend on NBD. It should be noted that NBD is merely one of the available choices.

2.4. Samba. Samba [7] is used to access the file system on Linux, UNIX and other similar operating
systems from Windows clients. Samba is free software that can be used to mount network shares created using
Microsoft Corporations NetBIOS protocol. File and print services can also be provided to Windows clients by
UNIX-like operating systems such as Linux, Solaris, and FreeBSD using Samba. The first version was developed
by Andrew Tridgell, and it was opened to the public under the GPL in 1992. In this research, Samba is used
to transmit requests from Windows clients to NBD.

2.5. NFS. NFS [8] enables directories and files to be shared with other machines via a network. Users and
programs can access files on remote systems using NFS in the same way as they would a local file. NFS is a de
facto standard distributed file system in UNIX. In Linux NFS is supported as standard. Moreover, Windows
can also employ NFS using the Service for UNIX (SFU). However, operations that use SFU are more difficult
than operations that use Samba. Therefore, NFS is not used by the client OS to connect to the network in this
research. However, it is used to transmit the requests from Linux clients to NBD.

2.6. XFS. XFS [9], widely recognized as a highly efficient file system, offers quick restoration from system
crashes and support for very large disks. XFS was the first journaling file system for Linux, and has built a
strong track record in production environments because the second half of 1994. XFS makes it possible to
control a huge file system using a 64-bit file system or allocation group. Handling large files presents problems
both in securing the writing/reading area, and in the time taken to retrieve an empty area on the disk. In XFS,
this is handled by a delay allocation and B+-Tree. When the resources on an XFS disk run short they can be
extended; the logical volume can be expanded and the file system can easily be resized, without unmounting.
XFS is also efficient, in that it does not generate unnecessary disk activity.

3. VLSD. VLSD is a toolkit for constructing large-scale storage systems. It is written in pure Java and
can therefore be used on any platform on which Java runs, such as Windows, Linux, etc. VLSD can even be
used if there is no native NBD server in the OS, as the toolkit includes software for RAID and NBD. VLSD
contains typical RAID classes and NBD client/server software, thus allowing the combination of any RAID class
and NBD devices with one another.

3.1. Class of VLSD. From a software perspective, VLSD consists of the following classes.
• NBDServer: The NBD server is called by the client, and offers empty capacity to the storage system

as a virtual disk file. The OS of the client can be either Windows or Linux. Since the NBD server
is mounted using Java, it is platform independent. Moreover, two or more disks may be added to the
array by a single client. FAT32 may also be used despite its 4GB maximum file size restriction. Because
a virtual disk created using 120GB drives cannot be used as a single file, a virtual disk is created by
bundling two or more files and combining them with RAID0 or JBOD as described later.
• DiskServer: Is an interface to the disk server.
• DiskServerImpl: Is an implementation of the disk server, and a remote disk using RMI.
• Disk: Is an interface to a virtual disk.
• AbstractDisk: Is a class of an abstract virtual disk that defines the constants and methods that are

used in low order classes.
• DiskArray: RAID1 is mounted by the base class of the disk wrapper that consists of two or more

disks.
• RAID: The base class for RAID. Mounting of RAID1 is inherited from DiskArray.
• SingleDisk: Is the base class of the disk wrapper which consists of a single disk.
• PagedDisk:Is a wrapper for an arbitrary disk accessed via disk paging. For the wrapped disk,

read/write is per page only. The fraction on each page is disregarded.
• VariableDisk: Is a disk with changeable capacity that does not direct resources beforehand, but can

have resources secured dynamically if necessary.
• RemoteDisk: Is a remote disk, where the disk server is accessed.
• RAID0: RAID0 is used to increase capacity. It differs from JBOD, described below, in that striping is

performed. Though the performance is good, adding additional disks only adds capacity equal to that
of the smallest drive in the array. For example, striping drives of 100GB, 120GB, and 160GB results in
300GB only 100GB x 3. It is better to use JBOD when aiming purely to increase capacity, although
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RAID0 can be expected to improve performance. In some file systems, the super block that manages
i-nodes concentrates disk activity in a specific area. In such a case, striping has the effect of distributing
this load. RAID0 performs per byte striping.
• RAID5: Parity is distributed and stored on each disk. The disk where parity is stored is different for

each block.
• RAID6:The RAID6 class allows the generation of the GF table, block unit striping, and distributed

parity to be performed.
• JBOD: This class does not provide redundancy like RAID0 and is used to increase capacity only.

Because striping is not performed, capacity is simply summed. For example, the total capacity is
380GB if 100GB, 120GB and 160GB drives are connected. JBOD, though, lacks the load-balancing
effect of RAID0 as described above. Since caching effectively creates a certain amount of scale, RAID0
performance may be superior.

Table 3.1 gives the required time for each class to do small read and small write operations, while Table 3.2
gives the required time to do large read and large write operations. The experiment is conducted on one
machine. The block size of one disk stripe is 8KB and we executed 105 loops for small read, 103 loops for small
write, 104 loops for large read and 102 loops for large write using random positions on the disk. As shown
in Table 3.1, JBOD is faster than RAID0 on one machine. However, RAID0 can be faster than JBOD when
executing on two or more machines.

Table 3.1
Required Time of each class on Small Read and Small Write

Class Small Read (s) Small Write
FileDisk 0.97 0.86

VariableDisk 1.09 0.94
JBOD (2 disks) 1.44 1.10

PagedDisk 2.03 1.22
SingleDisk 1.00 0.91

RAID0 (2 disks) 2.08 1.03
RAID1 (2 disks) 1.00 1.42
RAID5 (3 disks) 2.13 1.42
RAID6 (4 disks) 2.14 1.67

Table 3.2
Required Time of each class on Small Read and Small Write

Class Large Read (s) Large Write
FileDisk - -

VariableDisk - -
JBOD (2 disks) - -

PagedDisk - -
SingleDisk - -

RAID0 (2 disks) 0.52 0.17
RAID1 (2 disks) 0.28 0.17
RAID5 (3 disks) 0.52 0.36
RAID6 (4 disks) 0.50 0.59

3.2. Trial Production of the Large-Scale Storage Using VLSD. In this section we discuss the
design of a 70TB distributed storage system in the environment described in Section 1. This system comprises
484 client PCs each of which provides 180GB free disk space. The total free space is 85TB. However, as a
client PC may be inadvertently shut down, this makes the distributed storage system no more reliable than a
conventional file server. We overcame this problem by using hierarchical RAID, RAID66, which is two layered
RAID6 (Fig. 3.1).
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Fig. 3.1. Composition of RAID66

Fig. 3.2. System Overview

The trial system includes a 64-bit file server and the disk server as shown in Fig. 3.2. A virtual disk that
supports OSs such as Linux and Windows for the disk servers provides read/write access to the disk via the
Java RMI. The file server connects to the prepared disk and constructs RAID66. RAID66 is RAID6 on two
levels. The NBD Server waits for access by an NBD Client. After the NBD Client is started, it is formatted
with XFS. Windows clients access the file server through Samba, while NFS is used for Linux clients.

Since the NBD protocol lacks security, applying it on a network is dangerous. However, because NBD is
used in our system for inter-process communication only, it can be applied without risk. Actual communi-
cation between client/server is realized by a protocol based on RMI with the relevant security considerations
implemented.

Disk servers (of which there are 484) are started with the following command.

# java DiskServerImpl //localhost/pcn/DiskServerImpl imagen*

Here, imagen is a virtual disk of 180GB. It is executed on the file server side as follows.

# java vlsd.server.RAID66 9000

# nbd-client localhost 9000 /dev/nb0

# mkfs.xfs /dev/nbd0

# mount /dev/nbd0 /home/eri

# java vlsd.server.RAID66 9000

# nbd-client localhost 9000 /dev/nb0

Once execution has terminated successfully, storage can be used via a Windows mapped network drive.
Figure 3.3 shows the disk drive properties of the shared disk and confirms the capacity of 70TB. Although the
capacity of 484 x 180GB disks is 87TB because two per group parity is needed by RAID6, for a RAID6 array
which consists of N nodes, only (N-2) / N disks can store data. Since RAID66 becomes two classes only 82% of
the whole capacity can be used (=20/22*20/22). Therefore, the actual capacity is 70TB. In addition, a variable
capacity virtual disk has been used in this trial. Data was not necessarily actually saved to all 70TB. Many
client file systems converted only some of the available disk area during formatting.

3.3. Comparison of fixed and a variable length disks. As an experiment, a fixed-length disk and a
variable-length disk were formatted by XFS, and the format times compared. The disks were virtual and saved
as a file. Unlike in a fixed disk, only the part actually required in the variable-length disk was written to an
image file.
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Fig. 3.3. Disk drive properties of a RAID66 array

Table 3.3
Format of virtual disk

Variable-Length Disk
Capacity of Virtual Disk Capacity nessary for format

1GB 10.45MB
10GB 10.66MB
100GB 50.78MB
1TB 129.41MB
10TB 129.39MB
100TB 132.07MB
1PB 165.45MB
10PB 498.58MB
100PB 3829.71MB

The time to format a variable-length disk is faster as depicted in Fig. 3.4. We postulate that the reason
is because seek times are quicker with a variable-length disk. While formatting the variable-length disk using
XFS, the capacity required for the format was recorded. As shown in Table 3.3 about 10MB is necessary when
the disk is formatted to 1GB, and roughly a hundred MB is required for a 1TB disk. Actual physical disk space
of 500MB is necessary for 10PB, and this increases to 3.8GB to format a 100PB disk.

3.4. Evaluation of RAID under Normal Operation. We compared the performance of our system
with the theoretical performance presented in the paper by Chen et al. (1994). In this paper, typical RAID
arrays are evaluated by their throughput per dollar relative to RAID0. Small read/write means read/write
access to a block. The series RAIDNe gives the experimental values, while the values in the series RAIDNt
are the theoretical values given in the paper by Chen et al. The throughput looks good, but this is simply
because RAID0 is not so good and therefore makes comparisons seem highly effective. In our experiments,
JBOD actually outperforms RAID0.

As shown in Fig. 3.5, the experimental values for RAID5 and RAID6 are almost equal to their respective
theoretical values. This means that cost performance is also almost equal. Since for a Small read the data can
be collected by access to a single disk in RAID5 and RAID6, performance is equal to RAID0.

In Fig. 3.6 the experimental values for RAID5 and RAID6 are about four times faster than the respective
theoretical values. This is perhaps explained by the fact that RAID0 is slow. In RAID6, calculation of parity
becomes complicated in comparison to RAID5 because there are two parity data records, and processing times
become correspondingly larger. As a result, as shown in Fig. 3.6, RAID6 has lower throughput than RAID5.
And unlike RAID0, in a Small Write RAID5 and RAID6 both require four accesses, namely read-out of data,
read-out of parity, writing data, and writing parity.
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Fig. 3.4. Comparison of a fixed and a wariable-length disk

Fig. 3.5. Small Read

Fig. 3.6. Small Write
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Fig. 3.7. Large Read

Fig. 3.8. Large Write

In the experimental values (Fig. 3.7) for Large Reads, although cost performance is very high for a small
group size, it becomes lower for a large group. In a Large Read, because the reading domain of RAID6 is smaller
than that of RAID5, cost performance is high. It is possible that the cost performance drops with a large group
size because of an increase in some calculation processing.

The experimental values are almost constant in Fig. 3.8. For a large group size, the theoretical values exceed
the experimental values for RAID6.

3.5. Evaluation of Small Read and Small Write of RAID6 under Drive Failure. Figures 3.9 to
3.12 depict graphs by throughput per dollar of typical RAID arrays using RAID6 in the case of a single disk
failure (RAID6e1), and 2 disk failures (RAID6e2). The number of disk accesses for RAID6e1 and RAID6e2 is
the same; the difference is that RAID6e2 has more parity processing operations.

In Small Read (Fig. 3.9), when one disk fails, cost performance falls to 25%, and when two disks fail, it falls
to 10%. If the group becomes larger, the cost performance of RAID6e1 and RAID6e2 decreases. It is believed
that in Small Read there is little disk access and almost all processing time is operation processing.

As shown in Fig. 3.10, in Small Write, the throughput of RAID6e1 is between 80% and 60%, while the
throughput of RAID6e2 is about 70% to 40%. Because of the volume of disk access, the throughput of Small
Write is higher than Small Read.
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Fig. 3.9. Small Read

Fig. 3.10. Large Write

The difference between RAID6e1 and RAID6e2 is four fold in Large Read (Fig. 3.11). There is a throughput
difference between RAID6e1 and RAID6e2 in both Large and Small Read. Meanwhile, because the disk writing
time is far slower than the operation processing time in Small Write and Large Write (Fig. 3.12), there is no
difference in throughput for Small Read and Large Read which perform disk reading only.

3.6. Reliability of hierarchy RAID on VLSD. The MTTF of the entire hierarchical RAID is calculated
using the measured MTTF (mean time to failure) and MTTR (mean time to repair). Hierarchical RAID consists
of a combination of RAID1, 5 and 6.

In Table 3.4, the total number of disks is 484. Layers 1 and 2 each contain 22 disks. RAID3 and 4 are
omitted because they are the same as RAID5. Moreover, in RAID1 it was assumed that the contents were
copied N times.

RAID1 should not be used, because the capacity efficiency decreases significantly. To achieve the largest
capacity and highest MTTF, RAID66 is the best.

4. Building GCC. Many small files, such as text documents or source code of programs, are created in
an educational environment. The size of most files is 1KB or less. Therefore, it is necessary to verify storage
constructed with the VLSD in this environment.
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Fig. 3.11. Large Read

Fig. 3.12. Large Write

The performance of the storage built using VLSD was evaluated both during normal operation and in
instances of failure. When a disk fails, performance drops for the Small Read as shown by the graph in Fig. 3.9.

A situation in which many small files are generated by the GCC build is actually created for this experiment,
and is required to verify how the VLSD is affected. As shown in Fig. 4.1, before conducting the GCC build
experiment, the experimental system must be constructed. Three Operating Systems, FreeBSD, Ubuntu Server,
and Windows XP are installed on one machine for the experiment. For data communications, NFS is used
between FreeBSD and Ubuntu, while NBD and VLSD are used between Ubuntu and Windows.

Below is the operating system specification.

• 1st OS
Windows XP Professional 64 bit
CPU: AMD Athlone(tm) 64 X2 Dual Core 3800+
RAM: 4GB
• 2nd OS

Ubuntu Server 7.10 64 bit using VMWare on 1st OS
CPU: Same as 1st OS CPU
RAM: 1GB
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Table 3.4
MTTF and capacity of two level RAID

RAID level MTTF[h] Capacity Efficiency[%]
RAID11 4.25× 102463 0.2
RAID15 1.7× 10219 4.3
RAID16 2.2× 10328 4.1
RAID51 4.19× 10182 4.3
RAID55 5× 1015 91.1
RAID56 1.1× 1023 86.8
RAID61 4.78× 10272 4.1
RAID65 7.8× 1023 86.8
RAID66 2.2× 1035 82.6

Fig. 4.1. Experiment of GCC Build System

• 3rd OS
FreeBSD 7.0 64 bit using VMWare on 1st OS
CPU: Same as 1st OS CPU
RAM: 1GB

To evaluate the performance of the VLSD, we setup three cases.
• In the first case (local disk), GCC is built on a local disk of FreeBSD.
• In the second case (NFS), GCC is built on a remote disk of the Ubuntu NFS server (local disk of

Ubuntu).
• In the last case (VLSD), GCC is built on the remote disk of the Windows XP VLSD data grid (local

disk of Windows).
As shown in Table 4.1, when performing the GCC build, the delay increases to 11% using NFS, while a

19% overhead was recorded when using VLSD. Consequently, the overhead for NFS is similar to the overhead
for VLSD. It is thought that the network might be the cause of this delay.

When using RAID66, the storage system can still operate with up to nine failed disks depending on the
fault position of the disk. This is the reason that up to eight disk faults were evaluated in this experiment. It
is believed that the differences in the GCC build times with trouble-free operation, one disk failure, four disk
failures and eight disk failures are not large because of the file caches in both the file system and operating
system.

5. Conclusion. VLSD is a toolkit used to build mass storage using available PCs. Using VLSD a large-
scale virtual disk of 70TB was constructed with RAID66 and its performance was evaluated. Although the
results differed from the theoretical values, this variation can be considered to be no more than standard errors
introduced by the empirical implementation. We also evaluated each disk class, namely FileDisk, VariableDisk,
JBOD, PagedDisk, SingleDisk, RAID0, RAID1, RAID5 and RAID6.

To simulate a typical storage system in an educational environment that may contain many small files,
we built GCC on various storage systems and evaluated the performance of each. The results show that the
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Table 4.1
Required Time for GCC Build

Path Compiled Time Overhead
Local Disk 2:05:17 0%

NFS 2:18:43 11%
VLSD vith no disk fault 2:28:32 19%
VLSD vith 1 disk fault 2:29:02 19%
VLSD vith 4 disk fault 2:31:16 21%
VLSD vith 8 disk fault 2:32:16 22%

overhead for VLSD is the same as the overhead for NFS. This means that the storage system is usable even
with many small files.

In this study, the estimation used only a single machine. However, the real system consists of around 500
machines. Performance still needs to be investigated when a network of two or more machines is used.
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PERFORMANCE EVALUATION OF A WIRELESS SENSOR NETWORK FOR MOBILE
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Abstract. Sensor networks are a sensing, computing and communication infrastructure that are able to observe and respond
to phenomena in the natural environment and in our physical and cyber infrastructure. The sensors themselves can range from
small passive microsensors to larger scale, controllable weather-sensing platforms. Presently, there are many research works for
sensor networks. In our previous work, we built a simulation system for simulation the sensor networks. But, we considered that
the event node is stationary in the observation field. However, in many applications the event node may move. For example, in
an ecology environment the animals can move randomly. In this work, we investigate how the sensor network performs in the
case when the event node moves. We carried out the simulations for lattice topology and TwoRayGround radio model considering
AODV and DSR protocols. For the performance evaluation, we considered two metrics: routing efficiency and goodput and we
compare the simulation results for two cases: when the event node is mobile and stationary. The simulation results have shown
that the routing efficiency for the case of mobile event node is better than the stationary event node using AODV protocol. Also,
the goodput for the mobile event node case does not change too much compared with the stationary event case using AODV, but
the goodput is not good when the number of nodes is increased.

Key words: sensor network, mobile event, goodput, routing efficiency

1. Introduction. A Wireless Sensor Network (WSN) is a wireless network where the nodes are sensors,
that is micro-devices with limited computation capacity and with on-board specific transducers. Recently,
we witnessed a lot of research effort towards the optimization of standard communication paradigms for such
networks. In fact, the traditional Wireless Network (WN) design has never paid attention to constraints such
as the limited or scarce energy of nodes and their computational power. Another aspect which is different
from traditional WN is the communication reliability and congestion control. In traditional wired nets, one
reasonably supposes that communication paths are stable along the transmission instances. This fact permits
to use the end-to-end approach to the design of reliable transport and application protocols. The TCP works
well because of the stability of links. On the other hand, in WSN paths can change over time, because of time-
varying characteristics of links and nodes reliability. These problems are important especially in a multi-hop
scenario, where nodes accomplish also at the routing of other nodes’ packets.

In this paper, as a case study, we study a particular application of WSNs for event-detection and tracking.
The application is based on the assumption that WSNs present some degree of spatial redundancy. For instance,
whenever an event happens, a certain number of sensor nodes, higher than that strictly required, will detect
the event and transmit event data to the Monitoring Node (MN). Because of the spatial redundancy, we can
tolerate some packet loss, as long as the required detection or event-reliability holds. This reliability can be
formulated as the minimum number of packets required by the MN in order to re-construct the event field. An
interesting consequence of this application is that we can use a simple connection-less transport of data. The
rate of the transmitted data depends on many factors, as the bound on the signal distortion perceived at the
MN. In the case of discrete event in the form of “event present” or “event not present”, this scheme resembles
the packet repetition scheme.

Recently, there are many research work for sensor networks [1, 2, 3, 4]. In our previous work [5], we
implemented a simulation system for sensor networks. But, we considered that the event node is stationary in
the observation field. However, in many applications the event node may move. For example, in an ecology
environment the animals can move randomly. In this work, we investigate how the sensor network performs in
the case when the event node moves. We carried out the simulations for lattice topology and TwoRayGround
radio model considering Ad-hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR)
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Fig. 2.1. Physical architecture of WSN.

protocols. For the performance evaluation, we considered two metrics: Routing Efficiency (RE) and goodput
and we compare the simulation results for two cases: when the event node is mobile and stationary. The
simulation results have shown that the routing efficiency for the case of mobile event node is better than the
stationary event node using AODV protocol. Also, the goodput for the mobile event node case does not change
too much compared with the stationary event case using AODV, but the goodput is not good when the number
of nodes is increased.

The remainder of the paper is organized as follows. In Section 2, we explain the proposed network simulation
model. In Section 3, we discuss the RE and goodput metrics. In Section 4, we show the simulation results.
Conclusions of the paper are given in Section 5.

2. Proposed Network Simulation Model. In our WSNs, every node detects the physical phenomenon
and sends back to the sink node data packets. In Fig. 2.1 is shown the physical architecture of WSN. We
suppose that the sink node is more powerful than sensor nodes and it is always located a the borders of the
service area. We analyze the performance of the network in a fixed time interval. This is the available time for
the detection of the phenomenon and its value is application dependent. Proposed network simulation model
is shown in Fig. 2.2.

In this paper, we consider that a mobile event is moving randomly in the WSNs field. In Fig. 2.3 is shown
one pattern of movement event’s path. We implemented a simulation system for WSNs considering moving event
using ns-2. We evaluated the goodput and RE of AODV and DSR protocols using TwoRayGround propagation
model and the lattice topology.

2.1. Topology. For the physical layout of the WSN, two types of deployment has been studied so far: the
random and the lattice deployment. In the former, nodes are supposed to be uniformly distributed, while in the
latter one nodes are vertexes of particular geometric shape, e.g. a square grid. as depicted in Fig. 2.4. In this
work, we present results for the square grid topology only. In this case, in order to guarantee the connectedness
of the network we should set the transmission range of every node to the step size, d, which is the minimum
distance between two rows (or columns) of the grid. In fact, by this way the number of links that every node
can establish (the node degree D) is 4. Nodes at the borders have D = 2.

2.2. Radio Model. There are three basic models for the propagation of the radio signals of sensor nodes:
Free space model, TwoRayGround model and Shadowing model. In a simple deterministic model, the received
power Pr at a certain distance d is the same along all directions in the plane1. For example, in the case of Line

1We are considering 2D networks, but similar results hold also in the more general case of 3D networks.
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Fig. 2.2. Network simulation model.

Of Sight (LOS) propagation of the signal, the Friis formula predicts the received power as:

Pr(d) = Pt − β (dB) , (2.1)

β = 10 log

(

(4πd)2L

GtGrλ2

)

where Gr and Gt are the antenna gains of the receiver and the transmitter, respectively. λ is the wavelength of
the signal, L the insertion loss caused by feeding circuitry of the antenna, and β is the propagation pathloss.
For omni-antennas, GR = Gt = 1. The signal decay is then proportional to d2.

In our simulation system, as a radio model we use TwoRayGround model. In this model the pathloss is:

β = 10 log

(

(4πd)4L

GtGrhthrλ2

)

(2.2)

where hr and ht are the receiver and transmitter antenna heights, respectively. The power decreases faster than
Eq. (2.1) [6].

2.3. MAC protocol. We assume that the MAC protocol is the IEEE 802.11 standard. The receiver of
every sensor node is supposed to receive correctly data bits if the received power exceeds the receiver threshold, γ.
This threshold depends on the modulation scheme 2. As reference, we select parameters values according
to the features of a commercial device (MICA2 OEM). In particular, for this device, we found that for a
central frequency of f = 916MHz and a data rate of 34KBaud, we have a threshold (or receiver sensitivity)
γ = −98dBm [7]. The transmission range of sensor nodes should be at least d. However, in the case of a general

2Other MAC factors affect the reception process, for example the Carrier Sensing Threshold (CST) and Capture Threshold
(CP) of IEEE.802.11 used in NS-2.
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Fig. 2.4. Lattice topology.

radio model, we must take into account randomness of pathloss. The transmission power of each sensor is shown
by the following equation:
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Pt(d)|dB =

[

10β log10

d

d0
+ γ − erfc−1(2p)

√

(2)σ

]

+ + 10 log10

(

d0

K

)2

, (2.3)

where erfc−1is the inverse of the standard error function.

2.4. Routing Protocols. We are aware of many proposals of routing protocols for ad-hoc networks. Here,
we consider reactive protocols such as AODV and DSR [8].

The AODV is an improvement of DSDV to on-demand scheme. It minimize the broadcast packet by cre-
ating route only when needed. Every node in network should maintain route information table and participate
in routing table exchange. When source node wants to send data to the destination node, it first initiates route
discovery process. In this process, source node broadcasts Route Request (RREQ) packet to its neighbors.
Neighbor nodes which receive RREQ forward the packet to its neighbor nodes. Neighbor nodes which receive
RREQ forward the packet to its neighbors, and so on. This process continues until RREQ reach to the desti-
nation node. When the intermediate nodes receive RREQ, they record in their tables the address of neighbors,
thereby establishing a reverse path. When the node which knows the path to destination or destination node it-
self receive RREQ, it sends back Route Reply (RREP) packet to source node. This RREP packet is transmitted
by using reverse path. When the source node receives RREP packet, it can know the path to destination node
and it stores the discovered path information in its route table. This is the end of route discovery process. Then,
AODV performs route maintenance process. In route maintenance process, each node periodically transmits a
Hello message to detect link breakage.

In DSR, the source node knows the entire path to the destination. And intermediate nodes don’t need to
maintain route information table for neighbor’s address. This source routing information is stored in cache and
updated when the node discover new route. DSR also consist of two mechanisms (Route Discovery and Route
Maintenance processes). In route discovery process, DSR also uses RREQ and RREP as AODV. However in
DSR, intermediate nodes don’t need to maintain route table because hop-by-hop path information (reverse path
information) is stored in RREQ header when RREQ is forwarded from intermediate nodes. When destination
node which knows the path to destination receives this RREQ packet, it sends back RREP to source node
using header stored in RREQ packet. When the source node receives RREP packet, it knows the entire path to
destination node and store the discovered path in cache. Route maintenance process is accomplished through
the use of Route Error (RRER) packets. RRER packets are generated when the link is broken due to mobility
of nodes.

2.5. Event Detection and Transport. As event detection and transport, we use the data-centric model
similar to [9], where the end-to-end reliability is transformed into a bounded signal distortion concept. In this
model, after sensing an event, every sensor node sends sensed data towards the MN. The transport used is a
UDP-like transport, i. e. there is not any guarantee on the delivery of the data. While this approach reduces
the complexity of the transport protocol and well fit the energy and computational constraints of sensor nodes,
the event-reliability can be guaranteed to some extent because of the spatial redundancy. The sensor node
transmits data packets reporting the details of the detected event at a certain transmission rate 3. The setting
of this parameter, Tr, depends on several factors, as the quantization step of sensors, the type of phenomenon,
and the desired level of distortion perceived at the MN. In paper [9], the authors used this Tr as a control
parameter of the overall system. For example, if we refer to event-reliability as the minimum number of packets
required at MN in order to reliably detect the event, then whenever the MN receives a number of packets less
than the event-reliability, it can instruct sensor nodes to use a higher Tr. This instruction is piggy-backed in
dedicated packets from the MN. This system can be considered as a control system, as shown in Fig. 2.5, with
the target event-reliability as input variable and the actual event-reliability as output parameter. The target
event-reliability is transformed into an initial T 0

r . The control loop has the output event-reliability as input,
and on the basis of a particular non-linear function f(·), Tr is accordingly changed. We do not implement the
entire control system, but only a simplified version of it. For instance, we vary Tr and observe the behavior
of the system in terms of the mean number of received packets. In other words, we open the control loop and
analyze the forward chain only.

3Note that in the case of discrete event, this scheme is a simple packet repetition scheme.
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Fig. 2.5. Representation of the transport based on the event-reliability.

Table 4.1
Topology settings.

LATTICE

Step(m) d = L√
N−1

Service Area Size(m2) L2 = (800x800)
Number of Nodes N ∈ {12, 64, 100, 256}

Transmission Range(m) r0 = d

3. Goodput and Routing Efficiency. In this section, we introduce the performance evaluation metrics:
goodput and RE. We consider that after a sensor node detects the physical phenomenon, it sends the packets
to the sink node via a routing protocol. The ability for transmitting packets for different protocols is different.
Also, the RE of a protocol is affected by many network parameters such as wireless transmission radio model,
network topology, and transmission frequency [4]. In order to compare the performance of different protocols,
we consider the same simulation environment. For our system, we used TwoRayGround radio model and the
network topology is regular [10, 11].

The goodput is defined at the sink, and it is the received packet rate divided by the sent packets rate. Thus:

G(τ) =
Nr(τ)

Ns(τ)
(3.1)

where Nr(τ) is the number of received packet at the sink, and the Ns(τ) is the number of packets sent by sensor

nodes which detected the phenomenon. Note that the event-reliability is defined as GR = Nr(τ)
R(τ) , where R is the

required number of packets or data in a time interval of τ seconds.
We defined the RE parameter as the ratio of sent packets from sensing node with sent packet by routing

protocol. Thus:

RE(τ) =
Nsent(τ)

Nrouting(τ)
(3.2)

where Nrouting(τ) is the number of sent packets by routing protocol, and Nsent(τ) is the number of sent packets
by sensor nodes which detect the phenomenon.

4. Simulation Results. In this section, we present the simulation results. We implemented the simulation
system using ns-2 simulator, with the support of NRL libraries [12]. For each routing protocol, the sample results
of Eq. (3.1) and Eq. (3.2) are computed over 20s simulation runs.

The settings of our lattice are shown in Table 4.1. The sensing range is assumed to be half of the transmission
range. The radio model parameters are listed in Table 4.2.

In Fig. 4.1 is shown the average value of RE using TwoRayGround model and AODV in case of stationary
event. The RE is an increasing function of Tr, because as Tr increases, the number of sent packet by sensing
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Table 4.2
Radio model and system parameters.

RADIO MODEL PARAMETERS

Path Loss Coefficient α = 2.7
Variance σ2

dB = 16dB
Carrier Frequency 916MHz

Antenna Omni
Threshold (sensitivity) γ = −118dB

OTHER PARAMETERS

Reporting Frequency Tr = [0.1, 1000]pps1

Interface Queue Size 50 packets
UDP Packet Size 100 bytes

Detection Interval τ 30s
1 packet per seconds
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Fig. 4.1. RE for stationary event (AODV).

node is higher than the number of packets used by routing protocol. In case of AODV, the RE decreases with
the increase of number of sensor nodes. It should be noted that when the number of sensor nodes is increased,
the number of routes is increased, thus the searching time to find a route also is increased. When the number
of nodes is 256, the RE of AODV is the worst in our simulation. The simulation results for the case of mobile
event are shown in Fig. 4.2. The RE is stable and better than in case of stationary event, especially when the
number of nodes is increased. When N = 12, the performance is almost the same for both cases. But, in the
cases of N = 64, N = 100, N = 256, the performance is better for mobile event case.

In case of DSR, the simulation results are shown in Fig. 4.3 and Fig. 4.4. Comparing with AODV for the same
time interval and the number of nodes, the RE of DSR is better than AODV. In the mobile environment, AODV
sends the RREQ and when receives the reply from the sink it sends the packet to the sink. However, in the case
of mobile event, when the transmission rate is lower the value of RE is not stable because of congestion situation.
When the transmission rate is larger than 10pps, the RE becomes stable. However, the performance is still better
than AODV. This is because the DSR invokes the local route repair using the alternative routes in route cache.

In following, we explain the results of goodput for the same environment. In Fig. 4.5 is shown the goodput
for stationary event, while in Fig. 4.6 for mobile event in the case of AODV protocol. In both cases, when the
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Fig. 4.2. RE for mobile event (AODV).
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Fig. 4.3. RE for stationary event (DSR).

number of nodes is increased, the goodput is increased. However, the goodput of stationary event is better than
mobile event, but the goodput of mobile event is more stable.

In case of DSR, as shown in the Fig. 4.7, the goodput of stationary event is almost the same with AODV
(see Fig. 4.5). However, in case of mobile event (see Fig. 4.8), with the increase of number of nodes, the value
of goodput is decreased much more compared with stationary event case. When the number of nodes is 256 the
goodput is the worst and is not stable.

The goodput of AODV is better than DSR in case of mobile event. This is because when AODV performs
route discovery, it uses the control messages RREQ and RREP. To control the broadcasts of RREQs, the source
node uses an expanding ring search technique. In DSR, many RREQ packets are broadcasted to find the
destination route. So, there are many packets loss [13, 14].
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Fig. 4.4. RE for mobile event (DSR).

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
r
(pps)

G

Goodput( AODV ,TwoRayGround)

N=12

N=64

N=100

N=256

Fig. 4.5. Goodput for stationary event (AODV).

5. Conclusions. In this paper, we presented the implementation of a simulation system for WSNs using
ns-2. We considered for simulations AODV and DSR protocols and evaluated the proposed system for two
cases: stationary event and mobile event. For evaluation, we considered goodput and RE metrics.

From the simulation results, we conclude as follows.

• In case of AODV, the RE decreases with the increase of number of sensor nodes. When the number of
nodes is 256, the RE of AODV is the worst.
• In the case of mobile event, for AODV protocol, the RE is stable and better than in case of stationary

event, especially when the number of nodes is increased.
• Comparing with AODV for the same time interval and the number of nodes, the RE of DSR is better

than AODV, but it is unstable.
• The goodput of AODV protocol for stationary event is better than mobile event, but the goodput of

mobile event is more stable.
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Fig. 4.7. Goodput for stationary event (DSR).

• In case of DSR, the goodput of stationary event is almost the same with AODV. However, in case
of mobile event with the increase of number of nodes, the value of goodput is decreased much more
compared with stationary event case. When the number of nodes is 256, the goodput is the worst and
is not stable.
• The goodput of AODV is better than DSR in case of mobile event.

In the future, we would like to carry out more extensive simulations for many mobile events and other
protocols. We also would like to consider the case of Shadowing radio model and the random topology.
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1. Introduction. The book AD HOC NETWORKS: Technologies and Protocols is targeted to engineers,
researchers, advanced level students in the areas of ad hoc wireless networks. Special attention is placed on
each building block, as well as, design challenges that need to be addressed with care when designing ad hoc
networks. The main topics are related with the issues with the medium access protocols (802.11), routing
protocols, multicast communications, transport layer protocols, energy conservation, QoS issues, and security.

The book communicates to the reader well and keeps the focus on the essential concepts and principles of
ad hoc networking. The authors keep the reader engaged and facilitate the understanding process via use of
several applications. After the reader has finished the book, the reader will be able to design complex ad hoc
networks, pose new research questions, or tackle the research questions provided on future works at the end of
each chapter.

2. Book Structure and Blow-by-Blow Review. The book starts with an excellent introduction by
Professor Mario Gerla. First, Professor Gerla presents the main characteristics of ad hoc networks, including
mobility, multihopping, self-organization, energy conservation, scalability, and security. Second, the author
describes the design challenges of ad hoc networks, including cross layer interactions, mobility, and scalability.

Third, the author provides several examples of the ad hoc networks. For example, Figure 2.11 shows an
example of the opportunistic ad hoc network. The example illustrates one scenario of the urban grid, which
represents vehicle communications in an urban environment. While the cars connect to the cellular system, the
applications of the ad hoc networks will span from the need of within the car communication or with other cars
on the road.

Lastly, the author provides an overview of the chapters in the book. The book topics include: Mac
Layer Issues and Protocols, Routing Protocols, Transport Layer Protocols, Multicasting, QoS issues, Energy
Conservation, Directional Antennas, and Security issues. We present here a summary of the rest of the chapters.

Chapter 2: Collision Avoidance Protocols in Ad Hoc Networks. The chapter addresses the issues
of designing effective MAC protocols that regulate the access of the wireless nodes to the shared channel, under
scarce channel bandwidth that constrains ad hoc networks. They address sender-initiated collision avoidance
schemes and show that they are more efficient that the traditional carrier sense multiple access schemes. In
additions, the authors reveal the fairness problem in IEEE 802.11 and how to address the problem by using a
topology aware fair access scheme.

For example, the authors compare via simulation studies (Please refer to Figure 2.22) the throughput of
the collision avoidance vs. CSMA, under different parameters. The experiments showed that the throughput of
the CSMA is lower than RTS/CTS protocols under different parameters.

Chapter 3: Routing in Ad Hoc Networks. The chapter classifies the routing protocols in four main
groups and describes the design details. We summarize in Table 2.1 the protocol classification.

Specifically, it discusses the location assisted routing protocols, which are important in the urban grid
environment. They illustrate the protocol building blocks by using as examples the LAR and DREAM protocols.
They provide an in-depth discussion on the flooding mechanism, as well as, other important protocol features,
including route request, route error, and route reply.

1Reproduced with author’s permission
2Reproduced with author’s permission
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Fig. 2.1. Opportunistic Ad Hoc Networks.

Table 2.1
Routing Protocol Classification.

Classifications Routing Protocols
Proactive DSDV, OLSR,TBRPF
Reactive DSR, AODV
Hybrid ZRP

Location Assisted GPSR, LAR, DREAM

Chapter 4: Multicasting in Ad Hoc Networks. This chapter provides a survey of the literature on
the multicast protocols, which represent the property of broadcasting the data or video to all users that are part
of the same mission. First, MAODV and ODMRP that are the most popular multicast protocols are described.
Then, the authors, also, review the other protocols, i. e., MCEDAR, AMRoute, Geocast, and Gossip.

Chapter 5: Transport Layer Protocols in Ad Hoc Networks. This chapter addresses the main
reasons on the performance degradation of ad hoc networks under TCP. For example, the focus is placed on
packet loss, which can be caused due to congestion, jamming, or route breaks. However, the main issue is
the inability to differentiate between the packet loss and congestion. Therefore, the authors present several
feedback schemes to differentiate between the congestion and packet loss. For example, the Explicit Link
Failure Notification is used as a feedback method to notify TCP of the link failures. In addition, other feedback
methods are described in the chapter (ATRA and ATP).

Chapter 6: Energy Conservation. In the urban grid the energy conservation is not a major issue,
however it is an important issue to be addressed in the applications of small hand held mobile wireless devices.
The focus on this chapter is placed on the applications that involve sensors and pedestrian grids. The authors
provide a survey of the energy conservation methods: power and topology control, energy routing, and coor-
dinated sleep, and power save management. One example is using scheduling techniques for the powered up
wireless devices in such a way that the interaction is most effective for a given recharge cycle.

Chapter 7: Use of Smart Antennas in Ad Hoc Networks. First, an overview of directional antennas
and the reasons for using the directional antennas are provided. The directional antennas extend range, fold
jamming attacks, and reduce the probability of detection. Second, it describes the smart antennas, which
transmit simultaneously on multiple beams. Lastly, it shows the interaction between the antenna directionality,
MAC, and the Routing protocols.
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Fig. 2.2. Throughput Comparison.
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Chapter 8: QoS Issues in Ad Hoc Networks. Given the bandwidth constraints and mobility in ad
hoc networks, the QoS requirements of delay, latency, jitter, and packet loss need to be addressed with care.
The authors first provide an overview of the guaranteed QoS in the wired environment and its differences in the
wireless case. The author presents QoS techniques based on each layer. In the physical layer they address how
ARF, RBAR,and OAR impacts QoS. Then, they move to the improvements on the MAC layer and demonstrate
how the methods of PCF Schedule and ITC can be modified to meet QoS requirements. Lastly, they move to
the QoS routing by ensuring Call acceptance control and/or service service negotiations.

Chapter 9: Security in mobile Ad Hoc Networks. Due to the open wireless medium, non-infrastruc-
ture nature that disables centralized certificate authority and key exchange, and the mobility of roaming nodes
are some of the main reasons that make the security of ad hoc networks a challenging task. The authors provides
an excellent summary of the potential attacks on the routing layer, i. e., dissemination of false routing information
(via Route Request, Route Reply, Route Error), altering the path, or falsifying the sequence numbers.

The authors provide a list of examples that were collected as a result of the literature review:
• Impersonating another node to spoof messages
• Modifying Route Reply message to inject a false route
• Generating bogus Route Error to disrupt a working route
• Suppressing Route Error to mislead other
• Wormwhole attacks
• Rushing Attacks
• Sybil Attacks

In addition, it presents a MANET architecture with an Intrusion Detection System, which uses co-operative
node methodologies and places agents at the monitoring nodes. Lastly, it talks about the passive attacks, i. e.,
position and privacy attacks.

3. Does the book keep its promises?. This is an excellently written book, which covers the major
design issues in ad hoc networks. The use of examples makes the book easy to read, follow, and comprehend.
The book is aimed for advanced networking people, thus would not be an easy read for a novice reader on the
field. In addition, the book can serve as a reference material to the new wireless researchers to understand the
current state of the field and lead them to the future research directions that still need to be addressed.

4. Personal reading experience. I have been working on the field of ad hoc networks for three years
now and have come to realize that the book AD HOC NETWORKS: Technologies and Protocols has provided
me with a solid background and knowledge of the field. The book has been a self-study guide and I felt that
was being taught the field, without a teacher; however, given the in-depth treatment of each building block of
ad hoc networks, the teacher was not necessary. This book covers and expands on the major design issues in
ad hoc networks.

Arta Doci,
Colorado School of Mines,
Colorado, USA
E-mail: adoci@mines.edu
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THE EDGE NODE FILE SYSTEM: A DISTRIBUTED FILE SYSTEM FOR HIGH
PERFORMANCE COMPUTING
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Abstract. The concept of using Internet edge nodes for High Performance Computing (HPC) applications has gained ac-
ceptance in recent times. Many of these HPC applications also have large I/O requirements. Consequently, an edge node file
system that efficiently manages the large number of files involved can assist in improving application performance significantly. In
this paper, we discuss the design of a Distributed File System (DFS) specialized for HPC applications that exploits the storage,
computation and communication capabilities of Internet edge nodes and empowers users with the autonomy to flex file management
strategies to suit their needs.

Key words: distributed file systems, high performance computing, peer-to-peer systems, scalability

1. Introduction. Data requirements of High Performance Computing (HPC) applications have been con-
tinuously growing over the past few years and are expected to grow even more rapidly in the years to come [23].
There has also been a significant increase in the number of participants, i. e., data producers and consumers,
and in their geographical spread. Experimental setups, deployments of sensors, simulators, etc. generate large
amounts of data which researchers world over may have use for. I/O libraries that provide necessary abstrac-
tions to HPC application programmers require appropriate interfaces and mechanisms for handling the storage,
access and transfer of such data. Efficiently sharing large numbers of files among a substantial number of widely
distributed users and groups is another related requirement. These requirements create a need for a large scale
Distributed File System (DFS) on the Internet edge nodes.

The importance of file management in HPC applications is exemplified by the High Energy Physics (HEP)
Data Grid [19]. The project shows the need for collectively using the storage and computing capabilities of
widely distributed resources1 for a specific purpose (in this case, performing next generation HEP experiments).
For the HEP Data Grids, there is a need to maintain file catalogs and information services to discover files,
locate them (by mapping logical file names to physical addresses) and to provide access. Other examples include
Biomedical Informatics Research Network (BIRN) [2], drug discovery on desktop Grids [11], etc.

Traditionally, the set of storage nodes in individual DFS installations comprises of stable and well connected
server quality nodes belonging to a few institutional LANs (such as in universities and companies). Advances
in hardware technology have made it possible for a much larger set of edge nodes to contribute significantly to
the performance of large scale distributed systems. In addition to all the nodes connected to institutional LANs
(not just server quality nodes), Internet edge nodes include desktops, laptops, etc. that connect to the Internet
using cable, DSL, Wi-Fi, cellular networks, etc. (Fig. 1.1). Our earlier works Vishwa [34] and Virat [40] address
issues involved in using edge nodes for providing processor and memory sharing services respectively. In this
work, we propose to exploit the resources of Internet edge nodes to build a scalable distributed file system.
The presence of a large number of nodes helps in improving I/O scalability, while also boosting the amount of
available computational and storage resources. We will, henceforth, refer to our file system as the Edge Node
File System (ENFS).

ENFS uses proximity based clustering of edge nodes for the efficient management of resources and balancing
of load (storage, computational, query, etc.). A system-wide structured Peer-to-Peer (P2P) network, comprising
of a few capable and reliable nodes from each cluster, assists in the efficient discovery and usage of resources
across the entire system. Such a two layered platform helps the system to scale to a large number of nodes and
also maintain high levels of performance.

Requirements of different HPC applications, in terms of the characteristics and locations of storage sites
on which files are stored, vary widely. Access/sharing semantics and consistency needs of users and groups also
differ to a great degree. It is, therefore, imperative to consider user-centric preferences while performing file
management tasks such as data storage, access and migration. Instead of carrying out such tasks in a rigid
manner, in our system, we empower users/applications with the autonomy to flex the system’s file management
strategies to suit their needs and, hence, improve application performance. For instance, we demonstrate a

∗Distributed and Object Systems Lab, Department of Computer Science and Engineering, Indian Institute of Technology Madras,
Chennai, India

1The terms resource and node will be used interchangeably in this paper.
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mechanism that allows a user to continue performing computations on a dataset, while it is being modified by
another user.

Important design considerations in the context of a DFS for HPC using edge nodes are discussed in section 2.
Section 3 presents the details of our system architecture and the working of ENFS. Section 4 deals with the
various aspects of file management in ENFS. Performance studies are discussed in section 5. In section 6, we
discuss the features of a few related systems which are relevant to our work. Conclusions and possible future
work are presented in section 7.

2. ENFS: Design Considerations. Several features of a distributed file system must be analyzed care-
fully in order to design one with specific requirements [12]. We will discuss some of the important features in
this section in the context of designing a large scale distributed file system that operates in a highly dynamic
environment and is specialized for high performance computing applications.

2.1. System Organization. System organization refers to the assignment of specific roles to different
system resources and defining how they interact with each other. Distributed file system organization varies
from completely centralized [38] to completely P2P [24]. In a completely centralized setup, data and metadata
associated with all the files are maintained at a server and clients query the server for all forms of file access.
In such an approach, the centralized server severely affects the system’s scalability. Making a set of nodes
collectively function as data and metadata servers for a much larger number of clients helps in improving
scalability to some extent [21]. Pure P2P file systems exist [24], in which every peer makes its own file placement
decisions and uses P2P routing techniques to discover files. While such P2P systems scale well, the overheads
involved in discovering and accessing files are high as well. Maintaining data and metadata consistency is also
expensive in pure P2P systems.

2.1.1. Decoupling Data and Metadata. A recent approach to file system organization has been to
decouple file data and metadata [17][44][39][3]. In these systems, only metadata is maintained by a set of
servers. File contents are stored on a much larger set of nodes. The total amount of bandwidth that is available
to clients to read and write data scales more or less linearly with the number of storage sites available. Such
an organization results in a more scalable system.

2.1.2. Metadata Partitioning. A large percentage of file system operations are those on file metadata
[36]. Thus, metadata access must be done as efficiently as possible. When a set of nodes function as metadata
servers for the entire system, metadata partitioning mechanisms must be used to balance load among the servers.
In [44], dynamic subtree partitioning [46] is used to partition the directory space among servers. In addition
to namespace management, tasks such as monitoring the status of storage nodes, user/group management, etc.
must also be uniformly distributed among a set of nodes.

2.1.3. Data Distribution. It is also necessary to distribute file contents among the storage nodes as
evenly as possible to avoid bottlenecks in the system. Systems can either use a probabilistic method or a
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deterministic method to distribute data [12]. In the probabilistic method, hashing functions such as Secure
Hash Algorithm [15] or Message Digest 5 [35] can be used to determine the sites at which files must be stored
[24][29]. Since file placement is randomized, such systems will have little or no control over file locations and
over other characteristics of storage sites. In the deterministic method, nodes use whatever knowledge they have
of the system to place data. Systems with centralized servers that have global knowledge can easily balance
storage load. However, such systems do not scale.

2.1.4. Fault Tolerance. While the abundance of edge nodes helps in improving system performance,
higher levels of dynamism in resource characteristics and availability amplify the need for efficient monitoring
and fault tolerance mechanisms. Replication of data is a widely used mechanism to tolerate system component
failures. A file system employing edge nodes must be adept in replicating data on appropriate resources. Failure
detection and migration of data must also be suitably handled. When multiple copies exist, file systems are also
responsible for the consistent maintenance of data. Sections 3 and 4 discuss how ENFS addresses the above
mentioned issues.

2.2. File Management. The primary function of a file system is to manage the placement and access of
files. Due to large data set sizes, recent HPC approaches attempt to schedule computations on resources which
contain the required data [32][43], thus reducing the amount of data movement. Therefore, placement of files
at appropriate storage sites can significantly improve the performance of applications using the files.

2.2.1. File Placement. High performance computing applications are diverse in terms of hardware and
software requirements. Applications perform best when the data that they operate on are stored in resources
that suit their purpose best. Some of the characteristics that differentiate applications from each other are
computational intensity [28], I/O throughputs [30], inter-task communications, memory requirements, etc. For
example, in [4], the authors study the scientific applications GYRO (fusion simulation) [16] and POP (climate
modeling) [22]. Various characteristics of the two applications are compared and the authors attempt to identify
system architectures that will be most suitable for the execution of the two applications. Using similar appli-
cation profiling techniques or based on the intuitive understanding of application characteristics, users may be
able to specify preferences for the kind of resources on which to store their files.

Users may also be able to specify location preferences for the sites at which their files need to be stored.
Based on expected access patterns, users may want files to be stored at or in the proximity of certain nodes or
clusters. Certain files may most of the times be used by applications along with a few other files. Such files
are best placed in the proximity of the associated files in order to reduce the amount of data transfer during
application execution.

2.2.2. File Access. Moreover, access semantics preferred by different applications can vary widely. In
a system where mutable data is shared among a large number of users2, the mechanisms used to manage
concurrent access to files can have a huge bearing on the performance of applications requiring those files. A
rigid set of policies may not be suitable in such a system. Based on users’ access requirements and the current
state of file access, the DFS must be able to apply different kinds of access semantics so as to improve overall
system performance. Section 4 discusses how file management issues are addressed in ENFS.

2.3. Security and Privacy. Several file systems adopt cryptographic techniques to encrypt their data
before storing [24][3]. Doing so ensures privacy since users can now access file contents only if they have appro-
priate keys. In a few systems, content hashes are stored along with the metadata in order to verify the integrity
of retrieved files. There are several security issues associated with large scale distributed systems. Standard
practices such as the usage of Kerberos authentication protocols for the servers and clients to authenticate each
other and establish secure sessions, using Access Control Lists (ACLs) to restrict the usage of files by different
users, etc. are popularly used. While we have not specifically addressed any of these privacy/security issues,
we have ensured that the above mentioned techniques can be easily incorporated into ENFS.

3. Architecture of the Edge Node File System. Over the last few years, decoupling metadata oper-
ations from read/write operations on files has been established as a strategy that can significantly improve a
system’s scalability and performance. For extremely large distributed systems (Internet scale) handling billions
or trillions of files, a huge number of Metadata Servers (MDS) will be required to handle the load without

2Depending on the context, in certain places, the term user may actually refer to the user’s application.
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effecting any performance degradation. In contrast to many existing systems, in ENFS, we allow non-dedicated
edge nodes to assume the responsibilities of a MDS. Such an approach creates a large pool of servers from which
the required number can be chosen. Appropriate measures are put in place to handle the consequent issues of
failures and load variations.

Metadata (such as file system namespace) has to be partitioned among the MDSs to ensure balanced query
loads. Static partitioning of the directory hierarchy is useful in the sense that nodes can easily identify responsible
MDSs. However, changes in demand for different portions of the namespace can result in unbalanced loads.
Partitioning based on hashing file names (such as in [5]) can help in keeping the load much more balanced.
However, such an approach cannot retain hierarchical locality of the files. Moreover, O(logN) hops may be
required to locate the responsible MDS, where N is the number of MDSs in the system. In [46], the issues of
changing workloads and retention of locality are attempted to be solved using a dynamically adapting subtree
based partitioning strategy. In such a hierarchy traversal system, locating files far down in the hierarchy may
require several hops between MDSs. The time taken by a node to identify the MDS responsible for a particular
file/directory has considerable bearing on the system performance. In ENFS, we employ a hybrid of hierarchical
and hashing based strategies and attempt to minimize MDS location and access times.

3.1. Two Layered System Model. Based on proximity, nodes are grouped into large non-overlapping
clusters (order of 103 nodes per cluster) by system administrators (Fig. 3.1). New clusters can be formed at any
time and nodes can be added to and removed from clusters at any time. A lot of work has been done on network
distance measurement [13], topology discovery [18][6] and proximity based node clustering [48][27]. Moreover,
statistical data about the number of files, file sizes and generation rates, the number of participating nodes and
their characteristics, the number of users and their file access patterns, etc. can be used to determine optimal
cluster sizes. In this paper, we do not address issues related to autonomous cluster formation and maintenance
for the sake of simplicity.

A few reliable and capable edge nodes from each cluster are chosen to be the metadata servers for that cluster.
In addition to maintaining file metadata, information about the nodes within the cluster are also maintained at
these servers. We will call these servers Supernodes. Supernodes share the load of gathering information about
cluster resources, managing users and groups, placing data, maintaining file metadata, scheduling computations,
responding to queries, etc. Supernodes from all the clusters form a single system-wide structured P2P overlay
network or Distributed Hash Table (DHT) [41][37]. The overlay enables nodes of a cluster to discover supernodes
(of other clusters) which are responsible for specific portions of the file namespace. The structured overlay also
helps in the efficient discovery of resources with specific characteristics in the entire system.

3.2. Load Balancing. In order to enable efficient distribution of load among supernodes in accordance to
their capabilities, a technique similar to the usage of virtual servers in Chord [33] is adopted. In Chord, every
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node in the overlay represents not one but a bunch of identifiers from the identifier space. When the query
load on a particular node increases, the responsibility for a few of the virtual identifiers is transferred from the
heavily loaded node to a lightly loaded node. In ENFS, we distribute a large virtual identifier space among the
supernodes belonging to a cluster, based on their capabilities. When the load on a supernode increases, the
responsibility for a portion of the virtual identifier space can be transferred from the heavily loaded supernode
to a lightly loaded one. We use the Paxos algorithm [25] (discussed later in this section) to unambiguously
rearrange load.

The mapping between the virtual identifier space and the physical address of supernodes is made known to
the entire system using the structured layer. A file containing the association is stored in the structured layer
with the cluster identifier as the key. We will refer to this file as the supernodes map. Supernodes, primarily,
manage entities such as nodes, users, groups and files belonging to their cluster. These entities determine the
virtual identifier with which they must associate themselves by performing a standard operation on their unique
identifiers (IP address, file path, etc.). For instance, let the maximum value of the supernode virtual identifier
be Vmax. The virtual identifier corresponding to an entity with identifier I can be

(SHA(I)/SHAmax) ∗ Vmax

where SHA(I) is the digest obtained by applying the SHA hash function on the identifier and SHAmax is the
maximum possible value of the 160-bit digest. Entities can then use the supernodes map file to determine the
physical address of the supernode responsible for that virtual identifier. For an entity with I as its identifier,
the responsible supernode is denoted by SI . When a node wants to make a query about I or when I wants to
perform some file system operation, SI is contacted.

The load at a supernode refers to the amount of computational power spent on performing different file
system operations, including responding to client queries. Each supernode specifies a value for the maximum
allowed CPU utilization percentage (measured over a time interval) for file system operations. Since file access
frequencies and the amount of computational power required for different file system operations vary, loads on
the supernodes keep changing. Whenever the actual load exceeds the limit imposed, a supernode is said to
be overloaded. Supernodes periodically send their load information to the other supernodes in the cluster. In
addition to the sharing of load information, the message also helps in letting other supernodes know about
the source’s liveness. When a supernode Si detects the failure of another supernode Sj , it informs the other
supernodes in the cluster about the failure3. Si also initiates the process of replacing Sj with a new supernode.
A supernode that is overloaded can propose an adjustment of the virtual identifier space to transfer some of its
load to lightly loaded supernodes. When all supernodes in a cluster are heavily loaded, an additional supernode
can be added to the existing set. On the other hand, when all the supernodes in a cluster are lightly loaded, one
of the supernodes can be removed. A minimum number of supernodes, kr (discussed in section 3.3), however,
must always be available within a cluster.

As mentioned earlier, the Paxos algorithm (Fig. 3.2) is used by supernodes to reach an agreement on the
addition/removal of a supernode and on the adjustment of the virtual identifier space. In the first phase of
the Paxos algorithm, the proposer sends a prepare message to the acceptors and the acceptors may or may not
respond with promise messages. In the second phase, if the proposer receives promise messages from a majority

3While Si denotes the ith supernode in the supernodes map file, SI denotes the supernode associated with entity I.
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of the acceptors, it sends an accept message with the decided value to the acceptors. If enough promise messages
are not received, the proposal fails. Using Paxos helps in achieving consensus among a set of supernodes which
are prone to failures. Changes in the set of supernodes and in the mapping of virtual identifiers to supernodes
are immediately propagated to the supernodes map file in the structured layer. The file includes a version
number which is incremented after every change. The changes are also publicized to all the nodes within the
cluster.

3.3. Fault Tolerance. In order to handle failures, the metadata stored in a supernode is replicated in a
constant number (kr) of other supernodes. The number kr must be selected in such a way that the simultaneous
failure of kr/2 supernodes within a cluster is highly improbable. A supernode, Sn, that updates some metadata
has to multicast the changes to all its replicas, so that the replicas are always in a state similar to that of Sn.
Let there be N supernodes in a cluster and let {S1, S2, . . . , SN} be the order in which the supernodes are
listed in the supernodes map file. Then, supernode Si replicates its metadata in the nodes
{Sk, k = (i + j − 1) mod N | 1 ≤ j ≤ kr}.

We will refer to this set of supernodes as Si’s replica set. In figure 3.3, all the supernodes pointed at by
the arrows originating from supernode Si constitute its replica set. When a querying resource detects that a
supernode is not reachable, it queries the next-in-line supernode in the failed supernode’s replica set. Whenever
the responsibility for a virtual identifier is transferred from Si to Sj, appropriate metadata transfer must happen.
The metadata of all the resources that map to that virtual identifier must be transferred from Si to Sj and to
Sj ’s replica set.

Every node, when it becomes a supernode, identifies another node which is capable of being made the
supernode, and maintains it as a spare supernode. The spare can be made a supernode in case of failures or
load surges. Supernodes lazily keep updating metadata information in the spare nodes. This way, the amount
of metadata transfer required for bringing up a new supernode is significantly reduced. When a supernode fails,
the spare of the failed supernode or that of one of its replica set supernodes can be used as a replacement.
Similarly, one of the better prepared spares, i. e., spares with little metadata transfer pending, can be used
while adding additional supernodes to a cluster.

3.4. Metadata Consistency. Periodically, a supernode, Si, sends the collected status information of
all the resources it is responsible for to all the other supernodes in the cluster. We do not attempt to achieve
sequential consistency among supernodes for such non-critical information because it can be expensive. However,
for critical information such as file metadata, Si and its replica set must always be in a synchronized state,
i. e., sequential consistency semantics need to be observed. Otherwise, if Si performs some file operation, such
as providing a write lock to a user, and fails before letting its replica set know about the lock, the available
metadata in the replica set becomes inconsistent with the actual state. For similar reasons, user/group metadata
must also be maintained consistently among supernodes and their corresponding replica sets.

We adopt the Paxos agreement protocol for the consistent maintenance of critical metadata among Si and
its replica set. Si sends the proposal to its replica set, waits for a sufficient number of responses, performs the
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proposed operation and informs the replica set about the completion of the operation. Even if Si fails before
sending the completion message, its replica set can verify if the proposed operation was performed to completion
or not. This way, a total order is maintained among the updates made to such metadata. Since the replica set
size is a constant, the overhead of maintaining consistency does not increase with an increase in the number of
supernodes in a cluster.

3.5. Namespace Management. We employ a single hierarchical file system namespace with the root
named as /ENFS (Fig. 3.4). Each filename, including the path, is therefore unique. The first level of namespace
partitioning is achieved by making the supernodes of a cluster (CId1) operate as metadata servers for all the
files and directories belonging to their cluster, i. e., all files and directories having a prefix of /ENFS/CId1/.
Every user/group in ENFS must belong to one of the clusters. In order to be unique system-wide, user identifiers
can be of the form ClusterId/UserId and user home directories can be of the form /ENFS/ClusterId/UserId/.
Distribution of responsibilities for files and directories among the supernodes in a cluster is done as is discussed
in section 3.2. Since filenames including paths are hashed to identify responsible supernodes, metadata of
different files in the same directory may be managed by different supernodes. In order to support POSIX
directory access semantics, whenever a file or subdirectory is created, updated or deleted, the metadata of the
parent directory must also be updated. Symbolic links are supported in ENFS by including the entire name
of the original file or directory in the link’s metadata. All operations on links are forwarded to the supernodes
that manage the linked file’s metadata.

Users requiring access to their own files and to the other files belonging to their cluster are served metadata
by supernodes of their own cluster. Since cluster formation is based on the proximity of nodes, network latency
between clients and metadata servers for such file accesses is small. In order to determine the metadata server
(supernode) responsible for any other file, clients will need the current supernodes map file of the cluster to
which the required file belongs. This may require O(logN) hops, where N is the size of the structured overlay.
This cost is, however, amortized over future accesses to files belonging to the same clusters. Supernodes of a
cluster prefetch and maintain the supernodes map files of all clusters, whose files have been recently accessed
by their users, thus thwarting the need to query the structured layer for every single access.

Though hashing helps in balancing query loads to a large extent, sudden increases in demand for individual
files, referred to as flash crowds, can still overload the corresponding supernodes. In ENFS, when a supernode,
Si, notices an increase in the number of queries for a particular file, the cluster’s supernodes map file is
immediately updated with a note suggesting that queries for the popular file must be forwarded through the
client’s supernode. Supernodes of other clusters that receive such queries, then, fetch and cache the popular
file’s metadata locally. These supernodes respond to future queries themselves, until the note is removed from
the supernodes map file of Si’s cluster (when demand for the file falls). The distribution of the responsibility
of serving the metadata of popular files is shown in figure 3.5. Flash crowds can be handled in this manner just
for read-only accesses. When the requests from flash crowds are largely update requests, performance is likely
to get affected.

Network partitioning within a cluster is taken care of by the active replication and migration of metadata
and data across the various supernodes and storage nodes of a cluster. When a small portion of the cluster
becomes unreachable, it is unlikely that any data/metadata will become inaccessible.

3.6. Resource Monitoring. Supernodes of a cluster are responsible for monitoring the status of cluster
resources. Nodes periodically send their status information to the appropriate supernodes. In addition to
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the current values of vital node characteristics, the status information also includes the version number of the
supernodes map file that is known to the nodes. If there is mismatch between the actual version number and
the received number, the supernode sends the node the current file. This is done to ensure that the nodes in
a cluster have current knowledge about the supernodes responsible for that cluster. When a supernode, Si,
does not receive the status information from a node for a certain period of time, it checks if that node has
failed. If the node has failed, Si periodically attempts to ping the failed node. When the node becomes active
again, Si sends the node the current supernodes map file. The frequency and duration of node failures are
used to quantify the reliability of a node. This measure is maintained at the supernodes along with other node
characteristics. Node status information and failures are immediately made known to the supernodes in Si’s
replica set.

3.7. Resource Discovery. The two layered system model of ENFS enables the efficient discovery of
system-wide resources with specific characteristics. Since supernodes periodically broadcast status information
about the nodes they are responsible for, to the other supernodes in their cluster, all the supernodes of a
cluster maintain more or less up-to-date information about all the nodes in their cluster. Supernodes also
maintain information about the clusters closest to them in the system. When a supernode is not able to
locate enough resources with specific characteristics (to handle a user request) within its cluster, it can send
appropriate queries to the supernodes of nearby clusters. However, in certain scenarios, a supernode may not
be able to locate enough suitable resources in any of its nearby clusters. Flooding the system with queries loads
the network and also does not provide any guarantees. ENFS exploits the reach of the structured overlay to
efficiently discover resources located anywhere in the system.

A node is usually characterized by different capabilities or features such as processing speed, memory size,
storage capacity, uplink/downlink bandwidths, system architecture, etc. Each characteristic ci can be quantified
by values belonging to mi categories. For example, memory sizes can be categorized as being less than mr1

MBs, between mr1 and mr2 MBs, . . . , greater than mrm MBs, etc. Standard system-wide policies can be used
for the discretization of the values of the different characteristics. For every category of each characteristic, a
file is maintained in the structured layer that includes the identifiers of all the clusters that have a large number
of resources of that capability available for use. The file also includes the approximate number of resources in
each cluster. JuxMem [5] uses a similar strategy for the available memory alone.

The characteristic category file in the structured layer must be updated by supernodes only when their
clusters have a large number of resources (with the corresponding capability) on a regular basis. A pessimistic
estimate must be used for the number of resources listed as available. This is important because every small
variation in the number of resources available in a cluster should not necessitate a change to the file in the
structured layer. Using such an approach, the number of clusters to which queries must be sent for resource
discovery is significantly reduced. Discovering resources with a combination of characteristics is also possible
by making individual queries for each characteristic and then joining the results.

4. File Management. A useful, yet ignored feature in distributed file systems, is that of allowing users
to have some level of control over choosing appropriate resources for the storage of their files. Most of the times,
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users generating data files, to be used by high performance computing applications, have some knowledge about
the characteristics and requirements of the applications that are going to use their data. Information about
the set of users who are going to perform computations on the files may also be sometimes available. Data
placement based on such knowledge can result in significant improvements in application performance.

4.1. File Placement.

4.1.1. User Preferences. As discussed in section 2.2.1, high performance computing applications differ
widely in their characteristics, and hence, resource requirements. Resource requirements can be specified in
terms of the processing speed, network bandwidth, memory size, storage capacity, architecture, etc. Location
preferences, on the other hand, can be specified based on expected access patterns. Users may want files to be
stored in the proximity of specific nodes or clusters. For example, if certain files are expected to be used by the
members of a particular group, the files are best placed in the proximity of the nodes frequented by those group
members. Certain files may most of the times be used by applications together with a few other files. Such files
are best placed in the proximity of the associated files in order to reduce the amount of data transfer required
during the execution of the application.

To register preferences about resource characteristics, users must specify values for the different character-
istics that storage nodes are expected to possess. The preferred characteristics must be specified as a prioritized
list. To indicate location preferences, users can specify the set of users, groups, clusters, files or directories in
the proximity of which their files must be placed. As in the previous case, location preferences must also be
specified in the order of favor. Replication of user data is necessary to distribute the load on storage sites,
handle storage site failures and also to enable parallel access. Users can explicitly specify the required levels of
replication for their files based on expected demands.

The following shell command shows how a user can load a file into ENFS:
$ enfs put [options] local filename enfs filename

User preferences can be specified using command line options, as is done in POSIX commands. For example
an option such as –cpu=5 can be used to specify that the file must be stored on nodes with processing speeds
greater than 5 GHz. It is not practical to specify several options for each file. The required options can be set
at the level of a directory and all the files created in that directory can inherit the set options. On the other
hand, users can create combinations of options that they use often (locally on their nodes) and just specify the
name of the combination while loading files. The DFS component on the node can replace the name of the
combination with the entire set of options.

4.1.2. Block Management. In ENFS, files are split into data blocks. As much as possible, the blocks
are stored on different nodes. Among other benefits, this provides for parallel access and fault tolerance. The
size of a block can be configured by the user based on application requirements. By default, the system sets
the block size in accordance to the file size. ENFS uses the native file system present in a node’s Operating
System (OS) for the storage of data blocks as files in the local storage devices. The local file names are stored
in the ENFS file’s metadata. Block storage in the local file system and block transfers between nodes happen
as a binary stream of data. This way, differences in the file storage formats of different file systems cannot
corrupt the contents of data blocks. The network subsystem and other hardware interfaces of the OS are used
for purposes such as communication, monitoring, etc.

4.1.3. Placement Strategy. Each supernode maintains a database with entries for all the resources in its
cluster. Such a database assists in quickly identifying resources with required characteristics. Resources from
other clusters can be discovered as discussed in section 3.7. Supernodes keep track of the set of nodes that each
user frequents. Aggregating this information from all the members of a group, supernodes can associate a set
of nodes with each group. From the metadata of files belonging to a directory, supernodes can determine the
set of nodes that store most of the data belonging to files in that directory. All such information is gathered by
supernodes lazily (as low priority tasks) and is used to make locality based placement decisions.

When users do not specify any preference for resource characteristics, supernodes select the set of storage
nodes considering just the available storage space. When no location preference is indicated, supernodes try to
store all the replicas within the same cluster and in nearby clusters. While placing data blocks, supernodes also
take into consideration the reliability of nodes. Since files have to be available at all times, at least a few of
the replicas must be stored on nodes with high reliability, while the other replicas can be stored on nodes with
lesser reliability. At a high level, our file placement algorithm performs the steps shown in figure 4.1.
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Fig. 4.1. Bird’s Eye View of the File Placement Strategy

4.2. File Access. In ENFS, file metadata is maintained on reliable and capable nodes, with a single point
of access for each file. Such a design makes it convenient for the system to support a large spectrum of access
semantics. The single interface allows clients to use the data in various modes. Concurrent accesses can also
be easily coordinated. For example, concurrent accesses to files can be controlled by associating files with
exclusive and shared locks. All exclusive locks must have been released before shared locks can be obtained by
clients and all kinds of locks (shared and exclusive) must be released before an exclusive lock can be obtained.
Lock granularity (block level or file level) and lifetime can also be configured. Applications can use ENFS
library functions such as lockf() and lockb() to lock/unlock files and blocks respectively. These functions take
as arguments the filename, block identifier, type of lock, lifetime, etc. Supernodes ensure that locks are not
violated while responding to read and write requests from multiple users.

4.2.1. Access Semantics. By selecting appropriate access modes, applications can improve their perfor-
mances significantly. Selecting the right kind of lock can reduce wait times to access data. Due to concurrent
accesses, it is possible that multiple versions of a file are available. A user, not too particular about requiring
the latest version, can request for read access to any version of a file [42]. This way, the user is more likely
to gain access faster. Users can also specify whether the order in which their updates are applied on files is
important or not. When the updating order is not important, multiple updates can be simultaneously applied
on the various replicas and hence high performance can be achieved. Commutative updates such as counter
increments/decrements can be unordered. The setattr shell command can be used to modify such options for a
file:

$ enfs setattr [options] enfs filename

Caching file contents locally helps in reducing data access times during subsequent usages. In order to
ensure that contents have not been modified, files and blocks maintain version numbers (included in the file
metadata). Version numbers in the metadata can be compared with version numbers of data items cached by
users to determine if cache contents are valid or not. Block level version numbers are useful, especially in the
case of large files. Without block level version numbers, caches can be invalidated even when a small portion of
a large file is altered.
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4.2.2. Computation Scheduling. Most high performance computing applications involve operations
such as filtering the contents of a file to extract useful information, enforcing data transformations or performing
CPU intensive scientific computations on file contents. Since supernodes have information about all the resources
in their cluster and are capable of discovering resources from other clusters, they are well suited for the job of
scheduling different kinds of operations on file contents. Based on the specified access preferences, supernodes
schedule tasks on appropriate nodes and have the results returned to the user. For example, in order to execute
a divisible load application [7] on the contents of a file, supernodes can efficiently set up computation specific
dynamic overlay networks, such as the one discussed in our earlier work [31].

In a large scale system involving several users and long running applications, scenarios can arise in which
user Ua makes changes to a file while another user Ub is performing a high performance computation on the file
contents. A few examples for scenarios where computation results need to be kept up-to-date with changing
datasets are web crawlers providing fresh content, re-runs of experiments resulting in better values for a portion
of the dataset, sensors detecting new events, etc. Requiring Ub to restart the computation after every change
made to the file is not efficient since file sizes are usually huge and computations take a significant amount of
time. Similarly, not allowing changes to be made to the file when a computation is being performed can lock the
file for long periods of time. In ENFS, we address this issue by enabling the user to provide certain functions
(similar to MapReduce [14]) to the responsible supernode which can then handle simultaneous updates to the
file while computations are in progress on the data. For certain classes of application, such as embarrassingly
parallel applications with commutative updates, the scheduler can continue processing one portion of the file
when another portion is being altered, because there is little or no inter-task communication involved. Thus,
when changes are made to a file, if it is possible to undo the effects of deleted records from the result, the
computation can be made to be consistent with the current contents of the file. For such applications, it may
be possible for the user to provide the following details/functions to the supernode:

• The types of record and result
• The function compute(record) => result—represents the computation that is performed on every

record.
• The function aggregate(< result > ∗) => result—aggregates a set of results into one.
• The function recompute(result, record) => result—reverses the effect of the computation of a single

record from the current result.

Let us assume that the computation initiated by Ub has progressed as shown in figure 4.2(a). Each small box
represents a record. Shaded boxes represent records that have been processed and unshaded blocks represent
records that have not yet been processed. Let us also assume that Ua modifies the file as shown in figure 4.2(b).
Ua deletes the record labeled i, inserts record k and modifies record j, the modified record being labeled j′. In
order to make Ub’s computation consistent with the current contents of the file, the following functions must
be invoked by the supernode:

1. result = recompute(result, i)
2. result = recompute(result, j)
3. result1 = compute(k)
4. result2 = compute(j′)
5. result = aggregate(result, result1, result2)

Steps 1 and 2 are required to undo the effects of old records i and j on the result. Steps 3 and 4 obtain the
results of performing the computation on new records k and j′. The final step combines the three results into
one. The updates will then have been incorporated into the result and the computation can continue with
the records which have not been processed yet. With such user defined functions, ENFS can be customized to
support a wide variety of access semantics.
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4.3. Data Migration. Data stored in a storage node may have to be migrated to other nodes due to
several reasons such as changing access patterns, failure of storage nodes and changes in the characteristics of
nodes. Data migration and creation of new replicas based on access patterns help in improving application
performance. In ENFS, data transfer time is saved by migrating blocks closer to the nodes/clusters where they
are being frequently transferred to. This reduces the effects of high network latency on access times. Moreover,
based on the frequency of access, new replicas are autonomously created and unused ones deleted.

A supernode ascertains that a node has abnormally failed only if the node remains offline for extended
periods of time. When a supernode detects an abnormal node failure, it passes on the information to the
supernodes responsible for the files stored in the failed node. The respective supernodes can then create new
replicas. Changes in node characteristics are also handled in a similar manner.

5. Performance Studies. A prototype version of ENFS has been implemented and in this section, we
present preliminary performance results. We have used the Andrew Benchmark [20] to assess ENFS. Andrew
Benchmark (AB) is widely used to study file system performances and consists of five phases, namely: 1) creation
of directories, 2) copying files into the directories, 3) reading file attributes, 4) reading file contents, and
5) performing a hybrid set of operations on the files, such as reading, computing and writing. All the five
phases of the workload are relevant in the context of a DFS for HPC applications. Phases 1 and 3 characterize
metadata creation and access performance. Phases 2 and 4 characterize data write and read performance.
Phase 5 measures the support provided to computation tasks. The performance of a DFS relative to popular
file systems such as NFS can be used to make indirect comparisons between itself and any other DFS for which
results exist.

Our experimental setup includes a set of 80 machines belonging to two labs in our department. Most of
the machines have Pentium 4 processors (3.8 GHz), 1 GB RAM and 80 GB hard disk drives. The predominant
operating system is Linux version 4. The machines are all connected to a 100 Mbps LAN, with 30 machines in
one subnet and the remaining 50 in another. The machines are split into 2 to 5 clusters, each cluster having
between 16 and 70 nodes, depending on the experiment. On an average, each cluster maintains 4 supernodes.
The NFS server is a Pentium 4 machine of 3.8 GHz processor speed and 4 GB RAM, running NFSv3.

Table 5.1
Andrew Benchmark: ENFS vs. NFSv3

Phase ENFS (ms) NFSv3 (ms)

Phase 1 40 8

Phase 2 72066 83227

Phase 3 202 51

Phase 4 34905 86487

Phase 5 3141 28627

Table 5.2
Overheads of the Paxos Algorithm

No. of Time taken for

Supernodes Consensus (ms)

2 47

16 62

32 108

64 269

Table 5.1 shows the running times of the different AB phases for ENFS and NFSv3. Phases 2 (write) and 4
(read) involve a lot of data transfer (800 MB in each phase). Since data storage is distributed among several
nodes, the running times of these phases are lesser in ENFS than in NFS. ENFS also performs significantly
better than NFS in phase 5 because it exploits the computing power of storage nodes to parallelize computations.
Overall, in this setup, ENFS performs about forty percent better than NFS. In comparison, Pastis [9] achieves
execution times lesser than two times that of NFS, while Ivy [29] and OceanStore [24] perform two to three
times worse than NFS.

Multiple instances of AB are started in different nodes simultaneously and the performance studied. Fig-
ure 5.1 shows the average execution time per run for the different number of simultaneous AB runs (1 to 5).
In ENFS, when the nodes on which AB is started belong to different clusters, the average execution times is
more or less a constant. When the nodes belong to the same cluster, a small increase in the execution time is
noticed with every additional node. This is because, in the first case, a larger set of supernodes cater to client
requests than in the second case, where only a single cluster’s supernodes handle all the load. NFS performance
deteriorates rapidly with the number of runs because of the single server which serves data and metadata to all
the nodes.

The same workload is used to measure the execution times of AB runs in the Hadoop Distributed File
System (HDFS) [8]. HDFS is an open source file system with an architecture similar to that of the Google File
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Fig. 5.1. Concurrent AB Runs

System (GFS) [17] (discussed in section 6). A HDFS cluster maintains a single namenode, which manages the
namespace, and several datanodes, which store data blocks and serve read and write requests. Since data storage
is decentralized, HDFS also performs much better than NFS. However, since the metadata is still managed by
a central server in HDFS, its performance is effected when the number of simultaneous file system operations
increases. When five concurrent AB runs are started, HDFS’s average benchmark time is more than two times
that of ENFS.

We measure the overhead introduced by the Paxos algorithm while trying to achieve consensus among
supernodes. Table 5.2 shows the average time taken to achieve consensus among varying numbers of supernodes
within a cluster. We observe that, though agreement time increases with the number of supernodes, the
overheads are not too high (about a quarter of a second for 64 supernodes in a LAN setting).

A flash crowd scenario is created and the response of ENFS is studied. Table 5.4 shows the average response
times for metadata requests as observed by clients, with and without load distribution. As expected, the average
response time reduces significantly when the responsibility of supplying popular file’s metadata is distributed
among the supernodes of the clusters from which requests are being issued.

Table 5.3 shows the execution times for a computation on a 600 MB dataset while it is being updated by
other users. The time taken to compute a single record, of size 1 MB, on a 3.8 GHz Linux machine is 102 ms
and the time taken to recompute the result when a record is updated is 151 ms. It may be noted that the
recompute function is applied only on the updated records and not on the entire file. Execution times increase
linearly with the rate of updates to the file. Also, for the entire computation, we observe that execution times
are lesser for smaller block sizes. As the block size increases, the number of storage nodes used to store the file
decreases. In other words, the number of nodes, whose processing power is directly usable for the computation
decreases, thus increasing computation times.

Table 5.3
Computation Execution Times

Updates Execution Time (seconds)

/second Block size (MBs)

20 50 100

4 4 8 15

10 6 11 17

20 10 15 22

40 17 23 31

Table 5.4
Flash Crowds: Average Response Times

Avg. response

time (ms)

Flash crowds 29

After load distribution 11

6. Related Work. Certain distributed file system protocols such as Network F ile System (NFS) [38],
Andrew File System (AFS) [21] and Common Internet F ile System (CIFS) [26] employ the client/server
model. File data and metadata are both managed by a single or a limited set of servers. Since the servers are
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potential bottlenecks, these systems do not scale with increasing numbers of simultaneous accesses. Moreover,
these systems support parallelism at the level of directories only, which is not as beneficial to applications as
parallelism at the level of files.

A recent approach to file system design has been to decouple data and metadata [17][39][47][10]. In these
systems, metadata and data are served by different sets of servers. Google F ile System (GFS) [17] is a DFS
for data intensive applications, custom-built for the application workload and technical environment at Google.
A single master maintains all file metadata and several chunkservers store file contents. Lustre F ile System
[39] and Panasas F ile System [47] are similar systems that decouple data and control and use Object based
Storage Devices (OSD) for their storage needs. Requiring specialized object storage nodes precludes the usage
of the storage capacities of most edge nodes. Parallel V irtual F ile System (PVFS) [10] is an open source
DFS that attempts to provide high performance and scalable file system services for node clusters. While data
is spread out among a large number of cluster nodes, metadata is still served by a single server in PVFS1, and
by a small set of servers in PVFS2. All these systems maintain a single, or a fixed set of metadata servers. This
imposes a constraint on the scalability of the system and also affects performance. For several applications,
performance depends on the speed with which file and directory metadata can be accessed and updated.

Farsite [3] is another DFS which decouples data and metadata. File system namespace is maintained using
a collection of replica groups arranged in the form of a tree. File metadata is replicated and stored on the
directory group nodes in a Byzantine fault tolerant manner. As with other hierarchy traversal systems, locating
the directory group for a file deep in the hierarchy may require several hops, thus making metadata access
expensive. Ceph [44] is an OSD based DFS which uses a pseudo random function called CRUSH [45] for the
distribution of data among nodes in the object storage cluster. The usage of CRUSH rules out the possibility
of considering specific node characteristics while making data placement decisions.

OceanStore [24] is a global scale data storage utility that uses untrusted infra-structure. Data objects
are stored on primary and secondary tier nodes. Updates are serialized among the primary tier nodes using
a Byzantine fault tolerant algorithm and propagated to the secondary tier nodes using a dissemination tree.
High churn rates among the primary tier nodes can result in expensive maintenance overheads. The overheads
involved in the maintenance of two tiers of nodes and a tree for each data object can also be significantly high.
Moreover, every update results in the creation of a new version which is archived in the system, making the
system inefficient for large sized files. Ivy [29] is a P2P read/write file system based on logs. Each participant
maintains a log with information about all the changes made to the data and metadata in the file system.
A participant appends changes only to its own log. However, it reads from the logs of other participants
and maintains a total order by using version vectors. As a result, Ivy is suitable only for a small number of
participants.

JuxMem [5] is a hierarchical platform that supports mutable data sharing services for Grid computing.
The hierarchy includes a set of peer groups (clusters) and an overlay network consisting of cluster managers from
the peer groups. A data group is created for each data block that is stored in the system. The group handles
tasks such as replication, consistency maintenance, data access, etc. The overheads of maintaining individual
groups for the data items can affect the system’s scalability with respect to the number of data items. Moreover,
JuxMem largely ignores namespace management issues and the task of optimizing metadata access.

7. Conclusions and Future Work. In this paper, we have discussed the design of a distributed file
system built on top of Internet edge nodes. The DFS attempts to address the needs of widely spread scientific
communities that share and run high performance computing applications on large data files. The system allows
data placement decisions to be based on user’s preference of storage resource characteristics and locations. The
two layered architecture allows for the efficient discovery and usage of system-wide storage resources with specific
characteristics. ENFS supports flexible consistency management and access semantics to improve application
performance. We demonstrate a mechanism that allows a user to continue performing computations on a large
dataset, while it is being modified by another user. The limitation, however, is that it can be applied only to
certain types of application.

ENFS needs to be further tested by obtaining performance measurements from a larger and wider network
of nodes, resembling a real-world scenario. The design of ENFS can be exploited for efficient file discovery. Files
can be associated with tags or keywords that describe their contents. The tags to clusters mapping can be stored
in the structured overlay in much the same way as it is done for the discovery of far-off resources with specific
characteristics. This significantly reduces the number of clusters that must be queried for discovering relevant
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files. A group of HPC enthusiasts are working towards defining a few POSIX file system APIs conducive to
high performance computing applications [1]. A possible future work is to make ENFS support the proposed
POSIX extensions.
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