
SCALABLE COMPUTING

Practice and Experience

Special Issue: Agent based systems & semantic

software services

Editors: Dana Petcu and Daniela Zaharie

Volume 13, Number 1, March 2012

ISSN 1895-1767

U
U

NIVERSITATEA DE VEST

DIN TIMISOARA

Editor-in-Chief

Dana Petcu
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
petcu@info.uvt.ro

Managinig and

TEXnical Editor

Fr̂ıncu Marc Eduard
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, , Romania
mfrincu@info.uvt.ro

Book Review Editor

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen
School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia
DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Bogdan Czejdo, Fayetteville State University,
bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Janusz S. Kowalik, Gdańsk University, j.kowalik@comcast.net

Thomas Ludwig, Ruprecht-Karls-Universität Heidelberg,
t.ludwig@computer.org

Svetozar D. Margenov, IPP BAS, Sofia,
margenov@parallel.bas.bg

Marcin Paprzycki, Systems Research Institute of the Polish
Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Lalit Patnaik, Indian Institute of Science, lalit@diat.ac.in

Boleslaw Karl Szymanski, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 13, Number 1, March 2012

TABLE OF CONTENTS

Agent based systems & semantic software services:

Introduction to the Special Issue iii
Dana Petcu and Daniela Zaharie

FastFix: A Control Theoretic View of Self-Healing for Automatic
Corrective Software Maintenance 5

Benoit Gaudin, Mike H. Hinchey, Emil Vassev, Paddy Nixon, João
Coelho Garcia and Walid Maalej

Simulation of communication and cooperation in multispecies bacterial
communities with an agent based model 21

Dóra Bihary, Ádám Kerényi, Zsolt Gelencsér, Sergiu Netotea, Attila
Kertész-Farkas, Vittorio Venturi, Sándor Pongor

Enabling Model Driven Engineering of Cloud Services by using
mOSAIC Ontology 29

Francesco Moscato, Beniamino Di Martino and Rocco Aversa

An Internet of Things Platform for Real-World and Digital Objects 45
Suparna De, Tarek Elsaleh, Payam Barnaghi and Stefan Meissner

The effect of temporary links in randomly generated networks of
constraints 59

Ionel Muscalagiu, Horia Emil Popa and Viorel Negru

Multi-Agent Architecture in Semantic Services Environment 73
Cristina Mindruta, Victor Ion Munteanu, Viorel Negru and Calin Sandru

Regular Papers:

A Ring-Based Parallel Oil Reservoir Simulator 85
Leila Ismail

c© SCPE, Timişoara 2012

Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. iii–iv. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

INTRODUCTION TO THE SPECIAL ISSUE ON AGENT BASED SYSTEMS & SEMANTIC
SOFTWARE SERVICES

Dear SCPE readers,

This issue of Scalable Computing: Practice and Experience contains papers selected and revised from those
presented at three workshops:

• 3rd Workshop on Software Services: Semantic-based software services organized as satellite workshop
of FedCSIS , Szczecin, Poland, September 19-21, 2011 (http://2011.fedcsis.org)

• 8th Workshop on Agents for Complex Systems and Workshop on High Performance Computing with
application in environment, both of them organized as satellite workshops of SYNASC, Timisoara,
Romania, 26-29, 2011 (http://synasc11.info.uvt.ro)

The six papers selected from twenty candidate papers address problems related to communication and
cooperation in agent based systems, designing self-healing systems, using ontologies in designing cloud services
and in enabling multi-agent systems with semantic components.

Dana Petcu,
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara, Romania

Daniela Zaharie
Computer Science Department
West University of Timisoara

iii

Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 5–20. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

FASTFIX: A CONTROL THEORETIC VIEW OF SELF-HEALING FOR AUTOMATIC
CORRECTIVE SOFTWARE MAINTENANCE

B. GAUDIN∗, M.H. HINCHEY∗, E. VASSEV∗, P. NIXON †, J. COELHO GARCIA ‡, AND W. MAALEJ §

Abstract. One of the main objectives of self-adaptive systems is to reduce maintenance costs through automatic adaptation.
Self-healing is a self-adapting property that helps systems return to a normal state after a fault or vulnerability exploit has been
detected. The problem is intuitively appealing as a way to automate the different type of maintenance processes (corrective,
adaptive and perfective) and forms an interesting area of research that has inspired many initiatives. As a result, several surveys on
self-healing have been published to describe the state of the art in this field. According to those surveys, the major trend towards
finding a solution of the self-healing problem relies on redundancy that may concern both architecture and code resources. These
approaches are therefore better suited to address adaptive and perfective maintenance. As part of the EU FP7 FastFix project [1],
we focus on self-healing for corrective maintenance. We propose a framework for automating corrective maintenance that is based
on software control principles. Our approach automates the engineering of self-healing systems as it does not require the system
to be designed in a specific way. Instead it can be applied to legacy systems and automatically equip them with observation and
control points. Moreover, the proposed approach relies on a sound control theory developed for Discrete Event Systems. Finally,
this paper contributes to the field by introducing challenges to the effective application of this approach to relevant industrial
systems. Some of these challenges are currently being tackled within FastFix.

Key words: software maintenance, self-healing, software control, context-aware software engineering

1. Introduction. Software maintenance aims to modify software systems after they are deployed in pro-
duction ([39, 14]). In [47], the authors divide maintenance activities in three different types: adaptive, perfective,
and corrective. Adaptive maintenance is performed to make the computer program usable in a changed environ-
ment. Perfective maintenance mainly tackles performance and maintainability issues. Corrective maintenance
is performed to correct faults. Within the last 20 years the complexity of both software and communication
infrastructures has increased at an unparalleled rate. This level of complexity means that software systems are
more prone to unexplained faults, require more support and maintenance, and cost more to deploy and manage.
A fundamental challenge faced by the software industry is how to ensure that these complex systems require
less maintenance and human intervention. Concepts such as self-healing, autonomic and self-adaptive systems
provide an answer by reducing human intervention and reducing the apparent complexity of systems.

Several surveys on self-healing have been published to describe the state of the art of this field. According
to these surveys, the major trend towards finding a solution of the self-healing problem rely on redundancy
that may concern both architecture and code resources. These approaches assume that systems are designed
with adaptive capabilities and are therefore better suited to address adaptive and perfective maintenance. In
this article, we focus on self-healing for corrective maintenance. Section 2 recalls existing works on self-healing,
automatic diagnosis, and automatic repair of software systems.

We also propose a control theoretic approach to self-healing in order to deal with corrective maintenance.
Control makes it possible to drive the system in a range of desired behaviours. It represents an interest-
ing approach to avoid behaviours leading to failures. This is achieved by dynamically disabling some of the
implemented features, depending on the current execution of the system. Moreover, the proposed approach
automatically synthesizes supervisors in charge of controlling the software. This hence automates the compu-
tation of a new suitable range of software behaviours whenever corrective maintenance needs to be performed,
e.g. a failure has been reported and behaviours leading to this failure need to be removed or avoided. Our
approach consists of a pre-deployment and runtime phase. Each phase is described in Sect. 3. Sect 4 illustrates
our approach through one of the case studies considered in FastFix: the Moskitt application.

Finally, challenges to be tackled in order to implement effective and efficient control theoretic self-healing
features are discussed in Sect. 5. Most of these challenges relate to the supervisory control theory and its
applicability to software system. However we also show that some challenges are common to the research in
automatic diagnosis and automatic repair.

∗Lero - The Irish Software Engineering Research Center, Limerick, Ireland ({benoit.gaudin, emil.vassev@lero.ie,

mike.hinchey@lero.ie}@lero.ie).
†University of Tasmania, Hobart, Australia (Paddy.Nixon@utas.edu.au)
‡Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa, Lisbon, Portugal

(jog@gsd.inesc-id.pt)
§Technische Universität München, Munich, Germany (maalejw@cs.tum.edu)

5

6 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

2. Overview of Automated Software Maintenance Approaches.

2.1. Self-Healing. Self-healing is a concept which aims to tackle or prevent maintenance tasks in presence
of system failures. This concept came with the notion of Autonomic Computing initiated by IBM in [32]. The
main goal of Autonomic Computing is to reduce human intervention in component management.

There are different visions of self-healing in the literature. In [52], Rodosek et al. consider self-healing as
equivalent to self-repairing and self-immunity, i.e. the ability to resist to infections. A self-healing system must
be able to recover and go back to a proper state following some disturbance. This view is shared in [26], where
recovery oriented computing is presented as a key aspect of self-healing. The authors consider that healing
systems are more concerned with post-fault or post-attack states and more specifically with bringing the system
back to a normative state. In [34], the author has a broader view of self-healing. In that work, self-healing tries
to identify and eliminate or mitigate the root cause of the fault. In [37], the authors have a similar view of self-
healing and recall that the system requires knowledge about its expected behaviours in order to automatically
discover system malfunctions or possible futures failures. In [53] the authors describe self-healing as consisting
of self-diagnosis and self-repair. The consequence of this observation is that work related to automatic diagnosis
and automatic repair or recovery are relevant to the field of self-healing. Finally although self-healing aims
for automation, as discussed in works such as [26, 50], even non fully automated healing approaches may also
represent self-healing techniques. In [26] for instance, Ghosh et al. introduce the notion of assisted-healing for
systems that require some human intervention during their healing process.

Historically, self-healing techniques were inspired by fault-tolerance and these two fields are tightly connected
as explained in [15]. This entails that, as for fault-tolerance approaches, self-healing solutions often rely on some
system redundancy, such as components, hardware, network nodes, code variants, etc. This observation was also
made recently in [45] which also provides a survey on self-healing approaches. The authors classify self-healing
techniques and faults tackled. Self-healing techniques can be classified according to the type of systems under
consideration and span over service relaunch, checkpointing, architecture based, model based, multi-agent based,
reflection based, aspect oriented programming, service discovery and load balancing. From [45] again, the faults
tackled by self-healing approaches are classified into crash failure, fail-stop (execution is deliberately inhibited
on a failure and detected by other processes), omission (message loss or transmission error), transient (error
related to presence of various self recovering faults disturbing other parts of the system), timing and performance
(constrained distributed synchronous execution of tasks by a specific amount of time), security and arbitrary
(a process confuses the neighbors by providing constantly individual consistent but contradicting information).
As pointed out in [55], self-healing is still a relatively immature field and the class of faults tackled by this field
remains quite narrow. Moreover, the techniques employed in this field mainly use architecture adaptation in
order for the system to provide expected features even without the faulty component. To this respect, these
approaches achieve adaptive maintenance in presence of failures.

Recently, other self-healing approaches modifying the behaviours in order to correct them have been consid-
ered, e.g. [56, 7, 8, 6]. Therefore these approaches propose self-healing features that are suitable for corrective
maintenance.

In [56], the authors present ASSURE, a self-healing approach based on rollback and error handling facilities.
When an error occurs at runtime and the system is brought back to a rescue point, pre-defined error handling
strategies are executed in a virtualized environment and tested. If it is satisfactory, then the error handling
code is applied to production code, modifying the initial system behaviour in order to correct it. This approach
makes it possible to self-heal from unknown issues by applying recovery approaches for known issues, that also
seem to apply to the unknown ones.

Carzaniga et al. [7, 8, 6] consider a self-healing approach that modifies the behaviour of the component
to be healed. The proposed approach, called workaround, consists of replacing a faulty sequence of operations
with another that produces the same outputs or effects. Workaround is a model based approach which provides
alternative program executions to the failing ones. This approach relies on the observation that libraries often
contain feature redundancies. A typical example, provided in [6] is the one of changing an item in a shopping
basket. The change item feature can be achieved by composing the remove item and the add item features, i.e.
an item change can be seen as the removal of an item followed by the addition of another one.

As explained in [53] self-healing can be seen as a combination of self-diagnosis and self-repair approaches.
A broader view of these concepts are automatic diagnosis and automatic repair which are strongly related to
the corrective maintenance process.

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 7

2.2. Automatic Diagnosis. Diagnosis is a proactive software-maintenance technique driven by detection
and isolation of faults to prevent failures [47]. Automatic diagnosis targets the automation of the diagnosis
process, where faults are detected and isolated by the system itself, often by applying techniques working on
the system architecture or by implementing special alarms. The architecture-based techniques usually rely on
resource redundancy. For example, in [54] is considered the feasibility for a multi-processor system to perform
self-diagnosis on some of its processors by some others. Another class of automatic diagnosis techniques is the
so-called correlation-based diagnosis that considers diagnosis that may provide several types of alarms where an
issue is detected by the raise of one or more alarms. In [16] correlation-based diagnosis is applied to Discrete
Event Systems and considers the detection of alarms whenever they are not directly observable. In another
approach metrics related to system states or performance are correlated as a means for diagnosis [31]. Normal
system behaviour is determined by specific metric correlations and faults might be detected whenever there is
a deviation from these metrics correlations. Finally, model based techniques form another class of automatic
diagnosis. System models take as input some observations of the current system state or behaviour and produce
diagnosis. In general, the model based diagnosis is about comparing a system behaviour with actual observed
executions [51]. When the observed execution deviates from the expected behaviour provided by the model,
this is an indication of a fault occurrence. [29] consider probabilistic models in order to apply this principle.

2.3. Automatic Software Repair and Bug Fixing. Several approaches have been proposed to au-
tomate the bug fixing process. Rollback techniques maintain a record of “healthy” system states to allow a
rollback to the last such state when a fault occurs. Once successfully rolled back to a healthy state, the system
re-executes after applying certain changes to its input data or execution environment (see e.g. [46, 56, 60, 35, 5]).
Mutation techniques rely on Genetic Programming concepts and are closely related to data structure linking
and modification. The data structure repair approach [42, 17, 18, 21] uses structural integrity constraints for
key data structures to monitor their correctness during the execution of a program. If a constraint violation
is detected, then mutations are performed on the system data structures in order to transform them so that
they satisfy the desired constraints. Event Filtering techniques are usually related to software security and
vulnerability. They consist of automatically creating and detecting signatures or patterns for malicious attacks
such as control hijacking and code injection. Then these signatures are used for a filtering check, so that such
attacks cannot break through in the system anymore. Systems following this principles are PASAN ([59]),
FLIPS ([41]) and ShieldGen ([13]). Learning and probabilistic approaches to automatic repair and bug fixing
learn from past executions where bugs have been fixed. Applied fixes are stored and can be retrieved and
applied again or used in order to infer other possible fixes. Systems such as Exterminator ([43]), BugFix ([30])
and ClearView ([44]) implement such a principle. Finally, in [61] the authors present AutoFix-E, an automatic
code fixing approach based Model Checking. This approach considers contract violations as failures and calls
existing functions whose postcondition fulfills the violated contract. Fix candidates are created from a set of fix
templates and the behaviour models.

2.4. Conclusion. Self-healing approaches mainly rely on system redundancy which adapt their architec-
ture in order to bypass faulty components but still provide their expected features. Therefore these approaches
are related to adaptive maintenance, where the system adapts to changes due to failures.

The authors of [53] suggest a definition of self-healing consisting of self-diagnosis and self-repair. As diagnosis
and repair techniques are very relevant to corrective maintenance, such a vision of self-healing is well suited
to this maintenance task. However, automatic diagnosis and repair techniques found in the literature focus
on analyses and lack of a unified and systematic approach for equipping the system with self-healing facilities
implementing the autonomic feedback loop (see Figure 3.1(a)).

In Sect. 3 we propose an approach for software self-healing that automatically introduces autonomic facilities
into an existing system, e.g. sensors and actuators. This approach is based on The Supervisory Control Theory
(SCT) for Discrete Event Systems where the corrective maintenance task corresponds to the automatic synthesis
of a supervisor. Section 5 introduces the main research challenges associated to the proposed approach.

3. A Control Theoretic Approach to Software Self-Healing. Regarding computing systems, control
theory has traditionally been applied to data networks, operating systems, middleware, multimedia and power
management ([28]). This section introduces a control-based approach for software self-healing.

Self-Healing is a property of Autonomic Systems [33]. Our approach proposes to automatically equip
software systems with autonomic features before deployment so that they can follow the different phases of

8 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

(a) The autonomic feedback loop.

Supervisor

System

Prevention

Observation

(b) The Control Feedback
Loop.

Fig. 3.1: The runtime autonomic and control feedback loops.

the autonomic feedback loop presented in Figure 3.1(a). In particular, sensors and actuators are automatically
added to the software system in order to realize the Data Collection and Action phases of Figure 3.1(a). Within
FastFix, the Analysis phase corresponds to automatic supervisor synthesis. As explained in [20] control theory
principles are suitable to implement the autonomic feedback loop. More specifically, this work considers the
Supervisory Control Theory (SCT) on Discrete Event Systems. This theory was initiated in [48] and is a model
based approach aiming to automate the synthesis of correct models.

Our self-healing approach consists of two different parts: a pre-deployment part which is performed before
the system is deployed and where self-healing features are added to the software; and a post-deployment part
corresponding to the automatic or semi-automatic execution of the maintenance process where the system self-
healing features are employed. The latter part itself consists of supervisor synthesis and runtime supervision.
Synthesis is applied using SCT, whenever new runtime system specifications need to be ensured, e.g. when a
fault has occurred and behaviours leading to it must be removed. Runtime supervision corresponds to applying
the synthesized supervisor to the application at runtime. Overall the presented approach can be seen as a three
phase approach: pre-deployment, supervisor synthesis and runtime supervision. These phases are presented in
more details in Sect. 3.1.

3.1. Overall Approach. The overall proposed approach is depicted in Figure 3.2. The left-hand side
of this diagram represents the pre-deployment phase during which code is instrumented in order to introduce
observation and control points (i.e. sensors and actuators) as well as data structures that make it possible for
the application to embed and use supervisor models. A binary (or bytecode) application with these facilities
can then be obtained through compilation. During the pre-deployment phase, a model of the behaviours is also
automatically extracted from source code through control flows and method calls analysis.

During the runtime and maintenance phase, the software artefacts (source code or bytecode) are no further
modified. Only models of a supervisor representing their possible runtime behaviours are manipulated in order
to maintain the application behaviours within a desired set. These models are embedded in the application at
runtime and are modified and replaced whenever an error occurs so that behaviours leading to this error cannot
occur in future system executions.

Some unknown possible failures of the system may occur at runtime, requiring the application to be cor-
rected. The observation of such a failure indeed indicates that the system behaviour is not satisfactory and
needs to be modified. Self-healing capabilities aim to correct the system behaviour so that the observed failure
can no longer occur. Such corrections are performed by modifying the supervisor that interacts with the appli-
cation at runtime. Considering the Supervisory Control Theory introduced in [48], this can be automatically
achieved when a control objective is provided. In some situations, this control objective can be automatically
derived from observations of failures during the system execution [25]. In general, control objectives can also

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 9

Supervisor
Model

Application
Model

Application
Bytecode/Binary

Control
Objective

Prevention

Synthesis

Failure
Observation

Expected
Observation

Application
Source Code

Model
Extraction

Runtime and Maintenance PhasePre-Deployment

Instrumentation

A
p
p

lic
a

ti
o
n

A
rt

if
a

c
ts

M
o

d
e

ls

Fig. 3.2: A Software Control Approach to Self-Healing.

be provided by expertise. The accuracy and relevance of the expertise involved in designing a control objective
will impact on the accuracy and relevance of the corrective solution applied to the system. For instance, diag-
nosis can help design a more accurate control objective. However, in cases where deep analyses and diagnostics
cannot be conducted (e.g. when the amount of time that is necessary to perform this task is too long), a simple
control objective excluding the undesired previously observed sequences of method calls can be submitted to
the supervisor synthesis algorithm. However in this case, the resulting supervisor may act more coarsely and
unnecessarily remove some of the system behaviours. This depends on how representative of an undesired
behaviour the observed sequence is.

3.2. Pre-Deployment Phase. The pre-deployment phase aims to prepare the software application so
that control and synthesis can be performed at runtime. This preparation consists of 2 subtasks: code instru-
mentation and model extraction. Each of these tasks is performed in an automated fashion.

Code instrumentation is performed in order to introduce observation and control points as well as to
embed a supervisor in the application, as illustrated in Figure 3.6. Intuitively, automatically instrumenting the
application code consists of automatically embedding a supervisor into the system as well as adding conditional
statements in each method body so that method invocations can be observed and executions of method bodies
can be prevented at runtime 1.

Moreover the approach introduced in this section relies on the automatic design of a model of the application
behaviours. In its basic form, this model can be a Finite State Machine whose transitions represent method
calls. An over-approximation of the behaviours of the application can be obtained from the source code by
considering methods, branching and loops as illustrated in Figure 3.3.

Some tools have been implemented in order to extract and analyze models represented as Extended Finite
State Machines (EFSM), i.e. FSM associated with variables. PROMELA is an FSM-based modeling language.
PROMELA models can be used as input to the SPIN tool, which can then model-check this model against
some properties. Bandera ([11]) extracts FSM from Java code. Bandera offers the possibility of exporting the
extracted models into the PROMELA format. More recently in [27], the authors proposed an efficient approach
for model extraction from programs. The approach makes it possible to deal with different but syntactically
similar programming languages such as C++ and Java.

In all these approaches however, only some particular parts of the programming language are considered.
When the extracted models are meant to be used for model-checking, the choice of the program parts to be

1More details on the runtime aspect is provided in Sect. 3.4.

10 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

(a) An example of
method declara-
tion.

method2

method2()
method3()

method4()

method5()

method3()

(b) An FSM modeling the system be-
haviours of method1.

Fig. 3.3: Illustration of FSM extraction.

extracted can be driven by the property to be model-checked (e.g. [11]). In case of software maintenance, one
usually does not know which part of the application is faulty before an error occurs. Therefore monitoring
relevant information about the occurrence of an error requires to cover a large part of the application. Moreover
as the relevance of approach for self-healing relies on the observation made at runtime, it requires that the
application models encode these possible runtime observations. In our approach, the extracted models actually
encode all the possible occurrences of method invocations, for methods declared in the application, i.e. invoca-
tions of methods declared in external components are not considered. This characteristic is related to the fact
that the extracted model is used for on-line monitoring and capture relevant information when an error occurs.
Therefore an important challenge for model extraction consists of obtaining a complete application model. This
requires that the model complies with the specification of the language compiler or virtual machine so that
features such as threads and graphical components are treated appropriately.

In order to extract models on large applications, we use a modular approach. A typical output of the
model extraction mechanism is depicted in Figure 3.4. It consists of a set of Finite State Machines, each of
them possessing one initial state (represented as an hexagon in the figure) and possibly several final states
(represented as double-circle states). From each of these initial state, only one event can be triggered, i.e. event
mi for each FSMi and for 1 ≤ i ≤ 3. Moreover these events, called triggering events, do not appear in any other
transition or in any other FSM. Therefore, when observed at runtime, these events uniquely characterize which
FSM is running and initiates any of the behaviours of this FSM.

Considering software applications, triggering events represent methods that are not called from within the
application. In our approach, this also takes into account the fact that methods within the application may call
an external method that is overridden by a method that is declared in the application itself. This means that
triggering events may only be called through external events such as a call from an external component, from
user interactions, from occurrences of system events, etc.

Triggering events make it possible to capture concepts such as the behaviours associated to button clicks of
a graphical interface (e.g. method actionPerformed in Java SWING), the start of a new thread (e.g. method
run in Java), etc.

Run methods represent concurrency in the application at runtime. This concurrency is also present in the
model as triggering events are declared in different FSM that can run concurrently. However more modularity
is also introduced in the model whenever this is possible. For instance, a method may be a triggering event
although its behaviour does not run concurrently. For instance all actionPerformed methods run on the same
thread, the EventDispatch thread. In this case, apparent concurrency in the model does not represent actual
concurrency at runtime. This approximation is however an interesting means to lower the complexity of the

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 11

m1 m2 m3

m4

m5

m6

m4
m8 m5

FSM1 FSM2 FSM3

Fig. 3.4: Structure of the extracted FSMs.

extracted models. A modular model extraction approach indeed avoids the computation of a single Finite State
Machine, which would become intractable for large applications. This approach allows to extract models of all
the possible application behaviours and makes it scalable by splitting the problem into the one of extracting an
FSM for each of its entry point.

The runtime dynamic of this model is described in more details in Sect. 3.4.

3.3. Synthesis Phase. The design of such a supervisor corresponds to determining how the application
behaviours must be modified in order to avoid undesired behaviours. However designing such a supervisor is a
challenging and prone to error task. Moreover the high complexity of software applications makes it difficult to
take manually into account all the possible failures that can occur and need to be prevented. For this reason,
supervisors may need to adapt at runtime so that they take into account newly observed undesired behaviours,
hence performing corrective maintenance. Such an approach is described in Figure 3.5(a).

Our approach considers the automatic synthesis of such supervisors. More specifically we consider techniques
that automatically compute the model of a supervisor given a model of the application behaviour and a model
representing a set of desired behaviours2. The Supervisory Control Theory (SCT) on Discrete Event Systems
introduced by Ramadge and Wonham [49], offers such a framework and techniques for the automatic synthesis
of supervisors.

SCT is a formal theory that aims to automatically design a model for a supervisor ensuring some safety
property. The Supervisory Control Theory defines notions and techniques that allow for existence and automatic
computation of a model of the supervisor, given a model of the system as well as the property to be ensured. In
this theory, models of a system G are represented by languages over alphabets of events, denoted L(G). These
languages correspond to sets of sequences of events, each representing a possible behaviour/execution of the
system.

Although not as general as languages, Finite State Machine (FSM) are used to model the possible behaviours
of the system as well as the supervisor and the properties to be ensured by control. Regarding the modeling of
supervisors, Figure 3.1(b) shows that they can be seen as a function that takes a given sequence s and returns
to the system a set of allowed events after s. The function S representing the supervisor can be encoded by
a FSM GS such that for all s ∈ L(S), S(s) represents the set of events that can be triggered from the state
reached in GS after sequence s.

Supervisors ensure a given property, called control objective. Such a property is modeled as a FSM as well,
generating a set of “safe” behaviours and meaning that the behaviours that are not encoded by this FSM are
undesired. For instance, Figure 3.5(b) represents a very simple control objective which models that method1
must never be executed.

2Behaviours that do not belong to this set are undesired.

12 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

Supervisor

System

Adaptation
Mechanism

PreventionObservation

Synthesis

(a) A Software Control Adaptation View.

Any event but method1

(b) A simple control
objective.

Fig. 3.5: Software control Adaptation view and a simple control objective.

The main goal of the Supervisory Control theory is to automatically synthesize a model of a supervisor
that ensures that the system behaviours are all included in the ones described by the control objective. The
theory also considers that not every event can or should be disabled by a supervisor. Such events are said to be
uncontrollable. In order to take such events into account, the alphabet of the system is assumed to be composed
of a set of controllable events (Ac ⊆ A) and uncontrollable events (Au ⊆ A). Each event of the system is either
controllable or uncontrollable. Controlling a system consists of restricting its possible behaviours taking into
account the controllable nature of the system events. In order to achieve this, Ramadge and Wonham (see
e.g. [63]) introduce a property called Controllability. A system G′ whose behaviours correspond to a subset of
the ones of G is controllable w.r.t Au and G if L(G′).Au ∩ L(G) ⊆ L(G′). A controllable set of behaviours G′

ensures that no sequence of uncontrollable events can complete a sequence of G′ into a sequence of G that is no
longer in G′. In other words, the controllability condition ensures the synthesized supervisor can be effectively
implemented with respect to the available controllable events. We now define the basic supervisory control
problem, which can be stated as the following:

Basic Supervisory Control Problem (BSCP): Given a system G and a control objective K, compute the
maximal controllable set of behaviours included in the ones of both G and K.

Ramadge and Wonham (see e.g. [63]) have shown that a solution to the BSCP exists if and only if the
maximal controllable set of behaviours included in the ones of both G and K is not empty. They also provided
an algorithm computing this FSM which encodes a most permissive supervisor ensuring the control objective
(see e.g. [63]). This algorithm can be seen as a function that takes as inputs a set of uncontrollable events Au,
a FSM representing the control objective K and a FSM representing the behaviours of the system G. In our
proposed approach, corrective maintenance is applied by modifying the application behaviours. Determining
the set of behaviours to be ensured by control is performed solving the BSCP. The obtained model is then use
to control the application. Part of the mechanism involved to achieve this is described in Sect. 3.4 and part of
it is performed during the pre-deployment phase and is described in Sect. 3.2.

The control objective of Figure 3.5(b) illustrates the case where it is desired to prevent occurrences of
method1. Although in some situations such an objective represents the most relevant property to ensure on the
system, it may also represent an approximation due to lack of knowledge. The root cause of the failure that
leads to the design of this control objective may not indeed come from method1 but from other methods calling
method1. If the developers can only observe that the failure occurs when method1 is executed, then preventing
the occurrence of method1 appears to be the most straightforward way to avoid the failure.

The algorithm solving the BSCP provides a new model of a supervisor which will be used by the application
in order to prevent the future occurrence of undesired behaviours. In general, a restart of the application is
necessary in order to take into account the newly computed supervisor model.

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 13

Finally the extracted models are represented as a composition of FSMs. Classical supervisory control
techniques require that a single FSM represents the system behaviours. Such a FSM can be obtained by
computing the composition of the FSM representing each component. However, this computation leads to a
state explosion problem and represents an important challenge of the supervisory control theory. Some works
on control on concurrent systems have been conducted (e.g. [62, 19, 24]) and can be applied to the extracted
model. In particular, conditions stated in [24] for efficient modular supervisor synthesis are fulfilled by the
model extracted as in Sect. 3.2. For instance one such requirement is that shared event between FSMs are
controllable. This requirement always hold with our model at runtime as there is actually no shared event
between the modelled concurrent FSMs. This is due to the fact that each FSM is being executed on a different
thread at a given time and that the knowledge of the thread on which a method is invoked indicates which FSM
this event is belonging to.

3.4. Runtime Supervision. When an error occurs at runtime, the observed behaviour is used in order
to modify the extracted model as described in Sect. 3.3. The resulting model encodes a supervisor to be applied
to the application at runtime. This section describes this mechanism.

We first consider the control phase which follows the principle illustrated in Figure 3.1(b). In this diagram,
the supervisor observes and controls the current behaviours of the system. These behaviours are represented as
sequences of events.

As illustrated in Figure 3.6, the model of the supervisor is embedded in the application. More specifically,
the model of the supervisor can be considered as an object whose current state can be updated whenever a
method of the application to be controlled is invoked. Each time a method is called, then method accept is
called. First, this method makes the supervisor aware of the method being invoked and updates its knowledge
of the current behaviour of the application. Second, this method returns a boolean value indicating whether
the supervisor allows the body of the method to be executed. Such an approach allows for dynamic restriction
of the system executions, e.g. a method execution may be prevented after a given sequence and allowed after
another one.

void m()

 {

 ...

 method body

 ...

 }

static class Supervisor

 {

 Object supervisor;

 State currentState;

 boolean accepts(String m){...}

 }

if (supervisor.accepts(m)) {...}

Initially

implemented

classes

Supervisor class

Fig. 3.6: A possible code instrumentation offering observation and control points.

The models obtained from model extraction and presented in Figure 3.4 represent concurrent Finite State
Machines. However the concurrency between these FSMs may not correspond to the one of the threads created
during the execution of the application. Considering Figure 3.4 again, although FSM1 and FSM2 are modelled
as concurrent FSMs, it may be the case that m1 and m2 are always executed on the same thread. This may
happen for instance when the application to be controlled is an API and m1 and m2 are always called from
methods of an external component that run on the same thread.

The dynamic of the concurrent FSMs of the model we consider is unlike the standard parallel composition
of FSMs (see e.g. [9]). Instead the dynamic of the model considers that only a subset of the concurrent FSMs
may run simultaneously. This mechanism is embedded in the implementation of the supervisor and consists of

• mapping at runtime the observed current thread and method call to the appropriate running FSM in
order for it to update its current state,

• mapping at runtime the observation of a triggering event, i.e. the first event that can be triggered from
a FSM to the corresponding FSM.

14 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

Figure 3.7 illustrates the runtime mechanism of concurrent FSM model. We assume here that the model
consists of a pool of n concurrent FSMs {G0, . . . , Gn}. In this example, the first method invocation observed is
the triggering event associated to G3 and is executed on thread Thread1. Then some of G3’s behaviours may
be executed on this thread as well as the triggering event of FSM G6 on thread Thread2. Then G3 and G6 run
in parallel on their respective threads when the method corresponding to the triggering event of G2 is invoked
on thread Thread3. Then the current behaviours of G3 completes and the method associated to the triggering
event of G7 is invoked on thread Thread1. Finally, FSMs G7, G6 and G2 run in parallel on their respective
thread until the behaviour of G6 completes.

This runtime dynamic is sound as triggering events only occur from the initial state of an FSM and do not
appear in any other ones. Therefore when a method corresponding to a triggering event is invoked on a thread,
there is no ambiguity as to whether it initiates the behaviour of an FSM on this thread or extends the behaviour
of the FSM currently associated to this thread: the first case indeed applies. Moreover when a method that
does not correspond to a triggering event is invoked on a given thread, it corresponds to the a transition of
the FSM currently associated to this thread. The information about the thread on which the method is called
removes any ambiguity on the FSM for which the corresponding event belongs to.

G0

G1

G6

G7

G3

G3 G6

G3 G2G6

G7 G2

G7 G2G6

Thread1 Thread2 Thread3

t0

t1

t2

t3

t4

Pool of FSM

G2

Fig. 3.7: The Runtime Dynamic of the Model Concurrent FSMs

Finally, the supervisor embedded in the FastFix target application is a declared as a synchronized object
and it is therefore safe to call it form different threads. Such an approach makes it possible for the supervisor to
control behaviours that spread over several threads. However, this approach introduces some extra concurrency
between threads, i.e. threads have to share an extra resource: the supervisor.

3.5. Summary. The control theoretic approach for self-healing proposed in this section raises several
challenges. Some of these challenges correspond for instance to automating the introduction of autonomic
features into legacy applications; automatically extracting relevant and accurate models from source code;
applying supervisory control theory on large systems; designing accurate control objective, etc. They also
relate to different fields of computer science such as software engineering (e.g. software modeling, logging,
maintenance), formal methods and control theory. Sect. 4 illustrates this approach on an industrially relevant

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 15

application: Mokistt while Sect. 5 presents challenges related to our approach.

4. Example. This section applies the approach described in Sect. 3. More specifically, it illustrates the
pre-deployment phase on a industrially relevant application: Moskitt [2]. Moskitt is an open source software
initially developed for the Conselleria de Infraestructuras, Territorio y Medio Ambiente, built on top of Eclipse
and which supports modeling tasks. This application is used as a case study within the FastFix project. It
consists of numerous modules implemented as OSGI bundles [3]. The applicability of our automated model
extraction and supervision deployment mechanisms is illustrated on Moskitt.

Our model extraction and supervision deployment mechanisms have been implemented as an Eclipse plugin,
illustrated in Figure 4.1. Table 4.1 presents results regarding the scalability and efficiency of the approach and
Figure 4.2 illustrates the outcome of the instrumentation embedding supervisors within the application.

As shown in Figure 4.1, our plugin implements the pre-deployment phase of our self-healing approach, and
contains two features: model extraction and supervision deployment. Model extraction is performed through
static analysis of the application source code. The different Moskitt bundles appear on the left-hand side of
Figure 4.1. For this example, we used a MacBook Pro with a 2.6Ghz dual core i7 processor and 4GB of RAM.

Fig. 4.1: Screenshot of the FastFix Self-Healing Component applied to Moskitt.

Table 4.1 presents results about the model extraction and supervision deployment mechanisms on the
Moskitt bundles. First, 54 of the Moskitt bundles were considered, representing more than 20000 method
declarations. About 2500 FSMs were extracted from these bundles (one per triggering event) in around 6
minutes and 10 seconds. The size of the extracted FSMs vary from 2 states up to 1381 states. However, 3 FSMs
were discarded as their non deterministic version has more than 50000 states3.

Finally, Figure 4.2 represents the result of the supervision deployment mechanism in the log method of the
EMFComparePlugin. Line 122 and 123 show the call to the accepts method from the supervisor. If this method
returns true, then the method intent to execute the contents of the try statement in Line 124. The contents

3In this work, a special version of the determinisation algorithm is used which does not ensure an equivalent behaviour to the
initial one. However, this algorithm complexity is linear rather than exponential in the classical case.

16 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

Nb Bundle 54
Nb Fsm 2492

Nb Methods 21525
Extraction Time 370749 ms

Avg Min FSM Size 2
Avg Max FSM Size 85

Table 4.1: Application of the model extraction and supervision deployment mechanisms to Moskitt. Time is in
millisecond and FSM sizes represent numbers of states.

of this try clause represent the initial body of the log method. If an un-handled exception occurs during the
execution of the try clause, then it is caught and the behaviour recorded by the supervisor at runtime and
leading to this exception is flushed into a log file for further analysis and patch generation. Moreover, the
exception is thrown again in case other deployed supervisors need to be aware of its existence.

Fig. 4.2: A Moskitt method automatically instrumented in order to enable Supervisory Control.

This example shows the feasibility of applying the pre-deployment phase of our proposed approach on an
industrially relevant application. Work such as [24] ensures the feasibility of the supervisory control algorithm
on concurrent FSMs such as the ones extracted from Moskitt.

5. Challenges. The control theoretic self-healing approach poses several challenges. Some of them are
discussed in this section and related to current research efforts. Most of the challenges under consideration are
due to system complexity. Complexity relates to the system size, the system model size, the efficiency of the
analyses and supervisor synthesis as well as the need for a low overhead during runtime execution.

The approach in Sect. 3 is flexible enough to allow for complexity reduction by considering only sub-
parts of the system to be observed, controlled and modeled and also by approximating the system and control
objective models through abstractions. However, reducing the amount of information available to the framework
described in Figure 3.2 alters the quality of the supervisors, that can be automatically synthesized and therefore
the relevance of the self-healing solution to be applied. Therefore trade-offs between scalability and relevance
of the approach have to be determined, posing several challenges. For this purpose challenges related to
system observability and controllability, to system modeling, to designing control objective (related to automatic
diagnosis), to concurrency and to corrections to be applied (related to automatic repair) are discussed in the
rest of this section.

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 17

5.1. Finite State Machines and Variables. In Sect. 3 we represent application models as Finite State
Machines, where the transitions represent method calls. Although this view of the system behaviours takes into
account past executions in order to decide on the control actions to be performed, it does not explicitly take into
account system variables. This approach has an interesting upside: the state space of the model is in general
smaller than the state space of the application. Without considering system variables, the states of the model
do not encode a possible tuple of values of the application variables. Instead states only encode control-flow
information (branchings and loops) of the program (as illustrated in Figure 3.3), reducing the model state space.

The downside of this approach is that information on the system behaviours is not as accurate as if variable
values were taken into account. For instance, disabling the occurrence of a method call may be dependent on
the values of the parameters with which the method is called (if any). Therefore, taking into account some
of the application variables into the approach while preserving its scalability is an important but challenging
tasks.

Several works have considered supervisory control on FSM with variables: [58, 57, 38, 36, 23]. Although
Extended Finite State Machines offer a compact way of representing potentially large, or even infinite system
state spaces, the supervisor synthesis takes into consideration the system state space itself. In order to tackle
this issue, abstractions of the variable values rather than the possible values themselves should be considered
for analysis. This can be done in the same spirit as for Abstract Interpretation ([12]) or data obfuscation
techniques (e.g. [4]). Obfuscation techniques aim to abstract the actual variable values into restricted domains.
Using an FSM makes it easier to calculate the restricted domain of each variable at each point. As transitions
that correspond to tests and branches on application variables are performed in the application model, the
conjunction of the conditions applied to each variable can be calculated, resulting in the conditions needed to
reach the particular point, i.e. the path condition. Naturally, the path condition is a result of the particular
values of the program’s variables: if the path condition includes the clause x > 0 this means that x was tested
for being positive somewhere along the execution path and indeed it was positive. Implicitly, the path condition
obfuscates the specific variable values for the execution.

5.2. Automatic Recovery. In its basic form, the approach described in Sect. 3 generally requires that
the application is restarted in order to take new supervisors into account. This ensures a proper monitoring
of the system by the new supervisor. Restarting the application sets the system behaviour model to its initial
state. This ensures that the new supervisor can be applied to the system: when it exists a supervisor can always
be applied from the system’s initial state. One challenge for our approach consists of providing an automated
means for avoiding the application relaunch whenever a new supervisor is to be applied. This challenge can be
tackled by considering checkpointing techniques such as described in Sect. 2.3.

Checkpointing an entire application is time consuming. In order to lower the rate (and cost) of checkpointing,
full checkpoints of the whole application may be complemented with intermediate incremental checkpoints [22]
of the memory pages or objects that have changed since the latest full checkpoint. However, the main challenge
for checkpointing in a supervised application is to synchronize the application states with model states. Code
instrumentation can be used in order to annotate the checkpointing data with the corresponding application
model state. In this way both application and model can easily be restarted at the same point. When rollbacks
are performed together with a modification of the supervisor (e.g. so that the system does not run towards the
previously occurred error), it may not be possible to restart a supervised application at the latest checkpoint.
The supervisor model may indeed have been modified so that the model states associated with the latest
checkpoint no longer exist. This problem can be sidestepped by rolling the application back to a point where
the application execution does not include any state of the supervisor model that has been modified. This can
be verified by storing, with each checkpoint, the current supervisor model state as well as all the states that
have been visited before. If, when the supervisor model is changed the list of modified states is also stored, then
it becomes possible to choose a checkpoint that does not include any modified states.

5.3. Designing Control Objectives. Our proposed approach relies on the synthesis of supervisors from
a model of the system behaviours and a control objective. This control objective is represented by a FSM
and encodes safety properties over the system behaviours. It is possible for instance to describe what methods
must not be executed after some given executions. If the control objective also provides information on the
variables of the system, then it allows to describe complex conditions under which some method calls must not
be executed.

As mentioned in Sect. 3.1 and illustrated in Figure 3.2, the control objective may be obtained manually

18 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

and automating its design is a difficult challenge.

Some result in this direction have been obtained in [25] in the specific case of un-handled exceptions. As a
general matter, tackling the automatic design of control objective is very much related to automatic fault and
anomaly detection (e.g. [10]) as well as automatic diagnosis. Specification mining techniques ([40]) can also be
employed in order to extract from the observed undesired trace the pattern that characterize the occurrence of
an error.

6. Conclusion. This document deals with software self-healing as investigated in the FastFix FP7 EU
project, and focuses on corrective maintenance. A brief state-of-the-art on self-healing is presented and concludes
that the research achieved so far is better suited for adaptive and perfective maintenance rather than corrective
maintenance.

This work introduces a control theoretic approach which offers a solution to self-healing for corrective main-
tenance. We describe its different phases: model extraction, supervision deployment and runtime supervision.
Results about the feasibility of applying this approach on an industrially relevant system are presented. Finally
this paper points out the challenges related to the proposed approach, such as the automatic design of control
objective and improving on the application models.

REFERENCES

[1] Fastfix project consortium: Fastfix project homepage, www.fastfixproject.eu/.
[2] The moskitt project: Homepage, http://www.moskitt.org/eng/moskitt0/.
[3] Osgi eclipse: Homepage, http://www.eclipse.org/osgi/.
[4] D. Bakken, R. Rarameswaran, D. Blough, A. Franz, and T. Palmer, Data obfuscation: anonymity and desensitization

of usable data sets, Security & Privacy, IEEE, 2 (2004), pp. 34–41.
[5] G. Candea and A. Fox, Crash-only software, in Proceedings of the 9th Workshop on Hot Topics in Operating Systems

(HotOS IX), 2003, pp. 12–20.
[6] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè, Automatic workarounds for web applications, in FSE, 2011.
[7] A. Carzaniga, A. Gorla, and M. Pezzè, Healing Web applications through automatic workarounds, International Journal

on Software Tools for Technology Transfer (STTT), 10 (2008), pp. 493–502.
[8] , Self-healing by means of automatic workarounds, in Proceedings of the 2008 international workshop on Software

engineering for adaptive and self-managing systems, ACM, 2008, pp. 17–24.
[9] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Kluwer Academic Publishers, 1999.

[10] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM Computing Surveys (CSUR), 41 (2009),
pp. 1–58.

[11] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, and H. Zheng, Bandera: Extracting finite-state models
from Java source code, in Software Engineering, 2000. Proceedings of the 2000 International Conference on, IEEE, 2002,
pp. 439–448.

[12] P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints, in Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Los Angeles, California, 1977, ACM Press, New York, NY, pp. 238–252.

[13] W. Cui, M. Peinado, H. Wang, and M. Locasto, Shieldgen: Automatic data patch generation for unknown vulnerabilities
with informed probing, in Security and Privacy, 2007. SP ’07. IEEE Symposium on, May 2007, pp. 252 –266.

[14] M. Davidsen and J. Krogstie, Information systems evolution over the last 15 years, in Advanced Information Systems
Engineering, Springer, 2010, pp. 296–301.

[15] R. de Lemos, ICSE 2003 WADS Panel: Fault Tolerance and Self-Healing, (2003).
[16] R. Debouk, S. Lafortune, and D. Teneketzis, Coordinated decentralized protocols for failure diagnosis of discrete event

systems, Discrete Event Dynamic Systems, 10 (2000), pp. 33–86.
[17] B. Demsky and M. Rinard, Automatic detection and repair of errors in data structures, in Proceedings of the 18th annual

ACM SIGPLAN conference on Object-oriented programing, systems, languages, and applications, ACM, 2003, pp. 78–95.
[18] , Data structure repair using goal-directed reasoning, in Proceedings of the 27th international conference on Software

engineering, ACM, 2005, pp. 176–185.
[19] M. deQueiroz and J. Cury, Modular supervisory control of large scale discrete-event systems, in Discrete Event Systems:

Analysis and Control. Proc. WODES’00, Kluwer Academic, 2000, pp. 103–110.
[20] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey, Fulfilling the vision of autonomic computing, Computer, 43 (2010),

pp. 35–41.
[21] B. Elkarablieh and S. Khurshid, Juzi, in Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference

on, IEEE, 2009, pp. 855–858.
[22] E. Elnozahy, D. Johnson, and W. Zwaenepoel, The performance of consistent checkpointing, in Reliable Distributed

Systems, 1992. Proceedings., 11th Symposium on, IEEE, pp. 39–47.
[23] B. Gaudin and P. Deussen, Supervisory control on concurrent discrete event systems with variables, American Control

Conference, 2007. ACC’07, (2007), pp. 4274–4279.
[24] B. Gaudin and H. Merchand, An efficient modular method for the control of concurrent discrete event systems: A language-

based approach, Discrete Event Dyn Syst, 17 (2007), pp. 179–209.

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 19

[25] B. Gaudin, E. Vassev, M. Hinchey, and P. Nixon, A control theory based approach for self-healing of un-handled runtime
exceptions, in 8th International Conference on Autonomic Computing (ICAC 2011), Karlsruhe, Germany, 06/2011 2011.

[26] D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya, Self-healing systems - survey and synthesis, Decis. Support
Syst., 42 (2007), pp. 2164–2185.

[27] N. Gruska, A. Wasylkowski, and A. Zeller, Learning from 6,000 projects: lightweight cross-project anomaly detection,
in ISSTA ’10: Proceedings of the 19th international symposium on Software testing and analysis, New York, NY, USA,
2010, ACM, pp. 119–130.

[28] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback control of computing systems, Wiley-IEEE Press, 2004.
[29] C. Hood and C. Ji, Proactive network-fault detection [telecommunications], Reliability, IEEE Transactions on, 46 (2002),

pp. 333–341.
[30] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, Bugfix: A learning-based tool to assist developers in fixing bugs, in Program

Comprehension, 2009. ICPC’09. IEEE 17th International Conference on, IEEE, 2009, pp. 70–79.
[31] M. Jiang, M. Munawar, T. Reidemeister, and P. Ward, Automatic fault detection and diagnosis in complex software sys-

tems by information-theoretic monitoring, in Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP International
Conference on, IEEE, 2009, pp. 285–294.

[32] J. O. Kephart and D. M. Chess, The vision of autonomic computing, Computer, 36 (2003), pp. 41–50.
[33] J. O. Kephart and D. M. Chess, The vision of autonomic computing, IEEE Computer, 36 (2003), pp. 41–50.
[34] A. D. Keromytis, Characterizing self-healing software systems, in In Proceedings of the 4th International Conference on

Mathematical Methods, Models and Architectures for Computer Networks Security (MMM-ACNS, 2007.
[35] N. Kolettis and N. D. Fulton, Software rejuvenation: Analysis, module and applications, in Proceedings of the 25th

International Symposium on Fault-Tolerant Computing (FTCS-25), 1995, pp. 381–395.
[36] R. Kumar and V. Garg, On computation of state avoidance control for infinite state systems in assignment program

framework, Automation Science and Engineering, IEEE Transactions on, 2 (2005), pp. 87–91.
[37] S. Laster and A. Olatunji, Autonomic Computing: Towards a Self-Healing System, (2007).
[38] T. Le Gall, B. Jeannet, and H. Marchand, Supervisory control of infinite symbolic systems using abstract interpretation,

in 44nd IEEE Conference on Decision and Control (CDC’05) and Control and European Control Conference ECC 2005,
Seville (Spain), December 2005, pp. 31–35.

[39] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, Characteristics of application software maintenance, Commun. ACM,
21 (1978), pp. 466–471.

[40] D. Lo, S. Khoo, and C. Liu, Mining temporal rules for software maintenance, Journal of Software Maintenance and
Evolution: Research and Practice, 20 (2008), pp. 227–247.

[41] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo, Flips: Hybrid adaptive intrusion prevention, in Proceedings of the
8th International Symposium on Recent Advances in Intrusion Detection (RAID 2005), 2005, pp. 82–101.

[42] M. Malik, K. Ghori, B. Elkarablieh, and S. Khurshid, A case for automated debugging using data structure repair,
in Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering, IEEE Computer
Society, 2009, pp. 620–624.

[43] G. Novark, E. Berger, and B. Zorn, Exterminator: Automatically correcting memory errors with high probability, in
Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and implementation, ACM, 2007,
pp. 1–11.

[44] J. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,

G. Sullivan, et al., Automatically patching errors in deployed software, in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, ACM, 2009, pp. 87–102.

[45] H. Psaier and S. Dustdar, A survey on self-healing systems: approaches and systems, Computing, 91 (2011), pp. 43–73.
10.1007/s00607-010-0107-y.

[46] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan, Rx: Treating bugs as allergies—a safe method to survive software failures,
ACM Transactions on Computer Systems (TOCS), 25 (2007), p. 7.

[47] J. Radatz, IEEE standard glossary of software engineering terminology, IEEE Std 610121990, 121990 (1990).
[48] P. J. Ramadge and W. Wonham, Supervision of discrete event processes, in Proc. of 21st IEEE Conf. Decision and Control,

Orlando, FL, Dec. 1982, pp. 1228–1229.
[49] , Supervisory control of discrete event processes, in Feedback Control of Linear and Nonlinear Systems, vol. 39 of

LNCIS, Springer-Verlag , Berlin, Germany, 1982, pp. 202–214.
[50] O. Raz, P. Koopman, and M. Shaw, Enabling automatic adaptation in systems with under-specified elements, in WOSS

’02: Proceedings of the first workshop on Self-healing systems, New York, NY, USA, 2002, ACM, pp. 55–60.
[51] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence, 32 (1987), pp. 57–95.
[52] G. D. Rodosek, K. Geihs, H. Schmeck, and B. Stiller, Self-healing systems: Foundations and challenges.
[53] M. Salehie and L. Tahvildari, Self-adaptive software: Landscape and research challenges, Transactions on Autonomous

and Adaptive Systems (TAAS, 4 (2009).
[54] A. Sengupta and A. Dahbura, On self-diagnosable multiprocessor systems: diagnosis by the comparison approach, Com-

puters, IEEE Transactions on, 41 (2002), pp. 1386–1396.
[55] O. Shehory, A self-healing approach to designing and deploying complex, distributed and concurrent software systems, in

ProMAS’06: Proceedings of the 4th international conference on Programming multi-agent systems, Berlin, Heidelberg,
2007, Springer-Verlag, pp. 3–13.

[56] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D. Keromytis, Assure: automatic software self-
healing using rescue points, in ASPLOS ’09: Proceeding of the 14th international conference on Architectural support
for programming languages and operating systems, New York, NY, USA, 2009, ACM, pp. 37–48.

[57] M. Skoldstam, K. Akesson, and M. Fabian, Modeling of discrete event systems using finite automata with variables, in
Decision and Control, 2007 46th IEEE Conference on, IEEE, 2007, pp. 3387–3392.

[58] , Supervisory control applied to automata extended with variables-revised, Relatório técnico, Goteborg: Chalmers Uni-

20 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

versity of Technology, (2008).
[59] A. Smirnov and T.-c. Chiueh, Automatic patch generation for buffer overflow attacks, in IAS ’07: Proceedings of the Third

International Symposium on Information Assurance and Security, Washington, DC, USA, 2007, IEEE Computer Society,
pp. 165–170.

[60] M. Sullivan and R. Chillarege, Software defects and their impact on system availability-a study of field failures in operating
systems, in Proceedings of the 21st International Symposium on Fault-Tolerant Computing (FTCS-21), 1991, pp. 2–9.

[61] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller, Automated fixing of programs with
contracts, in ISSTA ’10: Proceedings of the 19th international symposium on Software testing and analysis, New York,
NY, USA, 2010, ACM, pp. 61–72.

[62] Y. Willner and M. Heymann, Supervisory control of concurrent discrete-event systems, International Journal of Control,
54 (1991), pp. 1143–1169.

[63] W. M. Wonham, Notes on control of discrete-event systems, Tech. Report ECE 1636F/1637S, Department of Electrical and
Computer EngineeringUnivertsity of Toronto, July 2003.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 21–28. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

1

SIMULATION OF COMMUNICATION AND COOPERATION IN MULTISPECIES
BACTERIAL COMMUNITIES WITH AN AGENT BASED MODEL

DÓRA BIHARY1⋆,ÁDÁM KERÉNYI2⋆, ZSOLT GELENCSÉR1, SERGIU NETOTEA3, ATTILA KERTÉSZ-FARKAS4,

VITTORIO VENTURI4 AND SÁNDOR PONGOR1,2,4

Abstract.
Members of bacterial communities communicate and cooperate via diffusible chemical materials they emit into the environment,

and at the same time, they also compete for nutrients and space. Agent-based models (ABMs) are useful tools for simulating the
growth of communities containing multiple interacting microbial species. In this work we present numerical indices characterizing
spatial distribution and the fitness of competing bacterial species in an ABM and we present data on how these indices can be used
to visually summarize large scale simulation experiments. Preliminary results show bacterial agents utilizing different nutrients but
sharing communication signals and public goods can form stable mixed communities in which the species grow faster than any of
the single species alone.

Key words: quorum sensing, Pseudomonas aeruginosa, hybrid model, statistics, segregation, fitness

1. Introduction, state-of-the-art. Multispecies microbial communities are now recognized as a major
form of bacterial life. These communities (such as the gastrointestinal flora, the microflora of dental cavities,
the rhizosphere around plant roots or the large microbial mats on the seafloor) contain more than one species.
Computer simulations play an important role in the study of these communities since it is extremely complicated
to collect reliable data on the size and growth dynamics of free-living bacterial communities.

The interaction between individual bacteria in a community is often based on the exchange of diffusible
signals, the best known example of which is a mechanism called quorum sensing (QS) [1, 2]. In this mechanism,
signaling materials secreted by the bacteria are supposed to spread in the environment by diffusion. The
concentration of signals regulates the behavior of bacteria, which results in collective patterns of behavior, such
as coordinated movement (e.g. swarming), secretion of specific materials, resistance to antibiotics, etc. When
the concentration of the secreted signal is greater than a certain threshold, bacteria, such as Pseudomonas
aeruginosa, switch from low to high metabolic activity, they increase the amount of secreted signaling molecules
and they also start to secret other molecules, frequently referred to as ”public goods” or simply ”factors” (e.g.
surfactants, enzymes, siderophores), which facilitates movement and nutrient uptake [2, 3]. As a result, the
colony changes behavior, for instance it starts to grow and expand. In some cases, this is accompanied by a
swarming motion of the cells.

There are various approaches for modeling the growth of bacterial communities. Continuous models rep-
resent both the nutrients and the bacterial colony as continuous quantities described by reaction-diffusion
equations [3]. Agent-based models consider bacteria as individuals capable of nutrient uptake, movement and
cell-division [4, 5]. In agent based models, the nutrients are often considered as diffusing materials described by
reaction-diffusion equations - these models are specifically called ”hybrid models” as they combine individual-
based agents with diffusing materials. Continuous and agent-based hybrid models were used primarily to show
that colony shapes (especially the well known fractal-like or circular shapes) can be reproduced by simple
models [3, 4, 5].

Recently we adapted the hybrid methodology for describing the behavior of QS bacteria [6, 7]. Briefly,
agents representing individual bacteria move randomly on a 2D plane in this model, and they secrete two kinds
of materials, a signal S and a factor F (public goods material) that both spread via diffusion on the 2D plane.
Agents have different ”physiological” states and they switch between states depending on the local concentration
of S and F . In the ground state (S and F below threshold), nutrient uptake, movement and signal production
is at a low level. In the activated state (S above threshold, F below threshold), the production of public goods
(F) starts, and signal production is upgraded to a higher level. In the quorum state, signal production is high,
production of public goods is high, and movement and nutrient uptake are also upgraded to a higher level. In

1Faculty of Information Technology, Pázmány Péter Catholic University, Práter u. 50/a. 1083 Budapest, Hungary, 2Biological
Research Centre of the Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62, Hungary, 3Ume̊a University, SE-
901 87 Ume̊a, Sweden, 4International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy,
pongor@icgeb.org, ⋆These authors contributed equally.

21

22 D. Bihary, Á. Kerényi, Z. Gelencsér, S. Netotea, A. Kertész-Farkas, V. Venturi, S. Pongor

Fig. 1.1: Simulation of segregation (left) and co-localization (right) of mixed, swarming communities. In these
experiments, the three species consumed nutrients that were not accessible for the other species. In the left
lane, the species could neither communicate nor cooperate with the other species. In the right lane, the species
could communicate and cooperate with each other.

summary, the cells’ behavior (nutrient intake, movement, production of signals and public goods) alternates
between two levels, according to certain threshold criteria. In a simulation run, a small number (usually 2000)
of ground state agents are placed randomly at the bottom of a cylindrical surface (Figure 1) and then let to
perform nutrient uptake, movement etc. according to their individual programs. When the cells accumulate a
certain quantity of nutrients, they divide and the progeny increases the number of living cells. Cells that run
out of nutrients ”die”. This is a highly simplified model in which all parameters are in arbitrary units, and time
is represented as discrete time steps. Nevertheless the model is able to reproduce seemingly complex behavior
patterns that occur in natural bacterial communities: a) Switching from ground state to an active (quorum)
state is dependent on cell density - this is the fundamental hypothesis of quorum sensing. b) The colony is
capable to track external signals - this phenomenon occurs in nature when plant roots recruit bacteria from the
surrounding rhizosphere. c) Bacteria that respond to signal but are unable to produce it, are capable to form
viable communities with healthy (wild type) cells that both produce and sense the signal. d) Mutants that do
not cooperate (do not produce public goods) will collapse a community of healthy (wild type) cells [6, 7].

The ultimate goal of our modeling project is to get insights into the stability criteria that keep multispecies
communities stable in time. Previously we showed that synthetic bacterial communities (e.g. those formed by
cells of two, selected species) can ”combine the skills of the participants”, i.e. a mixed community will be able
to withstand to conditions in which their constituent species cannot survive alone [7]. Recently we also found
that bacterial species that share signals can form stable communities in nature [8]. Our hypothesis is that the
extent to which two species can share signals, public goods, nutrients are a crucial factor in the stability of a
community, and coexisting communities will either co-localize (form truly mixed communities) or will segregate
within the available space. In order to analyze these phenomena, we need quantitative descriptors to characterize
the mixed agent communities in biological terms, which is the subject of this work. The goal of the present

Simulation of communication and cooperation in multispecies bacterial communities with an agent based model 23

work is not necessarily to develop novel indices for all of the interesting quantities, rather we seek to test the
applicability of the indices. One of our particular goals is to develop suitable visualization techniques that can
summarize the behaviour of an agent community throughout the parametric space. In Section 2 we introduce
the biological terminology used in this paper. In Section 3 we describe an index developed for the segregation
of agent communities. Section 4 describes the concept of relative fitness applied to our agent-based system. In
Section 5 we introduce indices that can be used to characterize the correlated motion within communities. In
Section 6 and 7 we apply these indices to the modeling of a mixed agent community in which the members are
mutually dependent on each other. Finally, Section 8 contains the conclusions.

2. Biological terminology. Quorum sensing (QS) is the comprehensive name of the mechanism by which
bacteria sense the presence of other members of their species. The best studied version of this phenomenon is
based on the secretion of diffusible signals (QS signals) and other materials called public goods. Public goods
are materials that are useful not only for the cell that secretes them but for any cell that can use them. This is
often referred to as cooperation, since a cell cooperates with the community by producing materials. In contrast,
signaling via diffusible signals is often referred to as communication. Cells that are able to both communicate
(i.e. produce and sense signals) and cooperate (produce and sense public goods) are referred to as wild type or
wt cells. Cells that are different from wt cells are briefly referred to as mutants since it is normally assumed that
they lost some of the abilities (or gained new ones) by mutation. QS is studied perhaps in the greatest detail
in the bacterium Pseudomonas aeruginosa which is an ubiquitous, opportunistic pathogen causing potentially
lethal infections to humans. Other members of the Pseudomonas genus are ubiquitous in soil and water and
are sometimes beneficial to host organisms such as plants.

3. Spatial segregation of agent communities. In the simulation model the space is represented as
a cylindrical surface on which the bacterial community starts from the bottom and proceeds upwards while
consuming the nutrients found on the surface. We can follow the collapse or survival of a species by counting
the number of cells at each step. On the other hand, the spatial distribution of cells also changes in time:
some communities segregate while they move (Figure 1.1, left) while others remain co-localized (right). Mitri
et al. [9] have described this behavior by an intuitive segregation index based on the work of Nadell et al. [10]
which depends on counting an arbitrary number of nearest neighbors for each agent. This is an O(n2) algorithm
with respect to the number n of agents, and since the calculation has to be repeated at every time step for
communities as large as say 50 thousand members, we were looking for alternative ways to describe spatial
segregation. In order to develop a segregation index that can be calculated in a more time efficient manner, we
take advantage of the fact that space in our simulation is divided into squares that form a matrix-like lattice.
In each square we can count the number of bacteria from each species. E.g. for three species (denoted i, ii
and iii, respectively) we can calculate n1(i), n2(i), n3(i) in the ith square, so we can express the fraction (or
percentage) of each species within the square. If a population is segregated, this fraction is almost 1 for one of
the species and almost 0 for the two other species, so we define the segregation index as the maximum fraction
of a species - in other words, the fraction of the dominant species - within a given spatial unit (in the 2D plane).
We get a more representative value if we weight these fractions with the total number of bacteria in the actual
unit of space. By this step we get the segregation coefficient which is the average of the number of the dominant
species in the given spatial units, divided by the number of the total population.

SG =

∑

i max(ni)

Npopulation

, (3.1)

where max(ni) is the cell number of the dominant species within the ith space unit, the denominator it the
total number of the population (including all species). For a randomly mixed community (such as shown in
Figure 1.1, right), this quantity will approach the reciprocal of the number of species present which allows us
to construct a [0,1] numerical index as follows:

SGN =

(

SG− 1
Nspecies

)

(

1− 1
Nspecies

) , (3.2)

24 D. Bihary, Á. Kerényi, Z. Gelencsér, S. Netotea, A. Kertész-Farkas, V. Venturi, S. Pongor

Fig. 3.1: Calculation of the segregation index for a homogeneous (non-segregated community). The Y axis is
the normalized segregation index. A. Normalized segregation index calculated by nearest neighbors vs. the
number of neighbors included in the calculation. B. Normalized segregation index calculated surface area vs.
the size of the surface area included in the calculation.

where SGN is the normalized segregation index calculated at a certain time step and Nspecies is the number
of agent species present. This quantity is between zero and 1.0. SG = 1 if the population is segregated,
in a fashion seen in Figure 1.1, left. SG = 0 means that the populations are co-localized, in a fashion seen
in Figure 1.1, right. The calculation of this index is not time consuming, it has a time complexity of O(n).
Whether we calculate the segregation index using the number of nearest neighbors, or based on surface area
units, we have an arbitrary parameter in the calculation - the number of neighbors in the first case, and in the
second case, the size of the surface included in the calculation. We tested the behavior of the indices on binary
communities segregated to various extents. On well segregated communities, both calculations gave values of
1.0 throughout the entire parameter range (3 to 20 nearest neighbors or 1 to 25 units of surface area, data
not shown). On homogeneous communities the values depended on the parameters (Figure 3.1). As expected,
the calculation by surface area was about 2 orders of magnitudes faster than the one calculated by nearest
neighbors. The area-dependent calculation is sensitive to the size of the area used for the calculation, while the
nearest neighbor-dependent index is dependent to the number of neighbors included in the calculation.

The dependence on the window size was practically the same for various window shapes, we found no
difference between 50x1 square, 25x2 square, or 10x5 square windows. Nevertheless, the values are parameter
dependent, as shown in Figure 3.1., so it is recommended to use SGN on a comparative bases, i.e. for populations
of the same size and density. In practice we calculated SG indices for the horizontal rows (50 area units) of
the 2D space matrix that maps the space in Figure 1.1. SGN shows typical saturation kinetics as a function
of time. If the populations segregate, SGN converges to a value above 0.8. If the populations co-localize, the
value remains low, an example is shown in Figure 4.1.

4. Relative fitness calculation. In biology, the fitness of a population (say a colony of bacteria) is
calculated from the growth of the population achieved in a given time (for a recent review see [11]). In fact,
since the work of Darwin, many increasingly sophisticated methods were developed to define fitness.

From these, we chose a simple formula that has been used for agent communities by Mitri et al. [9]:

F =
1

∆t
log2

Nend

Nstart

, (4.1)

where F is the fitness, Nstart, and Nend, are the size of the population at the start and end of the experiment
respectively, ∆t is the elapsed time. For increasing population the logarithm is positive, however for decreasing
populations it becomes negative. Fitness is a dimensionless number which is often represented on a relative
scale, in comparison with the fitness of a reference species. This is especially handy in our case since we can
easily select one of the species, e.g. the wild type (wt) species as the reference and then we get:

Frel =
log2

(

Nend

Nstart

)

log2

(

Nend,wt

Nstart,wt

) , (4.2)

Simulation of communication and cooperation in multispecies bacterial communities with an agent based model 25

Fig. 4.1: Example of segregating (blue) and co-localizing (green) communities. The Y axis is the normalized
segregation index calculated by surface area (10 units), the X axis shows time steps within the simulation. The
experiment is the same as described in the legend of Figure 1.1

where Frel is the relative fitness, Nend,wt and Nstart,wt are the reference values for wild type population. The
∆t of eqn. 4.1 terms are cancelled by the division. It is important to note that relative fitness is often calculated
between two competing species. We followed a different strategy, we used the wild type species growing alone,
as the reference. So in this case, the relative fitness will tell us if members of a community grow better or
worse if they grow together, in other words, if it is an advantage to be in a community. Table 4.1 shows
typical simulation results for a ternary community in which 3 species were put together in equal amounts. The
experiment is the same as described in Figure 1.1, i.e. in one case the 3 species can neither communicate, nor
cooperate, in the other case they both communicate and cooperate.

The experiments in Table 4.1 show that the relative fitness of all participant species increases if they can
communicate (signal sharing) and cooperate (sharing of public goods or factors). In these experiments, all
species had their own nutrients that could not be consumed by the other species, so the conclusions may not
hold for other conditions.

5. Correlation measures. Ever since the simulation of multi-particle systems became feasible, correlation
measures were used in many areas of physics and chemistry. The correlation functions developed in molecular
dynamics [12] can be especially easily extended to cellular or animal systems [13, 14]. In this paper, the
movement of two agents i, j is called correlated if their velocities point to the same direction. In this case the
inner product of the unit vectors of velocity

→

vi
→

vj will be 1.0. For a population of agents we can calculate an
aggregate measure by determining the inner product of all i,j, (j > i) agent pairs. The average correlatedness
of the velocities of n agents can be expressed as:

Table 4.1: Comparison of relative fitness in communicating, cooperating populations and non-communicating,
non-cooperating communities.

Species 1 Species 2 Species 3
Single wild type population alone 1.000 - -

Co-localized community
(cooperation + communication)

1.2402 1.2304 1.3063

Segregated community
(no cooperation, no communication)

1.0062 1.0188 1.0094

Relative fitness Frel.

26 D. Bihary, Á. Kerényi, Z. Gelencsér, S. Netotea, A. Kertész-Farkas, V. Venturi, S. Pongor

c =
2

n(n− 1)

∑

i

∑

j>i

→

vi
→

vj . (5.1)

The value of c is close to one for agents moving in a perfectly correlated manner. Randomly moving agent
populations have c values close to zero. Adding an increasing amount of noise to the direction of velocity vectors
in a perfectly coordinated community will decrease the value of c from 1.00 to around 0.00. In other words, c can
be used to characterize the level of order within an agent community. In practice, it is convenient to calculate
this measure for a given subset of the agents, e.g. limiting the second summation either to agents within a
certain distance boundary, or only to a certain number of neighbors. In statistical physics it is customary to
limit the calculations for a distance interval [r, r + δ] around each agent. Plotting the resulting correlatedness
values as a function of r will give an impression on how the movement of agents is correlated with more and
more distant neighbors.

If the population of agents consists of two subpopulations, A and B, one can calculate correlation measures
following (5.1), either i) for the entire population, or ii) for either of the two populations. In addition, one can
calculate the correlatednes iii) between the two populations as follows:

cAB =
2

n(A)n(B)

∑

i∈A

∑

j∈B

→

vi
→

vj , (5.2)

where n(A) and n(B) denote the number of agents in species A and B, respectively.
A further type of measure, autocorrelation of the velocities characterizes the change of the velocities in

time. In analogy to (5.1), the autocorrelation can be calculated as

c(∆t) =
1

n

∑

i

→

v i,t
→

v i,t+∆t, (5.3)

where ∆t is a time interval for which the velocities are compared. Note that eqn. 5.3 refers to the same agent.
Formulas (5.1-5.3) provide a variety of interesting visualization possibilities, for instance one can plot various
distributions for the population, for the changes in time, etc. In addition, modifying (5.3) so as to calculate the
correlation between different individuals provides a measure how one individual follows its neighbors. Plotting
this value for the entire populations gives a possibility to pinpoint individuals that are ”leaders” followed by
their neighbors [15].

6. Case study: Mutually Dependent Species. An interesting phenomenon in the bacterial world is
the existence of mutually dependent species, i.e. species that depend on each other. In the agent based model
of quorum sensing, this situation can be pictured as species responding to signal and/or public goods of another
species. For instance we can define a sharing coefficient [0,1] that determines the sensitivity of a species towards
the signal (or public goods) of another species. If this sharing coefficient is zero, the species respond only to
their own signal (and public goods). If the sharing coefficient is 1.00, the species respond only to the signal
(and public goods) of the other species in the same way as they respond to their own signal (and public goods).
The value of 1.00 thus denotes a situation of mutual communication in terms of signal (or mutual cooperation
in terms of public goods).

We carried out simulations with two competing species, by systematically varying the values of signal sharing
and factor sharing in the entire range. The simulation experiments were allowed to proceed for 5000 steps, and
the values of relative fitness, segregation coefficient we calculated as the average for the last 500 steps. The
results in Figure 6.1 indicate that the two populations do not segregate at any point of the parameter space,
but only fully communicating and cooperating species provide large populations and fitness values approaching
or exceeding the value of the reference species (the wild type species which is viable in itself, i.e. it is self-
sufficient in terms of signals and public goods). In other words, the simulations confirm the biological intuition
that predicts that species completely dependent on another species may not be viable in themselves. On the
other hand the results suggest that - in harmony with the results of the previous sections - members of a fully
communicating and cooperating interspecies community can be fitter than any of its constituent species growing
alone.

Simulation of communication and cooperation in multispecies bacterial communities with an agent based model 27

7. Case Study: Segregating Species. Some microbial species spontaneously form segregating popula-
tions. The segregation can be studied with agents endowed with self-recognition capabilities that can be simply
modeled by Lennard-Jones-like (LJ) potentials. Briefly, agents recognizing each other will have a preferred
distance resulting from attraction or repulsion calculated from a LJ-like potential, while agents ignoring each
other will only repulse each other by forces calculated from a Weeks-Chandler-Andersen-like (WCA) potential.
Such binary populations are capable of segregation, and as it is shown in Figure 7.1. In this experiment, the
segregation is accompanied by a correlated movement. After the segregation, the movement is uncorrelated
which is shown by the correlation coefficient falling to a value very close to zero. This behaviour is highly
reminiscent of phase transition phenomena known in statistical physics.

8. Conclusions. In this paper we presented numerical indices for characterizing the relative fitness and
spatial segregation-co-localization properties of agent populations forming multi-species consortia. The agent
models used in this work are meant to simulate the growth of quorum sensing bacterial species that are known
to form multispecies communities. We showed that the indices can be used to visualize the behavior of such
complex communities in terms of simple diagrams such as the heat maps shown in Figure 6.1. The preliminary
results presented here suggest that communication and cooperation between species feeding on different nutrients
result in co-localizing communities in which the participating species are fitter then when living alone.

Correlated movement of animal species has been investigated in a number of fields. Our results show
that self-recognition capabilities may be sufficient for inducing segregation of agent populations. These results
are preliminary as the calculations were meant to illustrate the use of the numerical indices and visualization
principles described here. More detailed analysis will be carried out in the future to confirm the validity and
the scope of these findings.

Fig. 6.1: Behavior of mutually dependent species in a binary community. Zero signal sharing (factor sharing)
means a species is fully independent from the signal (public goods) of the other species (bottom left corner).
Full sharing (a value of 1.0) means that the two species understand the signal and the factor of the other
species (top right corner). The figures represent heat maps of (clockwise from top left) segregation coefficient,
population size, relative fitness of species 2 and species 1. It is apparent that only mutually cooperating and
communicating species are viable in this system (light grey areas at the top left corners of the parameter space).
Relative fitness in the corresponding ranges slightly exceeds the normal values, i.e. the value of the wild type
cells.

28 D. Bihary, Á. Kerényi, Z. Gelencsér, S. Netotea, A. Kertész-Farkas, V. Venturi, S. Pongor

Fig. 7.1: Emergence of correlated movement in spontaneously segregating agent populations. Two randomly
moving agent populations, 300 agents each, were put into a random arrangement (inset, left.), c = 0 should
be curly equal sign). With time the population starts to segregate and nonzero c values emerge. At the end,
the populations are separated and the c value returns to zero.

9. Acknowledgement. Work at the Szeged Biological Center was partially supported by OTKA grant
K. 84335 and TÁMOP-4.2.2-08/1-2008-0008. Dóra Bihary and Zsolt Gelencsér are PhD students at Faculty of
Information Technology, Pázmány Péter Catholic University, Budapest.

REFERENCES

[1] M. B. Miller and B. L. Bassler. Quorum sensing in bacteria. Annu Rev Microbiol, 55:165–99, 2001.
[2] V. Venturi and S. Subramoni. Future research trends in the major chemical language of bacteria. HFSP J, 3(2):105–16, 2009.
[3] K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, and N. Shigesada. Modeling spatio-temporal patterns generated by

bacillus subtilis. J Theor Biol, 188(2):177–85, 1997.
[4] E. Ben-Jacob, I. Cohen, O. Shochet, I. Aranson, H. Levine, and L. Tsimring. Complex bacterial patterns. Nature,

373(6515):566–7, 1995.
[5] I. Golding, I Cohen, and E. Ben-Jacob. Spatio-selection in expanding bacterial colonies. Physica A, 1999.
[6] S. Netotea, I. Bertani, L. Steindler, A. Kerenyi, V. Venturi, and S. Pongor. A simple model for the early events of quorum

sensing in pseudomonas aeruginosa: modeling bacterial swarming as the movement of an ”activation zone”. Biol Direct,
4:6, 2009.

[7] V. Venturi, I. Bertani, A. Kerenyi, S. Netotea, and S. Pongor. Co-swarming and local collapse: quorum sensing conveys
resilience to bacterial communities by localizing cheater mutants in pseudomonas aeruginosa. PLoS One, 5(4):e9998,
2010.

[8] T. Hosni, C. Moretti, G. Devescovi, Z. R. Suarez-Moreno, M. B. Fatmi, C. Guarnaccia, S. Pongor, A. Onofri, R. Buonaurio,
and V. Venturi. Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME
J, 5(12):1857–70, 2011.

[9] S. Mitri, J. B. Xavier, and K. R. Foster. Social evolution in multispecies biofilms. Proc Natl Acad Sci U S A, 108 Suppl
2:10839–46, 2011.

[10] C. D. Nadell, K. R. Foster, and J. B. Xavier. Emergence of spatial structure in cell groups and the evolution of cooperation.
PLoS Comput Biol, 6(3):e1000716, 2010.

[11] H. A. Orr. Absolute fitness, relative fitness, and utility. Evolution, 61(12):2997–3000, 2007.
[12] B. J. Alder and T. E. Wainwright. Phase Transition for a Hard Sphere System. The Journal of Chemical Physics, 27(5):1208–

1209, 1957.
[13] Andrea Cavagna, Alessio Cimarelli, Irene Giardina, Giorgio Parisi, Raffaele Santagati, Fabio Stefanini, and Massimiliano

Viale. Scale-free correlations in starling flocks. Proceedings of the National Academy of Sciences of the United States of
America, 107(26):11865–70, 2010.

[14] Tamás Vicsek and Anna Zafeiris. Collective motion, arxiv:1010.5017. 2010.
[15] M. Nagy, Z. Akos, D. Biro, and T. Vicsek. Hierarchical group dynamics in pigeon flocks. Nature, 464(7290):890–3, 2010.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 29–44. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

ENABLING MODEL DRIVEN ENGINEERING OF CLOUD SERVICES BY USING
MOSAIC ONTOLOGY

FRANCESCO MOSCATO∗AND B. DI MARTINO AND R. AVERSA†

Abstract.
The easiness of managing and configuring resources and the low cost needed for setup and maintaining Cloud services have

made Cloud Computing widespread. Several commercial vendors now offer solutions based on Cloud architectures. More and more
providers offer new different services every month, following their customers needs. A way to provide a common access to Cloud
services and to discover and use required services in Cloud federations is appealing. mOSAIC project addresses these problems
by defining a common ontology and it aims at developing an open-source platform that enables applications to negotiate Cloud
services as requested by users. Anyway the increasing complexity of services required by users in Cloud Environments usually
needs the definition of composite, value added services (VAS). Usage patterns and Use Cases definitions help in defining VAS,
but a way to assure that new services reach the required goals with proper qualitative and quantitative properties has to be
provided in order to validate design and implementation of composite services. In this paper mOSAIC Ontology is described and
the MetaMORP(h)OSY methodology and framework are introduced. The methodology uses Model Driven Engineering and Model
Transformation techniques to analyse services. Due to the complexity of the systems to analyse, the mOSAIC Ontology is used in
order to build modelling profiles in MetaMORP(h)OSY able to address cloud domain-related properties.

Key words: Cloud, Ontology, Model Driven Engineering, Validation And Verification.

1. Introduction. Cloud Computing is an emerging model for distributed systems. It refers both to
applications delivered as services and to hardware, middleware and other software systems needed to provide
them. Nowadays the Cloud is drawing the attention from the Information and Communication Technology (ICT)
thanks to the appearance of a set of services with common characteristics which are provided by industrial
vendors. Even if Cloud is a new concept, it is based upon several technologies and models which are not
new and are built upon decades of research in virtualization, service oriented architecture, grid computing,
utility computing or distributed computing ([16, 26, 43]). The variety of technologies and architectures makes
the Cloud overall picture confusing [16]. Cloud service providers make resources accessible from Internet
to users presenting them as a service. The computing resources (like processing units or data storages) are
provided through virtualization. Ad-hoc systems can be built based on users requests and presented as services
(Infrastructure as a Service, IaaS). An additional abstraction level is offered for supplying software platforms on
virtualized infrastructure (Platform as a Service, PaaS). Finally software services can be executed on distributed
platforms of the previous level (Software as a Service, SaaS). Except from these concepts, several definitions
of Cloud Computing exist ([34, 5, 17, 13, 30, 25]), but each definition focuses only on particular aspects of
the technology. Cloud computing can play a significant role in a variety of areas including innovations, virtual
worlds, e-business, social networks, or search engines but it is actually still in its early stages, with consistent
experimentation to come and standardization actions to effort. In this scenario, vendors provide different
Cloud services at different levels usually providing their own interfaces to users and Application Programming
Interfaces (APIs) to developers. This results in several problems for end-users that perform different operations
for requesting Cloud services provided by different vendors, using different interfaces, languages and APIs. Since
it is usually difficult to find providers which fully address all users needs, interoperability among services of
different vendors is appealing.

Cloud computing solutions are currently used in settings where they have been developed without addressing
a common programming model, open standard interfaces or adequate service level agreements or portability
of applications. Neglecting these issues current Cloud computing forces people to be stranded into locked,
proprietary systems. Developers making an effort in Cloudifying their applications cannot port them elsewhere.

In this scenario the mOSAIC project (EU FP7-ICT programme, project under grant #256910) aims at
improving state of the art in Cloud computing by creating, promoting and exploiting an open-source Cloud
application programming interface and a platform targeted for developing multi-Cloud oriented applications.
One of the main goal is that of obtaining transparent and simple access to heterogeneous Cloud computing
resources and to avoid locked-in proprietary solutions.

∗Second University of Naples, Dep. of European and Mediterranean Studies, Via del Setificio 15, 81100 Caserta, Italy
(francesco.moscato@unina2.it).

†Second University of Naples, Dep. of Information Engineering, Aversa, Italy

29

30 F. Moscato, B. Di Martino and R. Aversa

In order to attain this objective a common interface for users has to be designed and implemented, which
should be able to wrap existing services, and also to enable intelligent service discovery. The keystone to fulfil
this goal in mOSAIC is the definition of an ontology able to describe services and their (wrapped) interfaces.

In addition, users also require given qualities of services (QoS) and Cloud providers have to build services
on demand depending on specified QoS. The provisioning should be coupled with proper monitoring systems
which assure that services are provided with promised QoS also at run time.

In a Cloud scenario, Service Level Agreement (SLA) is a way to establish a contract between users and
service providers where providers assure the execution of services with specified requirements. SLA is a way to
express these requirements formally and formal methods can be exploited in order to verify them.

Automated service provisioning able to allocate and manage resources satisfying service goals is an open re-
search challenge [46]. A methodology to analyse reachability of goal services with given requirement is appealing
if it can be used to build automatically the target service.

Multi-agent systems(MAS) represent a model for designing and developing complex systems [6, 8, 47, 15]
since it seems to cope with their increasing complexity. MAS can be successfully used to provide a model of
Cloud System where several components and resources cooperate for providing complex services to users. Several
methodologies have been proposed for MAS design and development [18, 9]. However software engineering has
not provided yet any approach to model and verify their dependability during all the life cycle. Because of their
criticality, Model Driven Engineering approaches are appealing when dealing with complex systems. Producing
designs correct by construction where requirements are validated during all life cycle is useful. The methodology
introduced here, MetaMORP(h)OSY, (Meta-modelling of Mas Object-based with Real-time specification in
Project Of complex SYstems) inherits, improves and extends the one described in [28]. It is based on formal
modeling and analysis of MAS systems. Cloud components for each service are modeled by using and extended
UML profile compliant with MAS models. The main model is then analyzed by means of formal models that
are obtained from the UML model with model transformation algorithms.

As explained below, the capability of representing Cloud services components and behaviours with UML-
based diagrams is appealing since several services description and use cases are expressed by UML diagrams [36].
In addition, requested QoS may be represented as requirements that can be validated in a MDE methodology.

MetaMORP(h)OSY framework is based on Papyrus [41] and defines profiles for the definition of a modelling
language for real-time MAS description. The language is compliant with OMG MARTE [12] specification, in
order to makeMetaMORP(h)OSY compliant with other tools supporting the standard. Verification at every life-
cycle step is performed by implementing translation algorithms which translate design, simulation and run-time
description into formal models.

Even if MetaMORP(h)OSY is used for (real-time) MAS modelling, it is based on a general methodology.
When dealing with particular domains a way for generating modelling profiles based on the transformation of
formal models describing the domain of interest is appealing. In mOSAIC, the Cloud ontology is the domain
model that can be exploited in order to build missing information in MetaMORP(h)OSY allowing the framework
for modelling and verifying requirements on Cloud components.

In particular, the intrinsic hierarchical organization of an ontology is useful when dealing only with particular
aspects of the domain. In particular this work focuses on SLA modelling and verification of Cloud services. It
will be shown how the mOSAIC Ontology can be used in order to build the part of the MetaMORP(h)OSY
modelling profile required for mOSAIC components elements.

This paper is organized as follows: Section 2 shows some motivation for using mOSAIC Ontology for
build a modelling profile in MetaMORP(h)OSY. Section 3 introduces the mOSAIC project, Section 4 contains
a description of the mOSAIC Ontology; Section 5 describes MetaMORP(h)OSY modelling methodology and
Section 6 reports a description of its modelling Profile and describes how mOSAIC Ontology is used in order
to enhance it. Section 7 shows how the created profile can be exploited in modelling and verification of QoS of
Cloud Services. Finally Section 8 contains some concluding remarks.

2. Motivation. mOSAIC promotes interoperability of cloud services. Building mOSAIC-compliant ser-
vices requires the use of proper API and components. In addition, mOSAIC allows for the definition of SLA
for services. SLA can be considered as requirements that have to be fulfilled at run-time by providers. Using
Model Driven Engineering is appealing when dealing with complex cloud services with SLA since MDE allows
services components to be built from design model definition. Anyway, the keystone to fulfil interoperability in
mOSAIC is the definition of an ontology able to describe services and their (wrapped) interfaces. For searching

Enabling Model Driven Engineering of Cloud Services by using mOSAIC Ontology 31

and retrieving purposes, mOSAIC services have to be semantically annotated with elements of this ontology.
This means that mOSAIC components and SLA definitions have to respect the organization and the structure
of the ontology.

Hence an MDE methodology used to design and develop services in mOSAIC should use ontology informa-
tion in its modelling profile in order to:

• inherit components that are defined as concepts in the ontology with their properties and relationships;
• allow for specification of QoS parameters;
• semantically annotate services components created with the MDE framework.

Using ontology information in a MDE modelling profile is appealing since MDE model transformation
techniques enable automatic creation of mOSAIC components and interfaces. In addition, formal verification
in MDE assures, at least on the design model, that QoS requirements are respected.

In addition, if proper model transformation techniques are used (like in MetaMORP(h)OSY), verification
can also be enacted at run-time by monitors that are created automatically.

In MetaMORP(h)OSY, the mOSAIC ontology has been used to generate part of a modelling profile that
is able to describe cloud components in a vision compliant with mOSAIC architecture.

3. mOSAIC Project. The Open Cloud Manifesto [39] identifies five main challenges for Cloud: data
and application interoperability; data and application portability; governance and management; metering and
monitoring; security.

Actually, the main problem in Cloud computing is the lack of unified standards. Market needs drive
commercial vendors to offer Cloud services with their own interfaces since no standards were available at the
moment. Vendors solutions have arisen as commonly used interface for Cloud services but interoperability
remains an hard challenge, like portability of developed services on different platforms. In addition vendors and
open Cloud initiatives spent few efforts in offering services with negotiated quality level.

The mOSAIC project tries to fully address the first two challenges and partially addresses the next two
ones by providing a platform which:

• enables interoperability among different Cloud services,
• eases the portability of developed services on different platforms,
• enables intelligent discovery of services,
• enables services composition,
• allows for management of Service Levels Agreement (SLA).

The architecture of mOSAIC platform is depicted in Fig.3.1:

Fig. 3.1: mOSAIC Architecture

it provides facilities both for end-users (at the left of Fig.3.1) and for services developers and managers
(depicted on the right side of Fig.3.1)

32 F. Moscato, B. Di Martino and R. Aversa

From the end-users’ point of view, the main component is the Cloud Agency. This consists in a core set of
software agents which implement the basic services of this component. They include:

• negotiation of SLAs;
• deployment of Cloud services;
• discovery and brokering of Cloud services.

In particular, Client Agent is responsible for collecting users’ application requirements, for creating and
updating the SLAs in order to grant always to best QoS. The Negotiator manages SLAs and mediates between
the user and the broker; it selects protocols for agreements, negotiates SLA creation, and it handles fulfilment
and violation. The Mediator selects vendor agents able to deploy services with the specified user requirements; it
also interfaces with services deployed on different vendors’ providers. The Provider Agent interacts with virtual
or physical resources at provider side. In mOSAIC the Cloud Agency was built upon the MAGDA [2] toolset,
which provides all the facilities to design, develop and deploy agent-based services. The semantic engine uses
information in the Cloud Ontology to implement a semantic-based Cloud services discovery exploiting semantic,
syntactic and structural schema matching for searches.

In the Cloud developers and managers perspective, the main components of mOSAIC Architecture are the
API execution engine and the Resource Manager. The first one offers a unique API to use Cloud Services from
different vendors when using and developing other services. The API execution engine is able to wrap storage,
communication and monitoring features of Cloud platforms. In particular, Virtual Clusters (VC) [11] are used
as resource management facility. They are configured by software agents in order to let users to configure
required services. A Resource contract will grant user’s requirements and the Resource Manager will assign
physical resources to VC on the basis of the contract.

In this architecture, the bonding element which allows for interoperability and resources description is the
Cloud Ontology. It is the base for Cloud services and resources description and it contains all information
needed to characterize API also from a semantic point of view.

The Cloud Ontology is based on several Cloud taxonomies proposed in literature [1, 38, 19, 7, 20]. It is
developed in OWL [24] and OWL-S languages [22]. The benefit of using an ontology language is that it acts
as a general method for the conceptual description or modelling of information that is implemented by actual
resources [37]. mOSAIC aims at developing ontologies that would offer the main building block to describe
services at the three delivery models of Cloud Computing (i.e. IaaS, PaaS, SaaS).

4. mOSAIC Ontology. Ontologies offer the means of explicit representation of the meaning of different
terms or concepts, together with their relationships. They are directed to represent semantic information,
instead of content. Different languages can be considered for the specification of ontologies, including DAML,
OIL, RDF and RDFS, OWL or WSML.

The Web Ontology Language (OWL) is a standard from [24, 4], based on XML, RDF and RDFS. With
OWL complex relationships and constraints can be represented in ontologies. With important revisions to the
language, OWL 2 became the W3C recommendation in 2009, introducing features to improve scalability in
applications. [14]

Different efforts to formalize Semantic Web developments exist. Web Service Modeling Ontology (WSMO)
[42] “provides the conceptual underpinning and a formal language for semantically describing all relevant as-
pects of Web services in order to facilitate the automatization of discovering, combining and invoking electronic
services over the Web” [33]. WSML was offered as a companion language to WSMO, for representing modelled
ontologies by a common terminology for Web Services interactions [10, 33]. The Semantic Web Services Frame-
work (SWSF) offers a similar approach, with its two major components, the Semantic Web Services Language
(SWSL) and the Semantic Web Services Ontology (SWSO) [3].

Semantically-enabled services offer the means for intelligent selection of services, with automation of different
tasks, including service discovery, mediation, invocation, or composition. Current research efforts are enhancing
typical web services technologies in order to provide a semantically-enhanced behaviour in developments like
OWL-S [22], WSDL-S and METEOR-S [32, 29], WSML [10], WSMO [33], or SWSF [3].

The top level of the mOSAIC Ontology is shown in Fig.4.1 which reports the main concepts of the mOSAIC
ontology. Concepts have been identified analysing standards and proposals from literature. In the following its
main concepts will be listed and described. A deeper description of the mOSAIC ontology is in [27], this works
describes only the elements which are used for the creation of the modelling profile in MetaMORP(h)OSY.

The Language class contains instances of languages used for APIs implementation (for example, Java and

Enabling Model Driven Engineering of Cloud Services by using mOSAIC Ontology 33

Fig. 4.1: Top Level Concepts in mOSAIC Ontology

Fig. 4.2: Deployment Model

Python). Abstraction class contains the abstraction level at which services are provided as described in [45].
Here, Cloud services belong to the same layer if they have equivalent level of abstraction. Deployment Model
class includes concepts required by Cloud NIST [45] standard for what deployment model of Cloud services
concerns. Essential Characteristics class includes individuals which are defined by NIST. Framework class
contains individuals that identify programming framework supporting API programming Languages. Actor
contains subclasses where actors interacting with Cloud systems are divided. Property subclasses contain
all elements needed for describing characteristics of Cloud resources. These are also used to specify SLA
requirements. ComponentState includes all concepts for defining the states which Cloud components and
resources may assume. SLA class defines concepts for SLA definitions. Protocol class contains individuals for
protocols used in communication among Cloud components. Layers class distinguishes firmware, hardware and
software infrastructures for Cloud platforms. Service Models class includes all kinds of services provided by
Cloud Systems. Predicate contains classes used for description of the behaviours of statefull Cloud components.
CloudSystemVisibility class allows for specification of Cloud systems visibility, like private and public clouds.
Component is the main class of mOSAIC ontology. All cloud elements (resources, services, infrastructures
etc.) are its subclasses. Technology class contains all concepts related to technology involved in Cloud services
provisioning, like virtualization.

Fig.4.2 shows the Deployment−Model subclasses.

They include several types of deployment models for Cloud Systems: PublicCloud contains all individuals
providing public or world wide access to their resources, like MicrosoftAzure, Amazon and Google. PrivateCloud
instead is related to Deployment Models of framework that can provide access to private Cloud resources, like
Eucaliptus.

The Actor class identifies cloud actors, that can be divided as in Fig.4.3.

Provider, Consumer and Creator subclasses follow the IBM cloud computing reference Architecture [23].
Administrator manages cloud infrastructure; Orchestrator composes Cloud Services in order to provide value

34 F. Moscato, B. Di Martino and R. Aversa

(a) Actor (b) Consumer

Fig. 4.3: Actors

added services; Developer implements new Cloud Services. Notice that the difference between Developer and
Creator, is in the way they interact with cloud Providers. Developers use offline resources (tools and frameworks)
in order to implement new Cloud Service. A Creator instead builds cloud services by using functionalities
exposed by a Cloud Service Provider. Consumer Actors can be further divided as shown in Fig. 4.3(b).

Some Property’s subclasses are shown in Fig.4.4. They are divided into NonFunctionalProperties and
FunctionalProperties that respectively define the sets of non functional and functional properties of a Cloud
Component. Properties can be used to characterize Cloud Components (services, infrastructure etc.) and to
request given characteristics for components when dealing with SLA.

(a) Non Functional Properties (b) Functional Properties

Fig. 4.4: Properties

The main non-functional properties for cloud components are: Scalability; Autonomy; Availability; QoS;
Performance; Consistency; Security; Reliability.

Computing Non Functional properties can be divided into CPU and Memory related properties. A deeper
division identifies: CPUSpeedProperty; CPUNumberOfCores; CPUArchitecture; CPUTypeProperty and CPU-
FlopsProperty. These properties are used to specify the clock frequency, the number of cores, the architecture,
the model and the FLOPS of CPUs respectively. The properties follow the OCCI [40] standard and API. A Data
Property is defined for each of them in order to specify the value of the property for the related individuals.
Properties for memory are divided into: MemoryAllocationProperty and MemorySize. The first property is
used to specify memory allocation policies while the second one is used to declare (or require) the amount of
memory in a Cloud infrastructure.

Subclasses of this Network Non Functional element are: NetworkLatencyProperty, NetworkDelayProperty,
NetworkBandwidthProperty. The first class is used to define the mean latency of a network, the second one the
mean, the maximum and the minimum delay for packets and the last one is used to define the mean and the
maximum bandwidth of a network. The values for individuals are defined by specifying proper data properties

Enabling Model Driven Engineering of Cloud Services by using mOSAIC Ontology 35

Fig. 4.5: Component

Fig. 4.6: Resource and Services

defined on these classes. Data non functional properties are related to disk size (DiskSpaceProperty), transfer
rate (DiskTransferRateProperty) and bandwidth (DiskBandwidthProperty).

The main functional properties are: Replication (for the definition of the type of replication policies of
resources); Encryption (it specifies the encryption policies of resources); BackupAndRecovery (it is used to
describe the back up and recovery strategies used for a Cloud Component); Accounting (its individuals define
the accounting policies for resources); Monitoring (this class allows for the specification of monitoring policies
for resources); Identification (it contains individuals that can specify the algorithms and policies for users
identification); VMDescription (used to describe virtual machines technologies and configuration eventually
used in cloud infrastructure); Management (it defines the management policies for cloud resources).

Management contains the following subclasses: ImageManagement, NetworkManagement and StorageM-
anagement. The first one is used to define the management policies of a VM image, the second one to define
network management policies in a cloud infrastructure, while the third one is used to define storage management
policies for cloud resources.

Service−Models subclasses includes all models for services in Cloud. Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Service as a Service (SaaS) are the classical models defined in the NIST
standard, while the last, BPaaS (Business Process as a Service) is defined in the IBM Cloud Computing
Reference Architecture.

Component Subclasses are reported in Fig.4.5.
They are divided into: Tool (this contains all tools used for Cloud services development or cloud resources

management); RunTimeComponent (this class contains the elements for defining mOSAIC run-time compo-
nents); Environment (used to define individuals concerning the cloud environment used by cloud services);
Infrastructure (describes the component in the cloud infrastructure); StatefullComponent and StatelessCompo-
nent; Resource (it collects all resource classes in the cloud ontology).

The Resource class is the most complex in mOSAIC, since, following the OCCI documentation, in Cloud
Systems everything is a cloud Resource. Hence this is a super class for other main cloud components as shown
in Fig.4.6.

Service is a Resource. Platform as a Service (PaaS), Computing as a Service (CaaS), Data as a Service
(DaaS), infrastructure as a Service (IaaS), Hardware as a Service (HaaS) and other service models (Simulation,

36 F. Moscato, B. Di Martino and R. Aversa

services which offers some functionalities, admin, data input and output services) are subclasses of Services. For
example, in Figure, DataStorage is provided as an IaaS. Key-valueStores, ReplicatedRelationalDatabeses and
DistributedFileSystems are examples of DataStorage services. Cloud Component are also considered as Cloud
Resources, like Hosts, Computational and Communication resources or InfrastructureSoftware.

5. MetaMORP(h)OSY modelling methodology. The MetaMORP(h)OSY modelling methodology
(MMM) extends and improves the one used in the REMM [28] framework. In REMM, systems are modelled
as Multi Agents, by using Beliefs, Desires, Intentions (BDI) logics [44]. REMM models are based on a UML
modelling profile that implements a modelling language (RT-AML) for real-time BDI MAS. Requirements are
verified at design phase by using formal methods following a MDE approach. REMM models are translated into
timed automata in order to check properties expressed in timed temporal logics. At run-time, REMM provides
a mean for checking properties verified at design-time. This is achieved by collecting run-time measures that
are used to tune again design models. They are then used to verify previously checked properties in the case
temporal behaviour of real systems differs from the designed one. REMM framework also provides translation
from design models to Jadex [31] run-time agents with real-time scheduling features.

The REMM methodology has some limitation. First of all, requirements can be expressed only in timed
temporal logics and the only way to analyse them is to translate models into timed automata. At design
phase, no way is provided for choosing the type of analysis required on the model. In addition recently OMG
has defined a UML profile for modelling real-time systems (MARTE [12]). Since the methodology on which
REMM (and MetaMORP(h)OSY) is based on UML models, the use of a profile which also supports MARTE
standard is appealing. Finally, REMM does not provide any translations features for producing simulation
models. Simulation gives the ability of performing fault injection and other fault analyses on the system to
implement, and this is useful especially for critical systems.

The MMM overcomes these problems, extending and improving the modelling language, the profile used in
REMM, and the techniques used to translate modelling and simulation models.

The main phases of the MMM are depicted in Fig.5.1.

Modelling

Run-TimeSimulation

Verification

Fig. 5.1: MetaMORP(h)OSY methodology

They consist in: Modelling, Simulation, Run-time and Verification. They will be described briefly in the
following.

5.1. Modelling phase. In this phase design models for the system to study and realize, and requirements
to verify on the system are defined. Models are described by using the Real-Time Agent Modelling Language
(RT-AML) which extends the one presented in [28]. RT-AML is based on UML diagrams, and extensions
of Class diagrams, Activity diagrams and Sequence diagrams are used to describe the BDI model of agents.
Models developed in this phase can be used to define run-time and simulation components. According to MDE
philosophy, requirements have to be verified on models even at this stage. Proper translation techniques are
defined to build models used in verification phase. Models generated from verification depend on requirements
to verify and on the analysis to perform.

5.2. Simulation phase. In this phase Simulation models are defined or generated automatically from
models defined in modelling phase. In the last case, stubs are generated from agent diagrams and real-time
schedulers and monitors are provided in order to verify requirements. The simulation models used in MMM are

Enabling Model Driven Engineering of Cloud Services by using mOSAIC Ontology 37

based on MASON [21] toolkit and can be augmented with fault-injection by using proper libraries. Requirements
verification is instead performed at verification stage, by using formal models which have been eventually
generated during the modelling phase.

Agents behaviours during simulation may differ from the ones defined in the modelling phase. This happens
when faults are injected in the simulation, or if conditions that may change temporal behaviours of the agents
are considered in simulation. In these cases, requirements defined in simulation phase can be verified on the
same models used for verification in modelling phase. The difference is in the parameters used to tune the
verification models, which are collected from simulated behaviour.

5.3. Run-Time phase. In this phase the real system is developed and executed. Stubs for run-time
components can be generated from modelling phase as for simulation. Also verification models can be used in
real-time scheduling in order to forecast if real-time constraints and other requirements are verified at run-time,
in the same way of simulation. In addition, code from simulation can be used to implement the system, and
also simulation models can be used at run-time for verification purposes.

5.4. Verification. Verification phase is driven by formal models. Models from modelling phase are trans-
lated into models which are useful for verifying system requirements. The models generated for verification
depends on the properties and on the analyses to perform.

In order to model agents and their interactions in MetaMORP(h)OSY, three kinds of diagrams have to be
provided: an Agent Diagram, Activity Diagrams for agents plans, and a Sequence Diagram.

In the Agent Diagram the MAS system structure is described. Here classes with proper stereotype represent
Agents with their Plans and Beliefs.

Fig. 5.2: Agent Diagram

For example, diagram in Fig.5.2 depicts two agents. The stereotype AgentRT is applied to these classes.
It is defined in the MetaMORP(h)OSY modelling profile and it is used to define properties that can specify
(real-time) agents in a UML model. By associating this stereotype to a class in a MetaMORP(h)OSY model, it
is possible to specify agent’s temporal characteristics. PlanRT, BeliefRT and DGoalRT stereotypes are defined
in the MetaMORP(h)OSY modelling profile which in turn are used to define plans, beliefs and goals of agents.
Plans are related to some beliefs and pursue some goals. Relationships between plans, beliefs and goals are
implemented by mean of other stereotypes which description is omitted for brevity.

The Agent Diagram in Fig.5.2 describes agents structures, listing their plans, beliefs and goals related to
each plan. In order to complete the model a dynamic description of agents behaviours has to be provided. In
MetaMORP(h)OSY this is done by mean of particular activity and sequence diagrams.

38 F. Moscato, B. Di Martino and R. Aversa

MetaMORP(h)OSY profile defines several stereotypes for messages and timed activities in the activity
diagrams. This allows for the analysis of timed behaviour and interaction of agents. At the state, each PlanRT
in the Agent Diagram is associated to an Activity diagram which describes the action enacted during plan
execution. Each action is described in terms of expected execution time, messages awaited from and sent to
other agents, resources and beliefs involved in the action.

For example, in Fig.5.3 the Activity diagram for the TakeDecision plan is shown.

Fig. 5.3: TakeDecision Plan

Activity diagrams describe agents behaviours in regard to their plans, but different execution paths are
possible depending on different use cases. In order to define which events and messages are involved in a
particular use case, a Sequence Diagram is used in MetaMORP(h)OSY. The main purpose of this diagram is
the definition of agents interactions in a use case.

All messages in the sequence are StimulusRT: a stereotype able to represent the timed behaviour of messages
exchanged during the execution of a use case. StimulusRT messages are related to messages sent and received
in activity diagrams.

Fig.5.4 depicts a Sequence Diagram.

6. MetaMORP(h)OSY modelling profile. MetaMORP(h)OSYmodelling methodology is based on the
creation of a UML modelling profile, that can be considered as a meta-language for definition of components in
UML models.

The basic MMM Modelling profile extends the MARTE [12] profile. It defines the stereotypes and the
properties needed to define a MAS system. Fig.6.1 shows the profile used for Agent Diagrams definition.

The Profile extends the basic UML and MARTE profiles. This means that classical UML elements and
stereotypes from MARTE meta-language can be used in a model compliant with the profile. In addition, it
introduces the elements in Tab.6.1

Agent Plans are modelled by using an extension of the UML Activity diagram. Fig.6.2 shows the extended
profile. It extends the basic UML activity diagrams with the elements described in Tab.6.2

Activity diagrams defined with the previous elements take into account of interaction among agents. In
order to cope with complexity, it is possible to define the sequence of messages that agents exchange during
the execution of a particular use case. Fig.6.3 depicts the elements in the MetaMORP(h)OSY profile used for
sequence diagrams definition.

Enabling Model Driven Engineering of Cloud Services by using mOSAIC Ontology 39

Fig. 5.4: Sequence Diagram

Fig. 6.1: Agent Diagram Profile

Again the profile extends the basic UML sequence diagrams and allows for the definition of the elements
listed in Tab.6.3.

The basic modelling profile of the MMM is used in order to describe MAS structure and behaviours,
but it lacks of detailed information about modelling domain. This information can be retrieved from the
mOSAIC ontology. The ontology is translated into a set of classes that are inherited during Agent Diagram
modelling phase. The translation first identifies equivalent classes in the ontology. The ontology taxonomy
is then translated into a hierarchy of UML classes and then relationships among classes are translated into
associations.

Part of the hierarchy produced from the piece of the ontology in Fig.4.6 is depicted in Fig.6.4.

40 F. Moscato, B. Di Martino and R. Aversa

Table 6.1: Agent Diagram Elements

Component Description
AgentRT Used for definition of agents with temporal description
PlanRT Used for the definition of agent plans. Each plan is related to an Activity diagram

that reports the behaviour of the agent while following the plan in terms of Action States
DGoalRT Used for the definition of agents goals. Agents pursue goals while executing plans
PerceptorRT and These are commonly used to define inputs and outputs
EffectorRT for agents
BeliefRT Beliefs are used to store status for agents containing their

beliefs about the external environment and other agents

Fig. 6.2: Activity Diagram Profile

Following the MARTE specification, properties (and requirements) on a model can be analysed or monitored
by elements called Observer [12].

Verification in MetaMORP(h)OSY is enacted by means of model transformation and model analysis. For
example, state reachability of goals under real-time constraints is performed by translating the RT-AML model
into Timed Automata and then executing a model checker on the translated model([28]).

In order to specify on which elements Observers work, it is necessary to identify the elements on which
properties can be evaluated. For example, (timed) state reachability analysis is available on DGoalRT elements,
that are associated to final states of activities.

When dealing with complex SLA, the generation of the profile containing properties definition is appealing.
The mOSAIC ontology is used in order to generate properties modelling profile.

Thanks to the hierarchical organization of elements in the ontology, subclasses of Property concept (see
Fig.4.4) are identified and inserted in the modelling profile as shown in Fig. 6.5

The ontology also contains relationships containing information about the classes on which properties can
be defined. For example, Availability can be requested on storage resources etc. This information is used in
order to complete the properties profile and to define proper Observers.

7. Example. In this section an example of the use of MetaMORP(h)OSY for definition of a cloud service
with a requested SLA. It will be shown how MMM is used in order to validate the SLA on the model before
user and provider agree on the offered service.

In the example the user requests a service with high availability. The service vendor is able to provide
a service with triple redundancy and voting and it want to assure that its composed service has the level of
reliability required by the user. The service (called here simply Module) is replicated thrice and each service
works stand-alone producing its own results. Results are than collected by a service called Voter that forward
results only if two on three are equal.

The Agent Diagram of the system is reported in Fig.5.2 where the two agents representing the Module and
Voter services are depicted. The Module agent has the goal of sending computed results to the Voter (SendData)

Enabling Model Driven Engineering of Cloud Services by using mOSAIC Ontology 41

Table 6.2: Activity Diagram Elements

Component Description
ActionStateRT Actions in agents plan are modelled with this component that allows for

specification of temporal behaviour of actions
TransitionRT Transitions among ActionStateRT. For these elements it is possible to specify

events synchronizations and deadlines
InitialState Initial and Final states of the plan
FinalState usually final state can be associated to a DGoalRT

Fig. 6.3: Sequence Diagram Profile

and the Voter agent has the goal of taking a decision (Decision).

The SendData goal is achieved by executing the Monitor plan, while Decision by executing the TakeDecision
plan. Both Module and Voter are provided as SaaS. And the beliefs of the agents are stored in DataStorage. For
each Agent properties defined in the MetaMORP(h)OSY profile are used. In particular, in this example, each
Agent has its own Fault probability and its own Mean Time to Failure that will be used in order to evaluate
global reliability on the system.

The Monitor plan is simple and it is not described for brevity.

The TakeDecision plan is shown in Fig.5.3, where the voter requests results from the three modules
(Receive−Res(i)) and votes when messages arrive.

The Sequence Diagram in Fig.5.4 is used to define that three different Module agents send their messages
to enact voting. Voting agent collects messages requiring that at least 2 messages correctly arrive. Stimu-
lusRT stereotype is used for messages and information about messages reliability is reported in their modelling
properties.

Finally, an Observer for the evaluation of the global reliability of the modelled system is defined. This is
depicted in Fig.7.1

The Observer translates the RT-AML model into a Fault Tree Model and generates the input for the
Sharpe [35] framework in order to evaluate availability, but the description of the analysis model is out of the
scope of this work. Service providers can change model parameters in order to establish the correct configuration
of services for assuring the requested QoS.

8. Conclusions. In this paper the mOSAIC Ontology, the MetaMORP(h)OSY methodology and frame-
work have been introduced. It has been shown how domain-related information contained in the ontology can
be used in order to enhance a modelling profile for formal verification of QoS of Cloud service. It has been
shown how MetaMORP(h)OSY suites well the MAS nature of cloud components and it is possible to define
Observers on models for system analysis. Future works include the design and the analysis of high available
and fault tolerant scenarios in the mOSAIC project.

Acknowledgments. This work has been supported by the mOSAIC project (EU FP7-ICT programme,
project under grant #256910).

REFERENCES

42 F. Moscato, B. Di Martino and R. Aversa

Table 6.3: Sequence Diagram Elements

Component Description
StimulusRT This elements allows for the specification of asynchronous and synchronous

messages, where deadline, arrival time and other temporal properties can be specified
MultiStimulusRT It is a StimulusRT for redundant messages

Fig. 6.4: Classes imported from mOSAIC ontology

[1] Appistry, Cloud Taxonomy: Applications, Platform, Infrastructure : http://www.appistry.com/blogs/sam/cloud-taxonomy-
applications-platform-infrastructure, 2008.

[2] R. Aversa, B. Di Martino, N. Mazzocca, and S. Venticinque, A skeleton based programming paradigm for mobile multi-
agents on distributed systems and its realization within the magda mobile agents platform, Mob. Inf. Syst., 4 (2008),
pp. 131–146.

[3] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin, S. McIlraith,

D. McGuinness, J. Su, and S. Tabet, Semantic web services framework, September 2005.
[4] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. Mcguinness, P. F. Patel-Schneider, and L. A. Stein,

Owl web ontology language reference, tech. rep., W3C, 2004.
[5] R. Buyya, C. S. Yeo, and S. Venugopal, Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering

IT Services as Computing Utilities, in HPCC ’08: Proceedings of the 2008 10th IEEE International Conference on High
Performance Computing and Communications, IEEE Computer Society, September 2008, pp. 5–13.

[6] B. Chen, H. H. Cheng, and J. Palen, Integrating mobile agent technology with multi-agent systems for distributed traffic
detection and management systems, Transportation Research Part C: Emerging Technologies, 17 (2009), pp. 1 – 10.

[7] C.Hoff, Cloud Taxonomy and Ontology : http://rationalsecurity.typepad.com/ blog/2009/01/cloud-computing-taxonomy-
ontology.html, 2009.

[8] M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatucci, Introducing pattern reuse in the design of multi-agent
systems, in Agent Technologies, Infrastructures, Tools, and Applications for E-Services, vol. 2592 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2003, pp. 107–120.

[9] V. T. Da Silva and C. J. P. De Lucena, From a conceptual framework for agents and objects to a multi-agent system
modeling language, Autonomous Agents and Multi-Agent Systems, 9 (2004), pp. 145–189.

[10] J. De Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and D. Fensel, The web service
modeling language wsml, tech. rep., DERI, October 2005.

[11] U. V. E.P. Mancini, M. Rak, PerfCloud: GRID Services for Performance-oriented Development of Cloud Computing
Applications, in Proceedings of WETICE, IEEE Computer Society, July 2009.

[12] M. Faugere, T. Bourbeau, R. de Simone, and S. Gerard, Marte: Also an uml profile for modeling aadl applications,
Engineering of Complex Computer Systems, IEEE International Conference on, 0 (2007), pp. 359–364.

[13] Galen Gruman and Eric Knorr, What cloud computing really means. InfoWorld :
http://www.infoworld.com/article/08/04/07/15FE-cloud-computing-reality 1.html, 2008.

[14] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler, Owl 2: The next step for owl,
Web Semant., 6 (2008), pp. 309–322.

[15] Z. Guessoum, J.-P. Briot, N. Faci, and O. Marin, Towards reliable multi-agent systems: An adaptive replication mecha-
nism, Multiagent Grid Syst., 6 (2010), pp. 1–24.

[16] K. Hwang, Massively distributed systems: From grids and p2p to clouds, in Proceedings of The 3rd International Conference
on Grid and Pervasive Computing - gpc-workshops, 2008, p. xxii.

[17] Jeremy Geelan, Twenty one experts define cloud computing. Virtualization : http://virtualization.sys-
con.com/node/612375, 2008.

[18] K. M. Kavi, M. Aborizka, D. Kung, and N. Texas, A framework for designing, modeling and analyzing agent based
software systems, in in Proc. of 5th International Conference on Algorithms and Architectures for Parallel Processing,
2002, pp. 23–25.

[19] P. Lairds, Cloud Computing Taxonomy, in Procs. Interop09, IEEE Computer Society, May 2009, pp. 201–206.

Enabling Model Driven Engineering of Cloud Services by using mOSAIC Ontology 43

Fig. 6.5: Properties Diagram Profile

Fig. 7.1: Reliability Observer

[20] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, What’s inside the cloud? an architectural map of the cloud
landscape, in Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD
’09, Washington, DC, USA, 2009, IEEE Computer Society, pp. 23–31.

[21] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. C. Balan, Mason: A multi-agent simulation environment,
Simulation, 81 (2005), pp. 517–527.

[22] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein, D. Mcdermott, D. Mcguinness, B. Parsia, T. Payne, M. Sabou,

M. Solanki, N. Srinivasan, and K. Sycara, Bringing Semantics to Web Services: The OWL-S Approach, in SWSWPC
2004, J. Cardoso and A. Sheth, eds., vol. 3387 of LNCS, Springer, 2004, pp. 26–42.

[23] M.Behrendt, B.Glasner, P.Kopp, R.Dieckmann, G.Breiter, S.Pappe, H.Kreger, and A. Arsan-

jani, Introduction and Architecture Overview, IBM Cloud Computing Reference Architecture 2.0:
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc, 2011.

[24] McGuinness, D.L., van Harmelen, F., OWL Web Ontology Language Overview. W3C Recommendation:
http://www.w3.org/TR/2004/REC-owl-features-20040210/, 2004.

[25] Members of EGEE-II, An egee comparative study: Grids and clouds - evolution or revolution. Technical report, Enabling
Grids for E-sciencE Project : https://edms.cern.ch/document/925013/, 2008.

[26] D. Milojicic, Cloud computing: Interview with russ daniels and franco travostino, IEEE Internet Computing, (2008), pp. 7–9.
[27] F. Moscato, R. Aversa, B. Di Martino, T. Fortis, and V. Munteanu, An analysis of mosaic ontology for cloud re-

sources annotation, in Computer Science and Information Systems (FedCSIS), 2011 Federated Conference on, IEEE,

44 F. Moscato, B. Di Martino and R. Aversa

2011, pp. 973–980.
[28] F. Moscato, S. Venticinque, R. Aversa, and B. Di Martino, Formal modeling and verification of real-time multi-agent

systems: The remm framework, in Intelligent Distributed Computing, Systems and Applications, C. Badica, G. Mangioni,
V. Carchiolo, and D. Burdescu, eds., vol. 162 of Studies in Computational Intelligence, Springer Berlin / Heidelberg, 2008,
pp. 187–196.

[29] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma, Meteor-s web service annotation framework, in Proceedings
of the 13th international conference on World Wide Web, WWW ’04, New York, NY, USA, 2004, ACM, pp. 553–562.

[30] Paul McFedries, The cloud is the computer. IEEE Spectrum Online, : http://www.spectrum.ieee.org/aug08/6490, 2008.
[31] A. Pokahr, L. Braubach, and W. Lamersdorf, Jadex: A bdi reasoning engine, in Multi-Agent Programming, J. D.

R. Bordini, M. Dastani and A. E. F. Seghrouchni, eds., Springer Science+Business Media Inc., USA, 9 2005, pp. 149–174.
Book chapter.

[32] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt, A. Sheth, K. Verma, Web Service Semantics WSDL-S.
A joint UGA-IBM Technical Note, version 1.0: http://lsdis.cs.uga.edu/projects/METEOR-S/WSDL, 2005.

[33] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, and

D. Fensel, Wsmo - web service modeling ontology, in DERI Working Draft 14, vol. 1, BG Amsterdam, 2005, Digital
Enterprise Research Institute (DERI), IOS Press, pp. 77–106.

[34] Roy Bragg, Cloud computing: When computers really rule: http://www.technewsworld.com/story/63954.html, 2008.
[35] K. S. Trivedi and R. Sahner, Sharpe at the age of twenty two, SIGMETRICS Perform. Eval. Rev., 36 (2009), pp. 52–57.
[36] S. Venticinque, R. Aversa, B. D. Martino, and D. Petcu, Agent based cloud provisioning and management: design and

protoypal implementation, in Proc. of Cloud Computing and Services Science (CLOSER), SciTePress, 2011, pp. 184–191.
[37] VV.AA., Cloud Computing Interoperability Forum, Unified Cloud Computing: http://code.google.com/p/unifiedcloud/.
[38] , Cloud Computing Interoperability Forum,Cloud taxonomy : http://groups.google.com/group/cloudforum/web/ccif-

cloud-taxonomy.
[39] , Open Cloud Manifesto, Spring 2009 : http://www.opencloudmanifesto.org.
[40] , Open Grid Forum: Open Cloud Computing Interface (OCCI): http://forge.ogf.org/sf/projects/occi-wg.
[41] , Papyrus uml: http://www.papyrusuml.org.
[42] , Web Service Modelling Ontology (WSMO): http://www.wsmo.org.
[43] A. Weiss, Computing in the clouds, netWorker, 11 (2007), pp. 16–25.
[44] M. Wooldridge, Agent-based software engineering, in IEE Proceedings on Software Engineering, 1997, pp. 26–37.
[45] L. Youseff, M. Butrico, and D. D. Silva, Towards a unified ontology of cloud computing, in Grid Computing Environments

Workshop, 2008. GCE ’08, Nov 2008, pp. 1–10.
[46] Q. Zhang, L. Cheng, and R. Boutaba, Cloud computing: state-of-the-art and research challenges, J. Internet Serv Appl,

(2010), pp. 7–18.
[47] Y. Zhang, E. Manisterski, S. Kraus, V. Subrahmanian, and D. Peleg, Computing the fault tolerance of multi-agent

deployment, Artificial Intelligence, 173 (2009), pp. 437 – 465.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 45–57. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

AN INTERNET OF THINGS PLATFORM FOR REAL-WORLD AND DIGITAL OBJECTS∗

SUPARNA DE, TAREK ELSALEH, PAYAM BARNAGHI, AND STEFAN MEISSNER †

Abstract. The vision of the Internet of Things (IoT) relies on the provisioning of real-world services, which are provided
by smart objects that are directly related to the physical world. A structured, machine-processible approach to provision such
real-world services is needed to make heterogeneous physical objects accessible on a large scale and to integrate them with the
digital world. The incorporation of observation and measurement data obtained from the physical objects with the Web data, using
information processing and knowledge engineering methods, enables the construction of ”intelligent and interconnected things”.
The current research mostly focuses on the communication and networking aspects between the devices that are used for sensing
amd measurement of the real world objects. There is, however, relatively less effort concentrated on creating dynamic infrastructures
to support integration of the data into the Web and provide unified access to such data on service and application levels. This
paper presents a semantic modelling and linked data approach to create an information framework for IoT. The paper describes
a platform to publish instances of the IoT related resources and entities and to link them to existing resources on the Web. The
developed platform supports publication of extensible and interoperable descriptions in the form of linked data.

Key words: Interent of Things, Modelling, Linked-data, Semantics, Information model

1. Introduction. The Internet of Things (IoT) vision aims to enable the machine perception of the real
world and seamless interactions with it. This vision is lent credence with the growing availability of smart ob-
jects that are directly related to the physical world and have the communication and computation capabilities
to connect and interact with their surrounding environment. The data and/or services offered by such objects
can provide information about the physical world and allow interaction with it. The services can either be
information services exposing functionalities that can provide data on the surrounding physical world entities,
or actuation services that can bring about a change in the state of the physical world objects. Initially, the IoT
vision considered physical objects tagged with RFID transponders. However, this has grown to encompass sen-
sor networks and distributed smart objects collaborating via local networks or through the Internet [9]. Thus,
the resulting real-world data/services need to be defined and made available in a homogeneous way to allow
integration of the data from the wide variety of heterogeneous sources and to support autonomous reasoning
and decision making mechanisms. This points to the applicability of Semantic Web technologies that can pro-
vide a formal, structured and machine-processible platform to heterogeneous data sources, as well as providing
context to the data and to the objects themselves. Initial efforts in this area have resulted in ontologies for
sensor descriptions [6] as well as standardisation efforts towards semantic descriptions of sensor networks [17].
However, the semantic sensor descriptions need to be linked to the measurements and domain knowledge and
then to the observed IoT entity in the domain.

Another key requirement for the IoT is a platform that facilitates the virtualisation of real world objects.
Existing research works have focused on sensor (and actuator) middleware frameworks that offer sensor de-
scriptions [1], sensor site data [10] and measurement data services [16] on the Web and/or at the application
level. More generic approaches include those that provision flash interfaces for instantiating semantic pro-
files of connected objects [7]. To extend this to heterogeneous real world objects, the data from the physical
world needs to be interlinked to domain knowledge and existing data sources on the Web. This can facilitate au-
tomated annotation and reasoning on the physical world data and lead to provisioning of intelligent applications.

Towards these twin aims, this paper describes the Sense2Web platform that allows publishing data de-
scriptions for the components of the IoT domain in the form of Linked Data and makes this data available
to other Web applications via SPARQL endpoints. The platform offers both a Human-to-Machine (H2M) and
Machine-to-Machine (M2M) interface for publishing data. It incorporates a semantic description framework for
the IoT components and provides a formal representation to the interactions. The platform allows generating
of networked resources which collect data from the physical world as well as data and services on the Web.
Interlinking data from the physical world and the Web supports the provision of networked knowledge [11].

∗This work is supported by the EU IoT-A project, IoT-A: Internet of Things Architecture (http://www.iota. eu/public) contract
number: 257521. The second and third authors are also supported by the EU PPP FI-Ware project (http://www.fi-ware.eu/).

†Centre for Communication Systems Research, University of Surrey, Guildford, GU2 7XH, Surrey, UK ({S.De, P.Barnaghi,

T.Elsaleh, S.Meissner}@surrey.ac.uk).

45

46 Suparna De, T. Elsaleh, P. Barnaghi and S. Meissner

This also enables other related data and relevant information to be discovered and facilitates interconnection
and integration of data from different communities and sources. The applicability of the platform is illustrated
through a reference application scenario that implements a mash-up application using the generated linked data.

The rest of the paper is organised as follows: section 2 presents challenges and background information
on linked data. The proposed information models are detailed in section 3. Section 4 presents the developed
Sense2Web platform architecture and explains linking IoT concept descriptions to existing data sources on the
Web. An example application that builds upon the platform functionalities is presented in section 5. Section 6
concludes the paper and discusses future work.

2. Challenges and background information. In this section we first discuss the issues related to
annotation and publication of the IoT related data and making the data machine-interpretable to support
automated scenarios. We then provide the principle of creation and publication of the linked data.

2.1. Challenges. In order to use the Linked data approach for publishing data from heterogeneous IoT
concepts, we need to address the following challenges:

1. How to annotate ”‘plain”’ data to make it semantically linked data: this refers to deciding what
ontologies need to be leveraged to semantically describe the IoT domain. Moreover, the heterogeneity
of possible IoT concepts requires using several ontologies together and this in turn, gives rise to the
challenge of aligning and relating them to each other. This paper proposes a suite of ontologies to define
an IoT information model. The ontologies build upon existing vocabularies and where appropriate,
properties are included to allow linking the proposed ontologies to external ontologies where the given
concept may be more completely described.

2. How to actually ”‘link”’ the data together: the Linked Data principle is to ”‘make data refer to each
other so that it eventually forms a data network”’ [22]. However, currently, most of the data linkages
are made manually or are very sparse [22]. The Human-to-Machine interface of the proposed platform
offers automated hints for linking entered data to existing internal and external data repositories.

3. How to serve the published data in an application-programmable compliant way: currently, sensor
network data applications apply Device Profile for Web Services (DPWS) [15] -based implementations
[1], [14] to sensor gateways to offer sensor measurement data services. DPWS defines a limited set of
WS-* standards for resource limited devices. The majority of Linked data is currently served through
SPARQL endpoints.

The Sense2Web platform offers the published IoT component descriptions as Linked data through SPARQL
endpoints.

2.2. Background Information - Linked data. Publishing data on the Semantic Web with machine
interpretable representations facilitates more structured and efficient access to the resources; however semantic
descriptions without being linked to other existing data on the Web would be mostly processed locally and ac-
cording to the domain descriptions (i.e. domain ontologies). Linking data to other resources enables obtaining
more information related to a particular data item by exploring the links across different concepts and domains.
The linked data concept was initially introduced by Tim Berners-Lee in 2006 [4]. Berners-Lee suggested four
main principles to publish linked data: - using URIs as names for data, - providing HTTP access to those URIs, -
providing useful information for URIs using the standards such as RDF and SPARQL, - Including links to other
URIs. Publishing annotated and interlinked data is the underlying principal of creating linked Web resources
that is referred to as the Web of Data [4]. In the Web of Data resources are connected via links that can be
queried and interpreted using discovery and search agents [5]. Linked data enables navigation between different
data sources by following the data connection links. This allows the linked data consumers to start with one
data source and then browse through a vast number of resources interconnected by machine interpretable links
(e.g. RDF links).

3. IoT Information Models. This section defines the main abstractions and concepts that underlie the
IoT domain and describes the relationships between them. The main tenet of the IoT is extension of the Internet
into the physical world, to involve interaction with a physical entity in the ambient environment. The entity

An Internet of Things Platform for Real-World and Digital Objects 47

constitutes ’things’ in the Internet of Things and could be a human, animal, car, store or logistic chain item,
electronic appliance or a closed or open environment. The ’entity’ is the main focus of interactions by humans
and/or software agents. This interaction is made possible by a hardware component, a ’device’, which either
attaches to an entity or is part of the environment of an entity so it can monitor it. The device allows the entity
to be part of the digital world by mediating the interactions. The actual software component that provides
information on the entity or enables controlling of the device, is a ’resource’. As implementations of resources
can be highly dependent on the underlying hardware of the device, a ’service’ provides a well-defined and stan-
dardised interface, offering all necessary functionalities for interacting with entities and related processes. The
services expose the functionality of a device by accessing its hosted resources. Other services may invoke such
low-level services for providing higher-level functionalities, for instance executing an activity of a specified busi-
ness process. The relations between services and entities are modeled as associations. These associations could
be static, e.g. in case the device is embedded into the entity; they could also be dynamic, e.g., if a device from
the environment is monitoring a mobile entity. These identified concepts of the IoT domain and the relations
between them are depicted in Figure 3.1.

Fig. 3.1: IoT model: key concepts and interactions

Based on the identification above, of the main concepts in the IoT domain, this paper proposes a suite
of ontologies that models entity, resources and IoT services. The ontologies are modelled in the Web Ontol-
ogy Language - Description Logic (OWL-DL). Where appropriate, properties are included to allow linking the
proposed ontologies to external ontologies; for example, the global location URI of an entity could link to the
relevant location instance in the GeoNames ontology1, where the given location is more fully described. This
enables reusability of ontologies and fosters modularity.

3.1. Entity Model. In addition to the required properties of an identifier and some attributes, an entity
can have certain other aspects that need to be taken into account. For example, we may need to know about
the location of an entity and the features that can be observed by a sensing mechanism to provide data about
the observed feature. A diagram of the main attributes of the entity model is shown in Figure 3.2.

An entity has certain features, which include domain attributes, temporal features and location (Entity:hasA
U(DomainAttribute, TemporalFeatures, Location)). The OWL union operation (U) on these features denotes
that a particular entity instance can have either or all of these features. Moreover, an entity instance can have
multiple values for the domain, temporal or location feature.

Domain attributes tie the entity instance to a particular domain and a semantic realisation of the model
can link the entity instance to a domain ontology. The domain attribute is specified in terms of the attribute
name (hasAttributeName), attribute type (hasAttributeType) and value. These attribute properties together

1http://www.geonames.org/ontology/documentation.html

48 Suparna De, T. Elsaleh, P. Barnaghi and S. Meissner

Fig. 3.2: The Entity model

describe an observable feature of the entity. Having the attribute name and type as distinct properties allows
for two levels of data specification. The DomainAttribute instance’s name property refers to the domain specific
attribute of the virtual entity, e.g. Ambient Temperature. What a resource (e.g. sensor) will be able to measure
will be the attribute type, i.e. Temperature, in this case. Thus, for two distinct domain attributes of the same
virtual entity, e.g. Ambient Temperature and Body Temperature, what a resource would be concerned with,
would be the attribute type, i.e. Temperature, which is the same for both domain attributes. Only the domain
attribute property, which is intrinsic to the entity, puts what the resource senses, into context. The type of the
”‘DomainAttribute”’ is further defined as ”‘QuantityKind”’, taken from the ”‘Library for Quantity Kind and
Units”’ [13]. That library contains a list of physical phenomena, such as temperature or acceleration, which
can be measured by sensors or influenced by actuators. The value itself has a literal ’value’ and associated
metadata information (ValueMetadata). The metadata could include information on, for instance, the units of
measurement. It is specified in terms of the metadata value and metadata type.

The entity’s lifetime is described by ”‘TemporalFeature””s further refined by ”‘hastimeOffset”’,
”‘TimeRange”’ and ”‘DateRange”’. The latter specifies intervals in a scale of days, months and years;
”‘TimeRange”’ describes ranges in hours, minutes, seconds and fractions of seconds. A time offset to Coordi-
nated Universal Time (UTC) in hours indicates the time zone the entity is currently located in. These capture
the temporal properties of entities that may have temporal attributes, e.g. Meeting Rooms. The values of these
properties can be compared with other dates by using date and time comparison built-ins (such as those avail-
able in Semantic Web Rule Language (SWRL) [23] to deduce facts about temporal aspects of the relevant entity.

An Internet of Things Platform for Real-World and Digital Objects 49

Physical entities have a location at the time they exist in the real world. In this work, we focus on locations
on the earth that can be described by geographic coordinates as well as symbolic locations, such as relative
locations within a building. Barnaghi et al. [3] identify two location attributes for describing sensor data: the
first attribute to refer to an instance of a local location ontology, which is a model of the current location offering
high granularity and detailed information on the location in terms of the relative positioning of rooms, floors
and buildings. The second location attribute was identified to be from a high-level concept available on the Web
of data, such as DBpedia [2]. We adopt a similar approach in this paper and extend it to include specification
of geographical coordinates for the entity location as well. Thus each ’Entity’ can be given a ”‘Location”’ that
is modelled as a triple of float values describing longitude, latitude, and altitude as geographic position. The
location concept also has properties that could link to local location (hasLocation) ontologies.

Additionally, an entity has datatype properties that specify the URI of an owner (hasOwner) where the
URI could point to a foaf2 profile, a literal name (hasName) and a Boolean property to denote if the entity
could be mobile (isMobile). An important attribute of an entity is the entity type (hasType), which could be
specified through the rdf:type property and hence, allow a Semantic Web engine to infer the type of the entity
from its asserted properties, especially in cases where the entity could have multiple types. The local identifier
(hasLocalIdentifier) property is the ID of the virtual entity. It could as well point to a local naming schema.
The global identifier (hasGlobalIdentifier) property is a placeholder to associate the entity to the open Linked
Data3 platform; for instance, to a Dbpedia entry.

3.2. Resource Model. A resource is the core software component that represents an entity in the digital
world. It allows the entity to be part of the digital world by mediating the interactions. Figure 3.3 details the
resource description model.

The resource concept has datatype properties that specify its name (hasName), an ID (hasResourceID) and
time offset (hasTimeOffset). The resource provider can specify certain keywords (or free text tags) describing
the resource through the hasTag property. This is an optional property to allow the resource provider to pro-
vide a free text search for the resource instance. A resource also has a location property (hasResourceLocation)
that links to the Location concept. This location could be the location of the device the resource runs on.
The definition of the location concept is similar to that in the entity model. The resource type is denoted in
terms of the type property (hasType) to the ResourceType concept. Resources can be instances of either of the
following types: sensor, actuator, RFID tag, storage or processing resource. The different resource types are
not disjoint, hence, resources can be an aggregation of several of these types. When the type is a sensor, the
hasType property serves as a link to an instance of a sensor that conforms to an available sensor ontology (e.g.
SSN sensor ontology). This allows linking the resource concept to external ontologies which already define in
detail related concepts, without the need of repeating them in the resource model. Actuator resources modify
the physical state of a physical entity. The RFID tag type is a specialised kind of sensing resource. A storage
resource stores information obtained from other resources (such as sensors) and a processing resource includes
methods to process the information aggregated from other resources (e.g. an aggregate of a temperature value
coming from a number of sensors). As the access to a resource is provided by an IoT service, this link to the
service is denoted by the ”‘isExposedThroughService”’ object property that links the resource model to an IoT
Service instance of the service model. The resource model also captures the link to the hardware ’device’ on
which it hosted (isHostedOn), which may be further described in a Device ontology.

3.3. Service Model. Resources are accessed by services which provide functionality to gather information
about entities they are associated with or manipulate physical properties of their associated entities. The Service
Model contains information needed for discovering and looking up the service as well as information on how to
invoke the service. The service model is shown in Figure 3.4.

The actual technology used to invoke the service is modelled through the hasServiceType parameter, which
could take a value such as ’REST’ for a RESTful web service. The link to the resource to which the service

2http://www.foaf-project.org/
3http://linkeddata.org

50 Suparna De, T. Elsaleh, P. Barnaghi and S. Meissner

Fig. 3.3: The Resource model

provides access is specified through the exposes property that links back to an instance of the resource model.

One of the important aspects of a service is to allow for associations with virtual entities in the IoT domain.
For this, the IoT-A proposed service model utilises the OWL-S [20] model as its upper ontology. The ”‘Ser-
viceModel”’ part of the OWL-S ontology is used to specify the input, output, preconditions and effects (IOPE)
related parameters of the service model. Since the service model exposes the underlying resource’s function-
alities, the resource attribute that is exposed through an IoT service either as output data type (hasOutput)
or as an input parameter (hasInput) is captured in the service specification. The feature can then be matched
with the attribute type of the virtual entity with which it can be associated. For instance, a virtual entity
can have an attribute that represents its ”‘indoorTemperature”’. The generic type of this particular attribute
is ”‘temperature”’. Then, if there is a service exposed by a resource that measures temperature, specified as

An Internet of Things Platform for Real-World and Digital Objects 51

Fig. 3.4: The Service model

the service’s hasOutput parameter, the corresponding service can be a candidate for possible association to
the relevant virtual entity. The input and output parameters can be specified in terms of the generic instance
quantities from the QU ontologies [18], such as ”‘temperature”’ or ”‘luminosity”’.

For actuating services, the state of the entity attribute being controlled is also important. This post-
condition state is modelled through the hasEffect parameter in the service model. Similarly, any pre-conditions
that need to be met before the service execution can be specified through the hasPrecondition parameter. The
state object properties link to instances of the ’Condition’ class of the SSN ontology [17], so that conditions
that affect the resource’s measurement or actuating capabilities can be specified. This is also an example where
the SSN ontology concepts can be extended to include actuating conditions.

With location being an important criterion for service search and resolution, the area affected by the service
is specified through the hasServiceArea property. For sensing services, this would be the observed area, while
actuating services would specify the area of operation. The observation area of sensors can be different to their
actual location. An example for that are camera resources observing areas at some distance to their position.
The possibility of specifying time constraints on service availability is captured through the hasServiceSchedule
property. This can allow IoT users to be informed about downtimes of resources, for instance, for energy effi-
ciency reasons.

4. Sense2Web Linked Data Platform. The Sense2Web platform4, depicted in Figure 4.1, is a six-tiered
framework for publishing linked IoT concept instances. The platform was developed in Java and deployed on
the Apache Tomcat5 web server.

The platform offers both a H2M as well as M2M interface for publishing IoT data and associating it to
existing vocabularies on the Web. The core functions that are supported by the platform are essentially the
CRUD (Create, Read, Update, and Delete) methods used for interacting with IoT entities and resources; in this
case this translates to publishing, reading, updating and deleting the IoT concept descriptions. For all these

4An online version is available at: http://ccsriottb3.ee.surrey.ac.uk:8080/IOTA/
5http://www.tomcat.apache.org

52 Suparna De, T. Elsaleh, P. Barnaghi and S. Meissner

Fig. 4.1: Sense2Web architecture

methods, a web user interface is provided for H2M interaction, and RESTful interfaces are exposed for M2M
interactions. The Sense2Web Web user interface is shown in Figure 4.2.

The different layers of the framework are explained below:

1. Data sources: the IoT information models detailing entities, resources and services that have been
proposed in this paper (section 3) form the primary source of data structures for the H2M and M2M
interfaces. In addition to these, the platform also accesses DBPedia and an indoor location ontology6

6http://ccsriottb3.ee.surrey.ac.uk:8080/IotaDataFiles/models/LocationModel.owl

An Internet of Things Platform for Real-World and Digital Objects 53

Fig. 4.2: Sense2Web user interface

to obtain values for location, type and descriptive properties.

Fig. 4.3: Entity Publication H2M Interface

2. Linking the data: the H2M interface consists of a Web interface with a form to populate the elements
of the object (entity/resource) description. This constitutes the data input stage; Figure 4.3 shows the
H2M interface for publishing an entity description.
To establish linkages with existing data repositories, we use Jena API to query the DBPedia and other
resources and serialise the results using AJAX technology directly to the page; so the user can type
a keyword and obtain relevant suggestions. For instance, in the Linked-data tag field, suggestions for
relevant RDF links (URIs) to an input entered by the user in this field are retrieved from the DBPedia

54 Suparna De, T. Elsaleh, P. Barnaghi and S. Meissner

knowledge base. This facilitates the interconnection and integration of data from different communities
and sources. RDF link suggestions are also provided in the global and local location (from the indoor
location ontology) fields with respect to the user’s input. The form also provides location fields with
respect to latitude and longitude. These fields make use of a Google mini-map which contains a marker
which can be displaced to the position required, which will then populate the field with the respective
co-ordinates.
The M2M interface is realised through a RESTful interface, developed using the Restlet API7 that
offers a RDF file upload option. The M2M interface is utilised for publishing instances of the service
model.

3. Data transformation: When the form is submitted, the servlet handling the form processes the input
data by collecting the fields and their respective values into an XML serialisation. This pre-processing
step is succeeded by an Extensible Stylesheet Language Transformation (XSLT) [19] step which converts
the input into an RDF instance that adheres to the corresponding IoT model (i.e. entity model in this
case). This makes generation of the RDF data flexible and less dependent on the current model.

4. Storing the data: The RDF instance is then handed over to the SDB [12] interface, which then stores
the RDF instance in SQL as nodes, triples, prefixes and quads.

5. Services: the platform supports retrieving, updating, or deleting a description, which can be done by
providing the ID value of the published IoT concept. In addition to these methods, a SPARQL interface
is provided for users to query for objects (resources or entities) or services of interest. Different results
format are supported as well. The SPARQL [21] query page is shown in Figure 4.4.

6. Applications: an application can consume the services provided by the platform to make use of the
published linked IoT concept instances. In the following section, we showcase a mash-up application
that demonstrates the linked data usage and integration of data from different sources.

5. Google Maps Mash-up Application. The developed application is a map application that has been
implemented using Google Maps API8 to illustrate the location of the IoT instances and provide a summary of
its description.

For this application, we use the location attributes and retrieve geographical coordinates of the resources
and entities by processing the Linked data descriptions. The application retrieves related properties of the
published IoT concept from the repository and lists available resources and entities through a Google Maps
overlay. Figure 5.1 shows a screen-shot of the application and shows a published temperature sensing resource.

The map page refreshes periodically to show any changes in location that can be observed when object
descriptions are updated. This is best noticed for example when remote sensor device gateways update Re-
source description when Resources migrate from gateway to gateway. The work in [8] has been integrated
with the platform to demonstrate this scenario. In this scenario, a mobile sensor device attaches to a gateway.
The gateway then creates a web service instance to expose the sensor resource to the web. The gateway also
retrieves essential metadata from the sensor device and populates it in a RDF instance description which is
then published to the Sense2Web platform via the M2M RESTful interface. As the sensor migrates to another
gateway and re-attaches, the gateway will then update the description already stored at the platform, with the
new location properties.

6. Discussion. To achieve scalability in real IoT deployments, the major issues involve providing semantic
annotations, publishing the metadata, supporting large-scale distributed repositories and indexing and query
support over the data. Manual resource annotation and tagging the data can hinder publishing large number
of resources. Automating mechanisms are required to publish the resource and entity descriptions directly into
the repositories. In a different work [24], we have studied and implemented a gateway component for large-scale
sensor networks that publishes semantically annotated resource descriptions when the resources are discovered
and associated to the gateway. This can help to automate the semantic annotation of resources. We have also
implemented RESTful (M2M) interfaces that support direct publication and edit/update of the resources. The

7http://www.restlet.org
8http://code.google.com/apis/maps/

An Internet of Things Platform for Real-World and Digital Objects 55

Fig. 4.4: SPARQL Query page

interfaces can be accessed directly by third-party applications and software agents and can support automated
semantic annotation and query of the resources. Federation of repositories and coordinating search and query
over a number of semantic data stores in multiple domains can be also supported by publishing data in different
domain repositories. The domain repositories can be defined based on network domain, geographical distribution
or other aspects that can help to distribute the data more efficiently and then queries can be distributed based
on the selected features. Peer-to-Peer communication and data update in the repositories is also another issue
to enable up-to-date and efficient distribution and publishing of semantic annotation. These aspects will be
investigated in future extensions of the presented platform.

7. Conclusions and Future Work. This paper presents a set of interlinked semantic models for the IoT
domain and describes a platform that provisions both a H2M and M2M interface for publishing data descriptions
conforming to the developed semantic models in the form of Linked Data. The platform allows making this
data available to other Web applications via standard SPARQL endpoints. The models proposed in this paper
are designed based on our previous work and experiences in the SENSEI project9 and SSN ontology. The
proposed models provide associations between different components in the IoT domain. The models support a

9http://www.sensei-project.eu/

56 Suparna De, T. Elsaleh, P. Barnaghi and S. Meissner

Fig. 5.1: Google Maps mash-up application

semantic annotation framework so the legacy data can be also enhanced using these descriptions. The semantic
annotation allows that the model data is represented as linked data and can be associated with the existing
data on the Web and in particular Linked Open Data. Future work will involve development of a resolution
framework that allows searching the large scale data of the instances of the models in the IoT domain and also
automated inference of dynamic associations that can be identified by exploring and reasoning the interlinked
descriptions.

REFERENCES

[1] Abangar, H., Barnaghi, P., Moessner, K., Tafazolli, R., Nnaemego, and A., Balaskandan, K., A Service Oriented
Middleware Architecture for Wireless Sensor Networks, In Proceedings of Future Network & Mobile Summit 2010,
Florence, Italy.

[2] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, C., and Ives, Z., DBpedia: A Nucleus for a Web of Open
Data, In Proceedings of the 6th International Semantic Web Conference (ISWC2007), 2007.

[3] Barnaghi, P., Presser, M., and Moessner, K,Publishing Linked Sensor Data, In Proc. 3rd International Workshop on
Semantic Sensor Networks (SSN), in conjunction with the 9th International Semantic Web Conference (ISWC 2010),
2010.

[4] Berners-Lee, T., Linked data, Retrieved from http://www.w3.org/DesignIssues/LinkedData.html
[5] Bizer, C., Heath, T., Idehen, K., and Berners-Lee, T., Linked data on the web (ldow2008), In WWW ’08: Proceeding of

the 17th international conference on World Wide Web, New York, NY, USA. (pp. 1265-1266), 2008.
[6] Bowers, S., Madin, J. S., and Schildhauer, M. P., A Conceptual Modeling Framework for Expressing Observational Data

Semantics, In Q. Li et al. (Eds.), ER 2008, LNCS 5231, pp. 41-54, 2008.
[7] Christophe, B., Verdot, V., and Toubiana, V., Searching the ”‘Web of Things”’, In Proc. Fifth IEEE International

Conference on Semantic Computing, Palo Alto, CA. (pp. 308 - 315), 2011.
[8] Elsaleh, T., Gluhak, A., and Moessner, K., Service Continuity for Subscribers of the Mobile Real World Internet, In

Proc. IEEE International Conference on Communications Workshops, 2011.
[9] Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., and Razafindralambo, T., A Survey on Facilities for

Experimental Internet of Things Research, IEEE Communications Magazine, 49(11), 58 - 67, 2011.
[10] Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., and Savio, D., Interacting with the SOA-Based Internet of Things:

Discovery, Query, Selection, and On-Demand Provisioning of Web Services, IEEE Transactions on Services Computing,
3(3), 223-235.

[11] Hauswirth, M., and Decker, S., Semantic reality - connecting the real and the virtual world, In Microsoft SemGrail
Workshop. (pp. 21-22), 2007.

[12] Jena, SDB - persistent triple stores using relational databases. Retrieved from
http://incubator.apache.org/jena/documentation/sdb/index.html

[13] Koning, H. P. d., Rouquette, N., Burkhart, R., Espinoza, H., and Lefort, L., Library for Quan-

An Internet of Things Platform for Real-World and Digital Objects 57

tity Kinds and Units: schema, based on QUDV model OMG SysML(TM), 2009, Version 1.2. doi:
http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu.html

[14] Leguay, J., Lopez-Ramos, M., Jean-Marie, K., and Conan, V., Service oriented architecture for heterogeneous and
dynamic sensor networks, In Proceedings of the Second international Conference on Distributed Event-Based Systems,
2008.

[15] OASIS. (2009). Devices Profile for Web Services (DPWS). Retrieved from http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
[16] Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., Souza, L., and Trifa, V., SOA-based integration of

the Internet of things in enterprise services, In Proceedings of IEEE ICWS, Los Angeles, CA, USA, 2009.
[17] W3C SSN Incubator Group Report. Retrieved from http://www.w3.org/2005/Incubator/ssn/wiki/Incubator Report
[18] SySML, O. Library for Quantity Kinds and Units: schema, based on QUDV model. 1.2. Retrieved from

doi:http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu
[19] XSL Transformations (XSLT). W3C Recommendation v 1.0. from http://www.w3.org/TR/xslt
[20] OWL-S: Semantic Markup for Web Services. Retrieved from http://www.w3.org/Submission/OWL-S/
[21] SPARQL Query Language for RDF. W3C Recommendation, from http://www.w3.org/TR/rdf-sparql-query/
[22] Yu, L., and Liu, Y., Using the Linked Data Approach in a Heterogeneous Sensor Web: Challenges, Experiments and Lessons

Learned, In Proc. Sensor Web Enablement (SWE) Workshop, Banff, Alberta, Canada, 2011.
[23] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean, M., SWRL: A Se-

mantic Web Rule Language Combining OWL and RuleML, W3C Member Submission, 2004. Retrieved from
http://www.w3.org/Submission/SWRL/

[24] Ganz, F., Barnaghi, P., Carrez, F., and Moessner, K., Context-aware Management for Sensor Networks, In Proceedings
of the 5th International Conference on COMmunication System softWAre and middlewaRE (COMSWARE11), 2011.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 59–71. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

THE EFFECT OF TEMPORARY LINKS IN RANDOMLY GENERATED NETWORKS OF
CONSTRAINTS

IONEL MUSCALAGIU∗, HORIA EMIL POPA †, AND NEGRU VIOREL‡

Abstract. Additional communication links between unconnected agents are used in asynchronous searching, in order to detect
obsolete information. A first way to remove obsolete information is to add new communication links, which allow a nogood owner
to determine whether this nogood is obsolete or not. The second solution consists in temporarily keeping the links. A new link
is maintained until a fixed number of messages have been exchanged through it. This article investigates different values for the
number of messages, values that are either statically or dynamically, during the run time, determined. In the case of processing
all the messages, we adapt a dynamical solution for determining the number of necessary messages for maintaining a connection.
The experiments show a better efficiency in comparison with the standard Asynchronous Backtracking. In this paper we examine
the effect of temporary links for the random binary constraints problem. Experiments with asynchronous search techniques are
conducted on randomly generated networks of constraints. Experimental results show that the dynamical solution for the temporary
links allows obtaining better results for the majority of classes of problems investigated.

Key words: Distributed constraint programming, asynchronous searching techniques, multiagent systems, messages.

AMS subject classifications. 68T20, 68T42, 68W15

1. Introduction. Constraint programming is a programming approach used to describe and solve large
classes of problems such as searching, combinatorial and planning problems. Lately, the AI community has shown
increasing interest in the distributed problems, which are solvable through modeling, done by constraints and
agents. The idea of sharing various parts of the problem among agents that act independently and collaborate
in order to find a solution by using messages has proved itself useful. It has also led to the formal problem
known as the Distributed Constraint Satisfaction Problem (DisCSP) [12], [13], [6]. DisCSPs are composed of
agents, each owning its local constraint network. Variables in different agents are connected by constraints.
Agents must assign values to their variables so that all constraints between agents are satisfied.

There are complete asynchronous searching techniques for solving the DisCSP, such as the ABT (Asyn-
chronous Backtracking), AWCS (Asynchronous Weak Commitment), ABTDO (Dynamic Ordering for Asyn-
chronous Backtracking) and DisDB (Distributed Dynamic Backtracking) [2, 5, 12, 13, 15, 6]. Starting from
the algorithm of Asynchronous Backtracking (ABT), there has recently been suggested, in [2] a unifying frame-
work, a starting kernel for some of the asynchronous techniques. From this kernel, several techniques have been
derived, known as the ABT family. They differ in the way they store nogoods, but they all use additional
communication links between unconnected agents to detect obsolete information. These techniques start from a
common core (called the ABT kernel) which can lead to some of the known techniques, including the algorithm
of Asynchronous Backtracking, by means of eliminating the obsolete information among agents.

Several solutions for the elimination of the old information among agents were suggested in [2], such as
adding temporary links. A first way to remove obsolete information is to add new communication links to allow
a nogood owner to determine whether this nogood is obsolete or not. These added links were suggested in the
original ABT algorithm.

A second solution (called by its authors ABTtemp, in [2]) consists in temporarily keeping those links between
the agents that cannot determine if an information is outdated or not. This algorithm adds new links between
the agents during the search, same as ABT. The difference is that new links are temporary. A new link is
maintained until a fixed number of messages have been exchanged through it. After that, it is removed.

Different values for the number of messages are investigated in [7]. These values are either statically
determined (before the run) or dynamically determined during runtime. A dynamical solution for determining
the number of necessary messages for maintaining a connection is suggested in [7]. The first experiments show a
better efficiency in comparison with the standard Yokoo version. The dynamic solution is based on determining
the outdated nogood message flow and using that information for determining the number of messages.

Starting from the dynamical solution for determining the necessary number of messages needed for keeping
a temporary link, in [8] is suggested a new hybrid method for eliminating the outdated information between

∗Faculty of Engineering of Hunedoara, ”Politehnica” University of Timisoara, Romania (ionel.muscalagiu@fih.upt.ro).
†Faculty of Mathematics and Informatics, West University of Timisoara, Romania (hpopa@info.uvt.ro)
‡Faculty of Mathematics and Informatics, West University of Timisoara, Romania (vnegru@info.uvt.ro).

59

60 I. Muscalagiu, H.E. Popa and V. Negru

the agents. This solution consists in transforming some of the temporary links into permanent links, based on
the information about the outdated message flow. Applying this method to the ABT kernel, we can obtain a
new hybrid technique, that takes what’s best from the two derived techniques: ABT and ABT temporary link.
A new dynamical solution for determining the number of necessary messages for maintaining a connection is
suggested in this paper in the context of processing all the messages.

In a previous research presented in [8], the evaluation of the effect of temporary links is done using a
particular problem: the problem of coloring a graph in the distributed versions.

The evaluation of the asynchronous search techniques depends on at least two factors: the types of problems
used at the evaluation and the units of measurement used. There are a few types of problems about the
evaluation in the DisCSP literature: the distributed problem of the m-coloring of a randomly generated graph
and the randomly generated (binary) CSP. These problems are characterized by the 4-tuple (n,m,p1,p2), where:
n is the number of variables; m is the uniform domain size; p1 is the portion of the n * (n - 1) /2 possible
constraints in the constraint graph; p2 is the portion of the m*m value pairs in each constraint that are rejected
by the constraint [11].

It must be mentioned that the randomly generated binary CSP are the most suitable for the evaluation,
because they allow different densities for the constraints graph and they have many direct applications in real
practice. Therefore, a complete evaluation supposes the selection of a varied class of problems - the more
randomly chosen sets of data or the choice of sets of data which allow varied densities for the constraints graph.
In this paper, extensive evaluation of the asynchronous search techniques with temporary links is conducted on
randomly generated networks of constraints.

In a previous research [8], the evaluation of the effect of temporary links is done using NetLogo environment.
NetLogo is a programmable modeling environment, which can be used for simulating certain natural and social
phenomena [14]. Also, the NetLogo is a programming environment with agents that allows the implementation
of the asynchronous techniques ([14], [16], [17]).

The evaluations from [8] were implemented using certain particularities, supplied by NetLogo, related
to the asynchronous run of the agents. The agents work with the specific command ”ask-concurrent”. A
command like this will allow launching the message treating routine, which is specific to each agent. Of course,
each agent works asynchronously with the messages, but at the end of a command’s execution there is a
synchronization of agents’ execution, synchronization that particularizes, in a way, the implementations being
used. The evaluations performed in [8] are realized in particular conditions, which don’t affect the generality of
the results.

In order to make such estimation, in this paper these techniques are implemented in NetLogo. The im-
plementation and evaluation is done using the extended model suggested in [9], model that is called DisCSP-
NetLogo. Implementation examples for the ABT family can be found on the website [17]. In [9] a general
implementation and evaluation model with synchronization and support for message management in Netlogo,
for the asynchronous techniques is proposed. This model will allow the use of the NetLogo environment as a
basic simulator for the study of asynchronous search techniques. This model can be used in the study of the
agents’ behavior in several situations, like the priority order of the agents, the behavior in the synchronous and
asynchronous case.

2. The Framework. This paragraph presents some notions related to the DisCSP modeling, ABT algo-
rithm [12], [13], [6] and ABT family, [2].

2.1. The Distributed Constraint Satisfaction Problem. The Distributed Constraint Satisfaction
Problem (DisCSP) has been formalized in [12], [13].

Definition 2.1. The model based on constraints CSP - Constraint Satisfaction Problem, existing for
centralized architectures, is defined by a triple (X, D, C), where: X={x1,...,xn} is a set of n variables; whose
values are taken from finite domains D= {D1, D2,...,Dn}; C is a set of constraints declaring those combinations
of values which are acceptable for variables.

The solution of a CSP implies to find an association of values for all the variables that satisfy all the
constraints.

Definition 2.2. A problem of satisfying the distributed constraints (DisCSP) is a CSP, in which the
variables and constraints are distributed among autonomous agents that communicate by exchanging messages.
Formally, DisCSP is defined by a 5-tuple (X, D, C, A, φ), where X, D and C are as before, A = {A1,...,Ap}
is a set of p agents, and φ : X −→ A is a function that maps each variable to its agent.

The effect of temporary links in randomly generated networks of constraints 61

In this article we will consider that each agent Ai has allocated a single variable xi, thus p = n. Also, we
assume the following communication model [12], [13]:

• agents communicate by sending messages. An agent can send messages to other agents iff the agent
knows the addresses of the agents.

• the delay in delivering a message is finite, although random. For transmission between any pair of
agents, messages are received in the order in which they were sent.

The Asynchronous Backtracking algorithm uses 3 types of messages:

• the ok message, which contains an assignment variable-value, is sent by an agent to the constraint-
evaluating-agent in order to see if the value is right.

• the nogood message, which contains a list (called nogood) with the assignments wherefore a looseness
was found, is sent in case the constraint-evaluating-agent finds an unfulfilled constraint.

• the add-link message, sent to announce the necessity to create a new direct link, caused by a nogood
appearance.

Definition 2.3. Two agents are connected if there is a constraint among the variables associated to them.
Agent Ai has a higher priority than agent Aj if Ai appears before Aj in the total ordering. Agent Ai is the
value-sending agent and agent Aj the constraint-evaluating agent.

Definition 2.4. The agent − view list belonging to an agent Ai is the set of the newest associations
received by the agent for the variables of the agents to whom it’s connected.

Definition 2.5. The nogood list is a set of associations for distinct variables for which an inconsistency
was found (an unsatisfied constraint).

The agent− view list together with the stored nogood values constitutes the working context of each agent,
depending on them the agent makes decisions.

Definition 2.6. A nogood list received by agent Ai is consistent for that agent, if it contains the same
associations as agent− view for all the variables of the parent agents Ak connected with Ai.

Definition 2.7. A nogood message is outdated if it contains a nogood list that isn’t consistent with the
receiver’s agent context.

ABT requires links to be directed. A constraint causes a directed link between the two constrained agents:
the value-sending agent, whence the link departs, and the constraint-evaluating agent, to which the link arrives.
When the value-sending agent makes an assignment, it informs the constraint-evaluating agent, which tries to
find a consistent value. If it cannot, it sends back a message to the value-sending agent to cause backtracking.
To make the network cycle free there is a total order among agents, which is followed by the directed links. In
this article the lexicographical order is used.

Each agent keeps its own agent view and nogood store. Considering a generic agent, its own agent view is
the set of values that are assigned to agents connected to it by incoming links. A nogood is a subset of agent
view. If a nogood exists, it means the agent cannot find a value from the domain consistent with the nogood.
When agent Ai finds its agent-view including a nogood, the values of the other agents must be changed. The
nogood store keeps nogoods as justifications of inconsistent values. Agents exchange assignments and nogoods.
When a random agent makes an assignment, it informs those agents connected to it by outgoing links. The
agent always accepts new assignments, updating its agent-view accordingly. When it receives a nogood, it
accepts it if the nogood is consistent with the agent’s own agent view, otherwise it is discarded as obsolete
(outdated nogood messages). An accepted nogood is added to the agent’s nogood store to justify the deletion
of the value it targets. When the agent cannot take any value consistent with its agent-view, because of the
original constraints or because of the received nogoods, new nogoods are generated as inconsistent subsets of
the agent-view, and are sent to the closest agent involved, causing backtracking. The process terminates when
achieving quiescence, meaning that a solution has been found, or when the empty nogood is generated, meaning
that the problem is unsolvable.

2.2. The ABT Family. Starting from the algorithm of Asynchronous Backtracking (ABT), in [2], several
derived techniques were suggested, based on this one and known as the ABT family. They differ in the way
that they store nogoods, but they all use additional communication links between unconnected agents to detect
obsolete information. These techniques are based on a common core (called ABT kernel) hence some of the
known techniques can be obtained, including the algorithm of Asynchronous Backtracking, by eliminating the
old information among the agents. In [2] the starting point is a simple procedure that includes the main
characteristics of the asynchronous search algorithms. Starting from this procedure, which forms the unifying

62 I. Muscalagiu, H.E. Popa and V. Negru

framework, one can reach the known algorithms or variants that are close to them: Asynchronous Backtracking
(ABT), Distributed Dynamic Backtracking (DisDB), Distributed Backtracking algorithm (DIBT) [2], [5], [12].

The ABT kernel algorithm requires, like ABT, that constraints are directed - from the value-sending agent
to the constraint-evaluating agent - forming a directed acyclic graph. Agents are ordered statically in agreement
with constraint orientation. Agent i has higher priority than agent j if i appears before j in the total ordering.
In this article we will consider the lexicographical order for the agents, order used also in the case of the
Asynchronous Backtracking algorithm. Considering a generic agent self, Γ−(self) is the set of agents constrained
with self appearing above it in the ordering, also called the set of the parents of self . Conversely, Γ+(self) is
the set of agents constrained with self appearing below it in the ordering, also called the set of the childrens of
self .

The ABT kernel algorithm is a new ABT-based algorithm that does not require to add communication
links between initially independent agents. The ABT kernel algorithm is sound but may not terminate (the
ABT kernel may store obsolete information). In [2] were suggested several solutions for the elimination of the
old information among agents, solutions that are summarized hereinafter.

A first approach to remove obsolete information is to add new communication links to allow a nogood owner
to determine whether this nogood is obsolete or not. These added links were suggested in the original ABT
algorithm.

A second way to remove obsolete information is to detect when a nogood could become obsolete. In that
case, the hypothetically obsolete nogood and the values of unrelated agents are forgotten. These two alternative
ways lead to the following four algorithms:

1. Adding links at preprocessing: ABTall. This algorithm adds all the potentially useful new links during
a preprocessing phase. New links are permanent.

2. Adding links during search: ABT . This algorithm adds new links between agents during search. A
link is requested by self when it receives a Back message containing unrelated agents above self in the
ordering. New links are permanent.

3. Adding temporary links: ABTtemp. This algorithm adds new links between agents during search, as
ABT. The difference is that new links are temporary. A new link is maintained until a fixed number of
messages have been exchanged through it.

4. No links: DisDB. No new links are added among the agents. To achieve completeness, this algorithm
has to remove obsolete information in finite time. To do so, when an agent backtracks, it forgets all
nogoods that hypothetically could become obsolete.

In [8], we proposed a new solution for combining the two methods for eliminating the outdated information,
solution that will lead to the fifth hybrid algorithm:

5. Adding temporary (dynamic) links: ABT with permanent and temporary links (ABTTPL). This new
algorithm adds new links during the search. A part of these links are temporary, they are kept until
a certain number of messages is exchanged (number determined dynamically during runtime). In ex-
change, some temporary links are transformed in permanent links, based on some information regarding
the maximal flow of outdated nogood values.

3. Asynchronous Backtracking with temporary and permanent links. ABT with permanent and
temporary links requests links dynamically, exactly like ABT. When a new link is set from agent i to j, it is
maintained for a fixed number k of Info messages going from Ai to Aj . After this number of messages has been
sent, the link is removed and agents Ai and Aj become disconnected. The number k of messages for a link is
known a priori by both agents.

Some solutions for determining the number k of messages exchanged by the agents with temporary links
are suggested and analyzed in [7]. The solutions presented are of two types:

1. statical solutions - for which the number of messages is fixed and doesn’t change during the run time;
2. dynamical solutions - for which the number of messages varies during the run time.

The suggested statical solutions are based on determining a value for k common for all the agents, which
is determined statically, at the beginning. The statical version supposes the construction of the induced graph
associated to the problem (in a preprocessing phase). To each DisCSP problem we can associate a constraint
graph, in which the nodes are agents/variables, and the edges are given by the existence of the constraints
between agents/variables. From this constraint graph we can obtain the induced graph, corresponding to the
existing order, by adding links between the parents of each node (the nodes from Γ−(self)), if those links don’t

The effect of temporary links in randomly generated networks of constraints 63

already exist. That graph is built as in [4]: agents (graph nodes) are processed from last to first, when an
agent (graph node) is processed, all its parents (related agents before it in the ordering) are connected by new
links if they were not connected before.

Based on this graph, we can determine a fixed number of messages k for all agents, as follows: the number
of messages will be equal to the greatest value of the numbers of neighbors of each agent in the induced graph.

The dynamic versions proposed in [7] and [8] are based on using the information regarding the outdated
nogood message flow. That information changes during the run time. As we know, when the agent receives a
nogood, it is accepted if it is consistent with its own agent view, otherwise it is discarded as obsolete (outdated
nogood messages). The outdated message flow also increases because the agents are not informed (because
of the nonexistence of the supplementary links). Thus, each agent uses a supplementary data structure, for
retaining the number of outdated nogood messages encountered at a given time. Those values are used for
the determination of the number of messages exchanged for each temporary link. Practically, that value is the
greatest number of nogood messages received at a given time.

Definition 3.1. For each agent we have a local list of counter variables for counting the number of outdated
messages received (named COldNogood). Let MaxNrOldNogood be the maximum value from the COldNogood

list.
So, we start with a fixed value for the number of messages, equal to the largest number of neighbors from

the induced graph. This initial value is updated during the run time, using the largest value of the number of
outdated messages, from all the agents.

The experiments presented in [7] and [8] show that the dynamical solution for determining the number of
messages is the most efficient.

The solution suggested in [8] consists in transforming some temporary links in permanent links. In fact,
the temporary links with those agents with which Ai has exchanged a maximal number of outdated nogood
messages are transformed in permanent links. For each agent is determined the agent Aj with which Ai had
exchanged the maximal number of outdated messages (item Aj COldNogood = MaxNrOldNogood), among
those with which it had temporary links. The temporary link that exists with that agent will be transformed
into a permanent link.

The agents exchange among themselves the values of MaxNrOldNogood in order to determine and use
the maximum one. That solution supposes that each agent knows the maximum number of outdated messages
received by each agent (MaxNrOldNogood). A solution is based on the transmission of MaxNrOldNogood of
each agent to the ones it is connected with, in the moment of the transmission of an info or nogood message.
The idea is presented in [8]. Each agent, in the moment of transmitting a message, attaches the value for the
maximum flux of outdated messages, value stored in MaxNrOldNogood. In exchange, at the receiving of a
message from an agent Ak that contains the maximum value of it, SenderMaxOldNogood will update the value
of the MaxNrOldNogood.

In figure 3.1 we show those changes required in the ABT technique (version derived from the core ABT
kernel), based on the method of determining temporary and permanent links. We obtain a new hybrid technique,
technique that uses whats best from both of the derived techniques: ABT and ABT temporary link. The lines
from the figure 3.1 marked with two digits are additional to the algorithm from [2] and the ones marked with
*** contain modifications to those from the cited algorithm.

The obtaining of the version with temporary and permanent links supposed many changes in the basic ABT
kernel algorithm.

First of all, each agent will use two extra sets Γ+
e (self) and Γ−

e (self), for the identification of the child
and parent agents that appear because of the temporary links. In procedure ABTkernel(), in lines 1.1. and
1.2. they are determined. Also, it is necessary to introduce two data structures CMessageT empLink and
COldNogood. The first structure will be used by an agent Ai to retain the number of info messages transmitted
for each temporary link. The second structure is used for counting the number of received outdated messages.

The new algorithm needed the introduction of a fourth message RemoveL, which notified a child agent
about the canceling of a temporary link between two agents. Practically, the child agent will cancel the Sender
agent from the list of its parents. The required changes appear in line 9.2. from procedure ABTkernel() and
procedure RemoveLink(), (a newly added routine).

Third after selecting a new value and announcing the child agents about the new selection, it is necessary
that the verification of temporary links determines how many of them remain actual. This thing is done in
procedure CheckAgentV iew(msg) line 3.1, by calling a new procedure named CheckRemoveLink(). That

64 I. Muscalagiu, H.E. Popa and V. Negru

routine verifies, for child agents from Γ+
e (self), if the maximum number of messages that are transmitted for

that link has been reached.

procedure ABTkernel()
1 myValue ←empty; end ← false;

1.1 Set Γ+
e (self)← ∅ ***

1.2 Set Γ−
e (self)← ∅ ***

2 CheckAgentView();
3 while (not end) do
4 msg←getMsg();
5 switch(msg.type)
6 Info : ProcessInfo(msg);
7 Back : ResolveConflict(msg);
8 Stop : end ← true;
9.1 AddL : SetLink(msg);
9.2 RemoveL: RemoveLink(msg); ***
end

procedure CheckAgentView(msg)
1 if not consistent(myValue;myAgentView) then
2 myValue← ChooseValue();
3 if (myValue) then

for each child∈ Γ+(self) do
sendMsg:Info(child;myValue);

3.1 CheckRemoveLink() ***
4 else Backtrack();
end

procedure ProcessInfo(msg)
1 Update(myAgentView; msg.Assig);
2 CheckAgentView();
end

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood;Γ−(self) ∪ {self}) then
2.1 CheckAddLink(msg)
3 add(msg:Nogood;myNogoodStore);
4 myValue ← empty; CheckAgentView();
5.1 else

if Coherent(msg.Nogood; self) then
SendMsg:Info(msg.sender; myValue);

5.2 Replace item Sender COldNogood with
item Sender COldNogood + 1 ***

end

procedure SetLink(msg)
1 add(msg.sender;Γ+(self));

2 add(msg.sender;Γ+
e (self)); ***

3 sendMsg:Info(msg.sender; myValue);
end

procedure CheckAddLink(msg)
1 for each (var ∈ lhs(msg.Nogood))
2 if not (var ∈ Γ−(self)) then
3 sendMsg:AddL(var,self);

4 add(var;Γ−(self)); add(var;Γ−
e (self)); ***

6 Update(myAgentView; var ← varValue);
end

procedure RemoveLink(msg) ***
1 remove(msg.sender;Γ−(self));

2 remove(msg.sender;Γ−
e (self));

end

procedure CheckRemoveLink() ***

1 for each child ∈ Γ+
e (self)

2 if (item child COldNogood = MaxNrOldNogood) then
replace item Child FlagList with 1;

3 if (item child CMessTemporaryLink ≥ MaxNrOldNogood
and item Child FlagList = 0) then

4 remove(child;Γ+(self));

5 remove(child;Γ+
e (self));

6 sendMsg:RemoveL(child,self);
7 Update(myAgentView; var child ← unknown);
end

procedure Backtrack()
1 newNogood←solve(myNogoodStore)
2 if (newNogood = empty) then
3 end ← true; sendMsg:Stop(system);
4 else
5 sendMsg:Back(newNogood, xj);

/*where xj has the lowest priority in V */
6 Update(myAgentView;rhs(newNogood)←unknown);
7 CheckAgentView();
end

function ChooseValue()
1 for each v∈D(self)not eliminated by myNogoodStore do
2 if consistent(v; myAgentView) then

return (v);
3 else

add(xj = valj) self 6= v;myNogoodStore);
/*v is inconsistent with xj ’s value */

4 return (empty);
end

procedure Update(myAgentView; newAssig)
1 add(newAssig;myAgentView);
2 for each ng ∈ myNogoodStore do
3 if not Coherent(lhs(ng);myAgentView) then

remove(ng;myNogoodStore);
end

function Coherent(nogood; agents)
1 for each var ∈nogood ∪ agents do
2 if nogood[var] 6= myAgentView[var] then

return false;
3 return true;
end

Fig. 3.1: The ABT algorithm with temporary and permanent links.

The effect of temporary links in randomly generated networks of constraints 65

4. Experimental results. The evaluation of the asynchronous search techniques depends on at least two
factors: the types of problems used for the evaluation and the metrics of measurement used. There are a few
types of problems used for evaluation in the DisCSP literature:

• the distributed problem of the m-coloring of a randomly generated graph, characterized by the number
of nodes/agents, k=3 colors and the m-number of connections between the nodes/agents. Two types
of problems are defined: sparse problems (having m=n x 2 connections) and dense problems (m=n x
2.7).

• The randomly generated (binary) CSPs are characterized by the 4-tuple (n,m,p1,p2), where: n is the
number of variables; m is the uniform domain size; p1 is the portion of the n * (n - 1) /2 possible
constraints in the constraint graph; p2 is the portion of the m*m value pairs in each constraint that
are disallowed by the constraint. That is, p1 may be thought of as the density of the constraint graph,
and p2 as the tightness of constraints.

4.1. The randomly generated DisCSP. A randomly generated DisCSP is an example of a homogeneous
unstructured problem [11]. These problems have a number of variables with a fixed domain. Variables belonging
to constraints are chosen randomly. Specifically, we implemented and generated in NetLogo both solvable and
unsolvable randomly generated DisCSPs. These problems had one variable per agent so all constraints are
between variables belonging to different agents (inter-agent constraints). Specifically, a tuple < n, d, p1, p2 >

was generated, where n is the number of variables, d is the domain size of all variables, p1 is the constraint
density and p2 is the constraint tightness.

We implement in NetLogo a random instance generator in two steps [17]:

S1: We select with repetition nr(C) = p1
n(n−1)

2 random constraints. Each random constraint is formed by
selecting without repetition 2 of n variables.
S2: For each constraint we uniformly select without repetition nr(v) = p2 · d

2 incompatible tuples of values, i.e.
each constraint relation contains exactly 1− p2 · d

2 compatible tuples of values.
Implementation examples for the random instance generator can be found on the website [17].
We used binary constraints with the constraint density controlling how many constraints were generated

and the constraint tightness determining the proportion of value combinations forbidden by each constraint.
For example, a constraint density of 0.4 would generate 40% of the possible constraints in the problem (i.e. (n*
(n-1)/2) * 0.4 where n is the number of variables) and a constraint tightness of 0.5 would prevent 50% of the
possible value combinations of variables involved in a constraint from satisfying the constraint. Such uniform
random constraints networks of n variables, k values in each domain, a constraints density of p1 and tightness
p2, are commonly used in experimental evaluations of DisCSP algorithms [2], [3], [6].

The experiments were conducted on networks with 15-20 agents (n = 15 or n=20) and 10 values (k = 10).
Three density parameters were used, p1 = 0.2, p1=0.4 and p1 = 0.5. In many cases a density of p1 = 0.2 or 0.3
was used to represent sparse constraint networks and a density of p1 = 0.4 or p1=0.5 used for medium networks.
The value of p2 was varied between 0.3 to 0.5. This creates problems that cover a wide range of difficulty, from
easy problem instances to instances that take several CPU minutes to solve. For every pair (p1,p2) in the
experiments we present the average over 100 randomly generated instances (for each version we carried out
a number of 100 trials, retaining the average of the measured values). Specifically, we tested the random
classes: < 20; 10; 0.2; 0.3 >, < 20; 10; 0.4; 0.7 >, < 20; 10; 0.2; 0.3 >,< 20; 10; 0.2; 0.5 >, < 20; 10; 0.5; 0.3 >,
< 20; 10; 0.5; 0.5 > (100 solvable and unsolvable instances).

Another experiment is done for networks with n=15 agents, p1=0.4 (medium constraint networks) where
the tightness value p2 varies between 0.1 and 0.9 to cover all ranges of problem difficulty. This aimed to test
all algorithms near the phase transition region where some problem instances are very difficult to solve [6], [11].

4.2. Evaluation of temporary links for the ABT family. In order to make such estimation, the
families of ABT techniques are implemented in NetLogo [14], [16], [17]. The implementation and evaluation
is done using the two models proposed in [9].

In order to make the evaluation of the asynchronous search techniques, the message flow was counted i.e. the
quantity of info (ok) and back (nogood) messages exchanged by the agents, the number of checked constraints
i.e. the local effort made by each agent, and the number of nonconcurrent constraints checks (defined in [6],
noted with ncccs) necessary for obtaining the solution.

Asynchronous techniques use some message processing routines. Those procedures process sequentially or
in packages the messages that are in the message queues. Typically, each agent extracts one or more messages

66 I. Muscalagiu, H.E. Popa and V. Negru

from its communication channel and calls the appropriate message processing routine. In this paper we analyze
two classes of implementations:

• A version in which the messages are read and processed sequentially, one by one [2] -noted with ABT1.
In this version, we eliminate the redundant and outdated messages of the info type;

• A version of the ABT family with complete processing of messages: each agent treats entirely the
existing messages in its message queue- noted with ABT2.

We will present in this paragraph a protocol for message management for the ABT technique [3], [10] in
the context of temporary links. This protocol establishes the order in which the messages are treated and the
moment in which is tried the association of a new value. Also, this protocol allows complete or partial processing
of the messages, by means of the use of the msize parameter, which stands for the number of messages read at
a given time from the message queue. The msize parameter can take values between 1 and the length of the
message queue. In the case that msize is 1, the sequential message processing solution is obtained.

The protocol presented here supposes the following:
P1. It is processed message by message:

• if it is of the info type, the local work context is updated (agent-view).
• the local counter MaxNrOldNogood is updated with SenderMaxOldNogood (received from another
agent).

• if the message is of the back type, it’s stored and verified if it is outdated. If it is outdated, an
ok message is returned to the sender to inform him of that. A part of the back messages are thus
rejected.

• if the message is of the addlink or removelink type then it’s treated normally
P2. The current agent value is saved.
P3. The work context is updated, updating the nogood values.
P4. The routine check-agent-view is called.
P5. The neighboring agents are notified if the agent has kept its old value.

Starting from this protocol we propose a message management routine. This version is presented in fig.
4.1. As we can see in fig. 4.1 each agent can process all the messages until the message queue is emptied, or
exactly as many messages as there are in the moment of the call, operation accomplished with the lines 1 and
1’.

The behaviors of several asynchronous techniques are investigated in two cases: the agents execute asyn-
chronously the processing of received messages (the real situation from practice) and the synchronous case where
the agents’ execution is synchronized.

Seven implementations are done corresponding to the version presented:
• Variants Yokoo based on the asynchronous model from [9]: ABT-Y1 (one message), ABT-Y2 (complete
processing of messages).

• Versions that determine statically the number of messages (named ABT-S1 and ABT-S2, corresponding
to the static solutions presented in the previous paragraph).

• Versions that determine dynamically the number of messages: ABT-TPL1 (one message), ABT-TPL21

(complete processing messages - the solution proposed in this article) and ABT-TPL22 (complete pro-
cessing message - solution proposed in [3]) . These versions are corresponding to the ABT algorithm
with temporary and permanent links presented in the previous paragraph.

Results appear in table 4.1, where we report the number of checked constraints (Constr.) the number of
nonconcurrent constraint checks (Ncccs) and the total number of messages exchanged(Tmess), averaged over
100 executions.

In figures 4.2 and 4.3 are presented the results of other experiments for n=15 agents and p1=0.4 (medium
constraint networks) where the tightness value p2 varies between 0.1 and 0.9 to cover all ranges of problem
difficulty. This aimed to test all algorithms near the phase transition region where some problem instances
are very difficult to solve [6], [11]. Figure 4.2 shows the computational effort, the number of nonconcurrent
constrain checks, for all three versions of ABT. Figure 4.3 presents the total number of messages sent by the
algorithms in the same run.

As known, the quantity of constraints checked evaluates the local effort done by each agent, but the number
of nonconcurrent constraint checks count computational effort of concurrently running agents only once during
each concurrent running instances citemeis1. Analyzing the results from table 4.1, one can notice that the

The effect of temporary links in randomly generated networks of constraints 67

to message-manage [msize]
set nrm 0

1 while [not empty? message-queue and nrm < msize] or
1’ while [not empty? message-queue] ***
[

set msg retrieve-message
if (first msg = ”stop”)
[stop]

if (first msg = ”info”)
[Update MyContext with msg
[Update MaxNrOldNogood with SenderMaxOldNogood] // if max COldNogood < SenderMaxOldNogood

if (first msg = ”back”)
[Update MaxNrOldNogood with SenderMaXOldNogood] // if max COldNogood < SenderMaxOldNogood
[ifelse (Not Is-obsolete msgNogood Sender)
[Store msg to BackSet] //builds the list containing the received back messages
[SendInfo msg]
// if it is outdated the sender agent is announced according to the Is-Obsolete procedure
]

if (first msg = ”addl”)
[SetLink msg]

if (first msg = ”removel”)
[RemoveLink msg]

set nrm nrm + 1
]
UpdateContextInfo
Check-agent-view
If Not empty(BackSet)
[ProcessMessageBackSet]

end

Fig. 4.1: The message-manage procedure for the message management in the case of the techniques from the
ABT family

Table 4.1: The results for ABT2 versions (n=20)

n = 20 agents
p1= 0.2 p1= 0.5

p2=0.3 p2=0.5 p2=0.3 p2=0.5

ABT-Y2

TMess 28 238100 89288 279378
Constr. 1353 4434588 2275457 3495841
Ncccs 499 1324866 357750 405249

ABT-S2

TMess 78 570448 110475 273908
Constr. 1380 14813543 3274523 3876091
Ncccs 504 3883867 421890 438485

ABT-TPL21

TMess 76 229272 79199 253178
Constr. 1373 4420864 1982961 3270209
Ncccs 500 1313842 322808 392978

ABT-TPL22

TMess 71 278654 91054 214715
Constr. 1422 5920563 2582961 4363385
Ncccs 533 1454423 362718 491903

dynamical solution of ABTTL reduces the local effort made by the agents. In case of problems with low
density, the two solutions require approximatively the same costs (messages and global effort). An explanation
is given by the fact that no temporary links appear, the only differences are caused by the delays in supplying
the messages. The more the difficulty of the problems and the density of the constraint graph grow (p2=0.5 or
p1=0.5), the more the costs of the dynamical solutions decrease. But, as the difficulty of the problems increases
(n=20 agents, p2=0.5), the static solution ABTS2 required much greater efforts compared to the dynamical
variant ABT-TPL21.

In the case of the message flow, the solutions with temporary links require a smaller flow of messages.
Unfortunately, with the increase of the number of agents and the difficulty of the problems (p2=0,5) the static
solutions for the temporary links require a much greater flow of messages. This thing is caused also because the
temporary links aren’t kept long enough to detect obsolete information.

68 I. Muscalagiu, H.E. Popa and V. Negru

Fig. 4.2: The number of nonconcurrent constraint check for the ABT techniques.

Fig. 4.3: Total number of messages sent for the ABT technique

As regarding the two dynamic solutions that use two different methods of treating the message in packages,
the variant proposed here surpasses the one proposed in [3]. There can be observed situations in which the
dynamical solution ABTS22 is surpassed by the Yokoo solution.

Regarding the effort done by the agents,for the harder problem instances, ABT-TPL21 outperforms ABTY
by a factor of 1.1. Unfortunately, for the difficult problems we can observe a network load for the all solutions.

A version in which the messages are read and processed sequentially, one by one [2] - noted with ABT1

is evaluated. This solution supposes a message treatment routine, which extracts sequentially each message,
identifies its type and calls the appropriate processing routines. In this routine, for message processing, we
eliminate the redundant and outdated messages of the info type.

In the case of the versions in which the messages are read and processed sequentially, one by one (noted
with ABT1) the results appear in table 4.2. These variants behaved similarly.

The results in the synchronous case where the agents’ execution is synchronized appears in table 4.3 In
other words, the agents perform a computing cycle in which they process a message from a message queue in the
synchronous case. After that, a synchronization is done waiting for the other agents to finalize the processing

The effect of temporary links in randomly generated networks of constraints 69

Table 4.2: The results for ABT1 versions - one message (n=20)

n = 20 agents
p1= 0.2 p1= 0.4
p2=0.3 p2=0.7

ABT-Y1

TMess 62 3290
Constr. 2303 145422
Ncccs 761 16362

ABT-S1

TMess 63 3392
Constr. 2330 153645
Ncccs 766 18049

ABT-TPL1

TMess 60 3220
Constr. 2209 143001
Ncccs 732 16174

of their messages. For this case we also count the number of cycles necessary obtaining the solution (Ncycles),
which is a measure that could approximate the global effort (similar to NCCCs).

Table 4.3: The results for ABT1 versions - one messages (the synchronous case)

n = 20 agents
p1= 0.2 p1= 0.4
p2=0.4 p2=0.7

ABT-Y1

TMess 55 2474
Constr. 2318 94958
Ncccs 633 24176
Ncycles 14 390

ABT-S1

TMess 58 2079
Constr. 2082 85439
Ncccs 701 22746

Nrcycles 14 370

ABT-TPL1

TMess 55 2258
Constr. 1949 89542
Ncccs 622 23312

Nrcycles 13 380

In this case, also we notice that the dynamical solution requires a lower flow of messages and also a lower
global effort.

A general remark is that the static solutions applied to easy problems (low density or p2<0.4) require
similar costs or even lower than all the other solutions. This thing is caused by the fact that the management
of temporary links determines an extra overhead.

Unfortunately, analyzing the sets of results for certain instances (during runtime) we remarked the existence
of problems for which the versions with temporary links (static versions) require very high costs. Although, we
should specify that the number of those cases was not very high, not influencing, in the end, the results.

4.3. Discussion. It is interesting to see how many such links can be added by ABT during the search for
a solution. The actual number will obviously depend on the instance to be solved, in [2] an estimate of the worst
case is made, as follows: When a wipe out occurs on an agent Ai, the agent i builds a nogood by resolution of
it’s nogood store, and sends the obtained nogood to the agent Aj with the lowest priority in this set. When
agent Aj receives the nogood, it checks the compatibility of the nogood with its own agent view. But, since
this nogood can contain variables (xk), unknown for agent Aj , agent Aj will ask the agents Ak to add a link
from k to j. In the worst-case, a wipe out occurring at agent Ai will generate a nogood involving the whole set
Γ−(i) of the agents linked to i, and preceding i in the agent ordering (the parents of node). More generally,
when traveling back to all the ascendent agents, a nogood can lead to the addition of links between each pair
of agents in Γ−(i), leading to a total number of links equal to |Γ−(i)| (|Γ−(i)| + 1) /2, see [2] for details.

The estimate presented previously was done in [2] for the worst case. In order to see, though, for the chosen
data sets, how many links appear, during the experiments was counted also the number of temporary links.
In figure 4.4 is presented the number of links for the chosen types of problems. An average was performed for
all the runs and classes of problems. Surprisingly, this average is far from the values of the worst case. For

70 I. Muscalagiu, H.E. Popa and V. Negru

problems in which p2 has small values (the constraint tightness) the number of temporary links is small, but
for large values of p2≥4 the number of temporary links is almost the same.

Fig. 4.4: The number of temporary links for ABT2 versions.

5. Conclusions. In this paper we examined the effect of temporary links for the random binary constraints
problem. Experiments with asynchronous search techniques are standardly conducted on randomly generated
networks of constraints. Experimental results illustrate that the dynamical solution for the temporary links has
a better efficiency in comparison with the Asynchronous Backtracking.

A new dynamical solution for determining the number of messages necessary for maintaining a connection is
proposed in this paper, the experiments show a better efficiency in comparison with the standard Asynchronous
Backtracking.

The new member presumes transforming some of the temporary links in permanent links, based on infor-
mation relative to the outdated message flux received by each agent.

From the experimental analysis we conclude that statical solutions proposed are not fitted for the case of
networks with many links because they require a greater message flux. On the other hand, we remark a smaller
general computing effort compared with the classical solution from [2], [12]. In conclusion it is recommended
the use of dynamical variants that use message management and the agents work asynchronously.

A last comparison between the cases of processing the messages sequential or in packages, we can notice
a neat differentiation between the dynamic solution and the classic or static solutions. The processing of all
messages allows the agent to receive much faster the maximums of the other agents, compared to the situation
in which it treats one message.

The scale-free graphs in complex networks, recently introduced by Barabasi and Albert [1], have become
a very popular interdisciplinary research topic. As a future research, we wish to analyze temporary links in
scale-free graphs, since there was little research in network structure for DisCSP.

REFERENCES

[1] A. L. Barabasi and A. L Albert, Emergence of scaling in random networks, Science, 286 (1999), pp. 509-512.
[2] C. Bessiere, I. Brito, A. Maestre and P. Meseguer,Asynchronous Backtracking without Adding Links: A New Member

in the ABT Family, Artificial Intelligence, 161:7-24, 2005.
[3] I. Brito, P. Meseguer, Synchronous, asynchronous and hybrid algorithm for DisCsp. In Workshop on Distributed Con-

straints Reasoning, Toronto, 2004.
[4] R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence, 34(1998),

pp. 1–38.
[5] Y. Hamadi, C. Bessiere and J. Quinqueton, Backtracking in distributed constraint networks. In Proceedings ECAI’98,

Brighton, UK, 1998, pp. 219–223.
[6] A. Meisels, Distributed Search by Constrained Agents: algorithms, performance, communication, Springer Verlag, London,

2008, pp. 105–120.

The effect of temporary links in randomly generated networks of constraints 71

[7] I. Muscalagiu, H.E. Popa and M. Panoiu, Determining the number of messages transmitted for the temporary links in the
case of ABT Family Techniques. Proceedings of the 7th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, Timisoara, Romania. IEEE Computer Society Press, 2005.

[8] I. Muscalagiu, H.E. Popa and M. Panoiu, Asynchronous Backtracking with temporary and fixed links: A New Hybrid
Member in the ABT Family. Journal of Computer Science INFOCOMP, Brazil, Vol. 5, nr. 2 (2006), pp. 29–37.

[9] I. Muscalagiu, H. Jiang, H.E. Popa, Implementation and evaluation model for the asynchronous techniques: from a
synchronously distributed system to a asynchronous distributed system. Proceedings of the 8th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, IEEE Computer Society Press, 2006, pp. 209–
216.

[10] H.E. Popa, I. Muscalagiu, D.M. Muscalagiu and V. Negru, Experimental analysis of the impact of the message man-
agement in the case of the ABT family. Proceedings of the 9th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, Timisoara, Romania. IEEE Computer Society Press, 2007.

[11] B. Smith Phase transition and the mushy region in constraint satisfaction problems. In Proceedings ECAI’94, Amsterdam,
The Netherlands, 1994, pp. 100–104.

[12] Yokoo, M., Durfee, E. H., Ishida, T., Kuwabara, K. The distributed constraint satisfaction problem: formalization and
algorithms. IEEE Transactions on Knowledge and Data Engineering 10(5), 1998, pp. 673–685.

[13] Yokoo, M., Hirayama, K.Algorithms for Distributed Constraint Satisfaction: A Review. Autonomous Agents and Multi-
Agent System, 3(2), 2000, pp. 198–212.

[14] U. Wilensky, NetLogo itself: NetLogo. Available: http://ccl.northwestern.edu/ netlogo/. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, 1999.

[15] R. Zivan and A. Meisels, Dynamic ordering for asynchronous backtracking on Discsps, Constraints, 11(2-3), 2006, pp. 179–
197.

[16] MAS NetLogo Models-a. Available: http://jmvidal.cse.sc.edu/netlogomas/.
[17] MAS NetLogo Models-c. Available: http://discsp-netlogo.fih.upt.ro/.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 73–83. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

MULTI-AGENT ARCHITECTURE IN SEMANTIC SERVICES ENVIRONMENT

CRISTINA MINDRUTA∗, VICTOR ION MUNTEANU†, VIOREL NEGRU‡, AND CALIN SANDRU§

Abstract. A semantic enabled multi-agent architecture for solving non-linear equations systems by using a service oriented
approach is proposed. The service oriented approach allows us to access already implemented methods for solving complex math-
ematical problems. The semantic descriptions of these services provide support for intelligent agents. The proposed architecture is
a framework with two extension areas, agent society and domain ontology, with possible application in other domains too.

Key words: multi-agent system, non-linear equations systems, semantic services

1. Introduction. The main goal of this paper is to propose a multi-agent architecture for solving non-
linear equations systems. This architecture is designed around a semantic-based solving paradigm supported by
an ontology of service descriptions. That allows us to define a multi-agent expert system in a semantic services
environment.

Similar work has been done in the MONET project [3] which had the aim to provide a set of web services
together with a brokering platform in order to facilitate means of solving a particular mathematical problem.
The semantic representation for the mathematical objects was done using OpenMath [20] (MathML [22] was
cited also).

GENSS (Grid-Enabled Numerical and Symbolic Services) project [1], like MONET, tries to combine grid
computing and mathematical web services using a common open agent-based framework.

In [12] is discussed the matchmaking of semantic mathematical services described using OpenMath.
The architecture we propose is being built based on past experience in designing NESS, a non-linear equa-

tions systems solver, and EpODE, an expert system dedicated to ordinary differential equations. NESS [15] is
an intelligent front-end for solving non-linear equation systems, developed in CLIPS. Starting from the features
of the system to be solved and of the numerical methods, human expert uses domain knowledge (numerical
analysis) and heuristics to choose the most suitable method, to interpret the results (intermediary and final),
and to restart the solving process in the case of failure. NESS uses task oriented reasoning. A MAS architecture
based on UPML has been proposed and instantiated for NESS [18]. EpODE was initially realized as a mono-
lithic expert system [17] and has been re-engineered as a semantic services oriented framework [14]; the solving
methodology is workflow-oriented, being realized by integrating semantic services with process modeling.

While having similar main functional objective with NESS, the architecture proposed in this paper is more
flexible due to the semantic services component and to the new society of agents designed accordingly.

We have designed a multi-agent architecture that will implement a task-oriented solving model, with a
core semantic-based solving paradigm. Typically, multi-agent architecture offers flexibility, scalability and
mobility, important quality attributes when dealing with a large number of software services. The agents in the
architecture have capabilities ranging from semantically searching for services to providing an execution plan
for the given problem. The problem that is to be solved is passed to the multi-agent system as input data. The
expert agents in the system analyse the problem and propose an execution plan in order to find the solution.
The execution plan is ran and constantly monitored (adjustments are made if needed), and the result of the
execution is returned to the user.

The execution plan contains numerical methods which are offered by software services.
We have also designed a semantic services ontology in order to support the semantic-based solving paradigm.

For semantic descriptions we have decided to use WSMO (Web Services Modelling Ontology) [2]. In their
work, Sorathia et al. [19] analyse several ontologies which were used as an approach to service annotation
for discovery, selection, composition, execution and monitoring. Although addressing mainly the challenge of

∗Department of Computer Science, Faculty of Mathematics and Informatics, West University of Timişoara, Timişoara, Romania
(cmindruta@info.uvt.ro).

†Department of Computer Science, Faculty of Mathematics and Informatics, West University of Timişoara, Timişoara, Romania
(vmunteanu@info.uvt.ro).

‡Department of Computer Science, Faculty of Mathematics and Informatics, West University of Timişoara, Timişoara, Romania
(vnegru@info.uvt.ro).

§Department of Computer Science, Faculty of Mathematics and Informatics, West University of Timişoara, Timişoara, Romania
(csandru@info.uvt.ro).

73

74 C. Mindruta, V. I. Munteanu, V. Negru and C. Sandru

semantic interoperability between relevant service ontologies, we may identify, in this comprehensive literature
review providing insight in the state-of-the-art in services ontologies, that WSMO and WSAF [13] are relevant
computational ontologies. WSAF is focused on agent mediation and supports dynamic service selection based
on QoS (non-functional properties). On the other hand, WSMO is focused on service mediation based both on
functional and non-functional properties, allowing more flexibility.

Our approach considers a semantic services context, which is able to offer semantic information useful to the
system of agents. In this context, the proposed multi-agent system uses a specific ontology containing concepts,
relations and axioms defined for the non-linear equations systems domain, and has an extensible database of
semantic descriptions for services implementing numerical methods.

The system implements a core paradigm for solving problems, based on semantic matching between prob-
lem properties and numerical method capabilities. Numerical methods are identified based on their semantic
descriptions that reflect the properties of the problem for which the method is appropriate. The method selec-
tion can be realized by the user based on his own expertise, by the user based on system recommendation and
estimations, or automatically by the multi-agent system.

This core paradigm is included in a more flexible approach to solve the problems, that implies coordinated
activity in the society of agents and with the user. This can result for example in starting to solve a problem with
a numerical method and, from a given step, to continue with another numerical method, based on intermediary
results and performance of the system.

Such a flexibility is provided by the proposed multi-agent architecture and covers a large area of user skills,
from users with simple mathematical skills, for which the system could provide a solution based on its own
expertise, to users with very high mathematical skills, which want to experiment solving new types of problems
and using new numerical methods. The experience gained by the later category of users is also captured by the
multi-agent system in new methods and new characteristics of the existing ones, thus improving its capabilities.

The paper is structured as follows. Motivation and example use cases are covered in section 2. The
conceptual model is covered in section 3. Section 4 is dedicated to the semantic descriptions of the ontology,
services and goals used to support the core solving paradigm. Section 5 presents the proposed multi-agent
architecture, based on the task-oriented model and integrated with the semantic infrastructure. Conclusions
and future work are discussed in section 6.

2. Motivation and use cases. Service Oriented Computing is an emerging computing paradigm in
the context of distributed computing. It is already largely accepted and implemented. For example, Cloud
Computing is one of the most relevant chapter in service oriented computing. In this context a lot of services in
different application domains are available but they are still under-exploited. One of the important challenges
is the automation of discovery and composition of services, supported by semantic technologies. The work
presented here focuses on the modelling and exploiting the domain of non-linear equation systems, but the
presented architecture has flexibility points allowing for its extension to other domains.

We outline here a multi-agent architecture in the context of semantic services intended to provide an
expert system to mathematicians. Assuming that different methods for solving non-linear equation systems are
implemented in services, the proposed system assists the user in using them and exploring new solving methods.

The following examples of possible use cases for non-linear equations systems solver are gradually more
comprehensive.

2.1. Use Case 1 - Solve automatically. The user will provide the non-linear system problem and the
system will present the solution. The user can also provide a time limit for finding the solution or the system
will use a default value. If the system is not able to find a solution in the imposed amount of time, the user
will be informed. The user can establish a new time limit.

2.2. Use Case 2 - Solve under user control. The user will provide the non-linear system problem
and the set of session restrictions (time limit, error level, a.s.o.). He can select a numerical method for solving
the equations system or can let our system to select one based on its expertise. The user can control the
intermediary results and may interrupt the execution to select another numerical method to continue the
solving process and/or to modify session restrictions.

2.3. Use Case 3 - Support research. The researcher can add new numerical methods for solving non-
linear equations systems. These numerical methods must have been implemented as software services and the

Multi-Agent Architecture in Semantic Services Environment 75

researcher adds to the system their semantic descriptions. The new added numerical methods can be then
explored inside the previous use cases.

3. Conceptual model.

3.1. Core solving paradigm. The system implements a core paradigm for solving problems, based on
semantic matching between problem properties and numerical method capabilities.

The domain ontology describes the following domain:
• Problem: A problem is defined by its input data and may get an unique identifier for future recognition
in the system. A problem is characterized by a set of properties derived from its input data.

• Method : Problems can be solved with methods (numerical methods). A problem can be solved with a
numerical method or with a composition of numerical methods. The composition of numerical methods
can be predefined or can be created in collaboration with the user. A method is uniquely identified.
Besides the problem input data, a method has a specific set of input data. A method is characterized
by a set of properties.

• Session: A problem is solved under a set of restrictions that define the solving session.
• Solution: A solution to a problem is obtained invoking software services.
• Matching rules : The expert system recommends numerical methods based on a set of matching rules.
The matching rules take into account problem properties and method capabilities.

The solving paradigm is focused on matching semantic descriptions, and has the following phases:
• Compute problem properties.
• Identify numerical methods by matching the problem properties with methods capabilities.
• Select numerical method.
• Apply method.

3.2. Task oriented reasoning. Although sometimes associated with an activity to execute, the concept
of task is mostly intended to abstract a specific goal to be achieved [8, 2, 5]. In this regard, tasks definitions do
not explicit the particular method to use in order to achieve the goal, but rather give a description of the state
of the world to be achieved.

The operational aspect can be abstracted in the concept of a problem solving method (PSM). In their
analysis on research on using PSMs in developing Semantic Web applications and based on their practical
experience with developing a software using PSMs as conceptual building blocks, the authors in [16] conclude
that the fundamental PSM construction techniques used when developing new applications are sufficiently
powerful and flexible to build very complex systems.

A PSM describes how to achieve a result based on a set of input data. The goal of a PSM can be regarded
as a procedural one in order to obtain a result according to the method specification. The meta-properties of
the methods to be mentioned in this context include input, output, precondition, postcondition, sub-task.

The task oriented model is the abstract methodological basis for the proposed non-linear equations system
solver, task oriented reasoning being a natural approach for our multi-agent system. Starting from a particular
task, one can build a hierarchy of tasks and PSMs that can be considered as the plan for solving the root task.
Figure 3.1 represents how may the task-oriented model be applied in the non-linear equations systems solver.

4. Semantic model. For semantic representations we have adopted Web Services Modelling Ontology.
It is a natural approach taking into consideration the fact that, according to [6], WSMO provides a formal
ontology for describing Web services based upon WSMF and, in addition, embodies a number of principles that
are derived either from the UPML framework, and therefore PSMs research in general, or from the principles
underlying the Web and service-oriented computing.

WSMO is a conceptual model that provides ontological specifications for the core elements of semantic Web
services. WSMO defines four basic types of elements: ontologies, goals, services and mediators. Ontologies
are used to describe application domain ontologies, i.e. entities, relations and constraints in the problem
domain. Services are described by non-functional properties, by functionality defined with capabilities, and by
behavior defined with interfaces that describe two perspectives: communication and collaboration. Goals have
descriptions similar to services, but describe the service requester point of view. Mediators describe mediation
entities used to overcome structural, semantic, conceptual disparities.

WSMO is appropriate for modelling the proposed solving paradigm, because it offers a clear separation
between goals and services. Services offer numerical methods or compositions of methods from our paradigm,

76 C. Mindruta, V. I. Munteanu, V. Negru and C. Sandru

Fig. 3.1: Task-oriented model applied to NESS

and goals are dynamically built for each problem to be solved.

We have used Web Service Modeling Toolkit [9] as support for the modelling activities.

4.1. Knowledge representation. Ontologies. In [14], starting from an existing expert application
for solving ordinary differential equation systems, an architecture of services and workflows in a semantic
environment have been designed. This was supported by a base ontology for non-linear problems NonLPOnto,
and a specialization for ODE (ordinary differential equations) systems.

We benefit now from the extensibility of this base ontology to model the non-linear equations systems expert
semantics as another extension of this ontology.

NonLPOnto represents a pattern for ontologies specific to different non-linear problem categories. One of
these categories is represented by the non-linear equations systems (NES). As with ODE systems, the main
concepts defined in NESOnto are specializations of concepts defined in NonLPOnto(figure 4.1).

Fig. 4.1: NonLPOnto represented with WSMT

NonLPOnto is designed as a high level WSMO ontology for modeling mathematical services for solving

Multi-Agent Architecture in Semantic Services Environment 77

non-linear problems. According to this model a problem has an input data set and a set of properties. An
associated matrix is build based on the input data set, and the characteristics of this matrix are used to specify
properties of the problem. A problem is solved in the context of a session that defines specific requirements for
computation and result. Solving a problem implies applying a numerical method. A numerical method has also
a specific input set and is characterized by a set of properties.

Refining things, NESOnto (figure 4.2) contains concepts, relations and axioms that define problem and
solution spaces of the non-linear equations systems.

Fig. 4.2: Elements of NESOnto represented with WSMT

NESOnto defines the concept of problem (NES Problem) in relation to the concepts representing the in-
put data of the problem (NES IN P) and the properties of the corresponding non-linear equations system
(NES PProps).

It also defines the concept of numerical method (NES Method) in relation to the concepts representing the
input data of the numerical method (NES IN M) and the properties of the numerical method (NES MProps). In
figure 4.3, the concept NES MProps is represented with its attributes and the relation hasPProps between the
NES Method and its properties.

The restrictions imposed on the solving session are modelled with the concept NES Session and the solution
of the non-linear equations system is modelled with the concept NES Solution.

The associated matrix is modelled with two concepts: Jacobian represents the symbolic Jacobian of the
system, and JacobianVal represents the Jacobian matrix of the system computed in a given point.

The properties of the non-linear equations system are of types defined in specific concepts (ex. SystemForm),
and for each of these concepts the particular instances (ex. General, Sparse, DiagonalExplicit) have been
defined.

The properties of the numerical method have been defined in the same manner. They will be used by the
expert agent, that will refine the service selection and composition matching them to the execution constraints
represented as an instance of the NES Session concept.

One key element of NESOnto is the relation isSolvable applied to the problem properties. The relation is
used in the matching process between the problem characterized by its set of properties and a numerical method
which could solve the specific problem. An instance of this relation is created when a semantically described
service can solve the problem.

4.2. Services implementing numerical methods. The capabilities of each service are described using
NESOnto and an ontology specific to the service that contains one or more axioms. One of the axioms in this
specific ontology defines the relation isSolvable by expressing the properties of the non-linear equations systems
for which the numerical method is appropriate.

In figure 4.4(a) is represented the semantic description of Broyden NES service that implements the numerical
method Broyden for solving non-linear equations systems. The precondition in the semantic description states
that the method can be used if the relation isSolvable exists for the properties of the problem to be solved. The
semantics of this relation for the service Broyden NES are defined in the axiom isSolvableDef of the ontology
particular to the capabilities of this service, and expresses the fact that Broyden method is recommended for
non-linear equations systems of general form, with non-singular Jacobian, and of medium (between 10 and 50

78 C. Mindruta, V. I. Munteanu, V. Negru and C. Sandru

Fig. 4.3: Method and its properties represented with WSMT

equations) or big size (between 50 and 500 equations). This represents a part of the expert knowledge and is
implemented in the semantic description of the service.

Multi-Agent Architecture in Semantic Services Environment 79

Fig. 4.4: (a) WSML descriptions for BroydenNES service and (b) ExampleGoal goal

80 C. Mindruta, V. I. Munteanu, V. Negru and C. Sandru

4.3. Goals. Goals are dynamically built for each problem. Each goal has its a particular ontology that
contains instances of concepts from NESOnto. In order to identify the services which are able to solve the
corresponding problem, the particular ontology (GoalNESSolution) contains an instance of the NES PProps

concept which holds the concrete properties of the given problem.
In figure 4.4(b), a goal of solving a non-linear equations systems is described in WSML.

5. Multi-agent architecture. Using a multi-agent system for service discovery and composition enables
a decentralized approach to solving non-linear equation systems. This approach is further enhanced by an event
driven model and concurrency offered by the agents.

When developing the multi-agent architecture, we had several architectural concerns in mind. The archi-
tecture must:

• Allow service operations: publishing, semantic facilitation, invoking (running) etc.
• Provide automatic semantic service selection and composition.
• Detect and recover from a failing service.
• Monitor services.
• Create solving scenarios based on previous solving experience.

In our architecture, the PSMs can be implemented as semantic services or as agents (figure 5.1).

Fig. 5.1: Task structure

5.1. Agents. The multi-agent system is composed of the following agents: service, monitoring, execution,
user interface, matchmaking, reasoning and historian. The proposed architecture is depicted in figure 5.2.

The user interface agent handles all communication with the users and provides users with proxy function-
ality for interacting with the system. User interface agent exposes a REST interface to which users can connect.
It communicates with the reasoner, executioner and monitoring agents in order to manage the planning and
execution.

The reasoner agent is in charge of creating task-oriented plans to solve the problems it receives from the
human interface agent. It uses the domain ontology to create the semantic definitions of the tasks in terms of
WSMO goals by processing the input data in order to detect problem properties. Furthermore, the historian
agent is used to identify plans that where applied in similar problems. After the plan has been made, it is
dispatched to one of the execution agents for processing. Similarly to the WSMX platform, the reasoner agent
will use one of the following reasoners: IRIS1, KAON22, PELLET3 or MINS4.

The execution agent handles the execution of the work plan. It will be in charge of service invocation and
workflow management. The execution agent will query the matchmaking agent to retrieve information like
endpoints for semantically compatible services for the current work plan. Service invocation is done through
service agents. Also, synchronization with monitoring agents will be done in order to monitor current work plan
progress. In case of execution problems, it will ask a reasoner agent to find alternatives/suggest a solution for
it.

The monitoring agent has the role of monitoring the current task execution. It will synchronize with
execution agents for work plan information. It will also send periodic updates to the user interface agents

1http://www.iris-reasoner.org/
2http://kaon2.semanticweb.org/
3http://clarkparsia.com/pellet
4http://tools.sti-innsbruck.at/mins/

Multi-Agent Architecture in Semantic Services Environment 81

Fig. 5.2: Multi-agent system architecture

so they can relay task progress to the user. Monitoring agents also have the capability of creating execution
profiles that they will end to historian agents. These profiles cover the running work plan along with the service
decisions made and any errors that may have appeared.

The historian agent is in charge of archiving data and making it available for reasoner agents. It receives
problem profiles from monitoring agents and stores them in a database. Storing these profiles is important
because they contain information about previous task executions, information that is important for reasoner
agents to make decisions.

Service agents have the role of communication with service providers. They can invoke services and also
play a proactive role in the system by discovering services that can be integrated within the system. They will
look in WSIL5/UDDI6 service repositories in order to identify compatible services based on the ontology.

Last but not least, the matchmaking agents have two responsibilities. One is to handle storing semantic
descriptions of domain ontology and of services, and WSDL descriptions of services. This will make the service
database available for the system while alleviating the burden of dealing with storage mechanisms. The other
responsibility is to offer goal-service matching functionality. Mainly, the execution agent can directly ask for
a specific service or can ask for a proper service to be found by performing semantic matching between the
service and the goal descriptions. In the proposed architecture we have focused on the relevant components
for proving the concepts involved in a dynamic support for solving non-linear equations systems in a semantic
services environment. We assumed the existence of the needed content in the Semantic and Syntactic Repository
describing web services. Creation and maintenance of this repository is a complex task that will be considered
in a future work.

One important component of this multi-agent architecture is the agent communication bus. This bus enables
synchronous and asynchronous calls between the agents and is available in a distributed setting.

Figure 5.3 depicts the interaction between agents, interaction that leads to finding a solution for a simple
problem.

5http://www.ibm.com/developerworks/library/specification/ws-wsilspec/
6http://uddi.xml.org/

82 C. Mindruta, V. I. Munteanu, V. Negru and C. Sandru

Fig. 5.3: An example of a simple problem solving sequence

5.2. Agent platform. Our approach in implementing the multi-agent system is based on the Akka plat-
form7. Akka, while not being a traditional, FIPA compliant [4], multi-agent platform like Jade8, offers tools to
build highly concurrent, distributed, and fault tolerant event-driven applications [21]. Akka allows applications
to be written both in Java9 and in Scala10 while implementing the actor model. The actor model enables our
agents to have reactive behavior in solving the tasks.

Akka’s integration with Apache Camel11 allows agents to send and receive messages using a large number
of protocols and APIs. Also, support for the Spring Framework12 enables faster development.

Matchmaking is an important functionality of such a system. Different approaches are offered by WSMX
[7, 11], WSMO-MX [10] or are domain specific and user oriented [23]. We have adopted a simplified version
which makes use of a particular pattern in semantic descriptions of the services.

5.3. Framework and extensibility. The proposed architecture has a great flexibility due to the event-
driven architectural style of the infrastructure and to the inherent flexibility of multi-agent systems. It can be
seen as a framework with two main extensibility areas. The first extensibility area is in the society of agents
which can be extended with new types of agents that augment and refine the solving paradigm. The second
extensibility area stands in the semantic definitions. Extending the ontology allows to cover more mathematical
chapters. Changing the ontology results in adapting to different domains where problems can be solved based
on a similar core solving paradigm. Moreover, the two types of extensions can be combined.

6. Conclusions and future work. The task-oriented model makes a clear separation between tasks to
be accomplished and methods for solving them. This model is implemented using a multi-agent architecture
and is applied to design a solver for non-linear equations systems.

The multi-agent system is integrated with services implementing numerical methods. The services are
semantically described in terms of a domain ontology we propose for non-linear equations systems.

Semantic descriptions are realized in WSML, allowing us to benefit from the clear separation between goals
and services. This maps over the task-oriented model, specifically over tasks and solving methods respectively.

Specialized agents dynamically build semantic descriptions of the goals based on the properties of problems
to be solved, and appropriate services are discovered by semantic matching.

Other agents are implied in user interaction, in building work plans, in managing the system, aiming to offer
solutions to different problems or support for the human expert to experiment numerical methods in solving
non-linear equations systems.

The multi-agent system is build over Akka platform. The system will be validated in the context of NESS.

7http://akka.io/
8http://jade.tilab.com/
9http://www.oracle.com/us/technologies/java/overview/index.html

10http://www.scala-lang.org/
11http://camel.apache.org/
12http://www.springsource.org/

Multi-Agent Architecture in Semantic Services Environment 83

Our future work has more directions: to extend the definitions of the knowledge in the domain of non-linear
equations systems and to combine WSML with OpenMath and MathML; to include the chapter of ordinary
differential equations systems and possible other mathematical chapters; to open the framework towards other
domains.

Acknowledgments. This work was partially supported by the Romanian Government PNII grant nr.
12118/2008 (SCIPA), by POSDRU/88/1.5/S/49516 structural funds grant, ID 49516 (2009), and by the grant
POSDRU 21/1.5/G/13798.

REFERENCES

[1] Grid-enabled numerical and symbolic services. [Online] Available: http://genss.cs.bath.ac.uk/.
[2] Web service modeling ontology. [Online] Available: http: // www. wsmo. org/ .
[3] M. Aird, W. Medina, and J. Padget, Monet: service discovery and composition for mathematical problems, in Cluster

Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on, may 2003,
pp. 678 – 685.

[4] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent Systems with JADE (Wiley Series in Agent
Technology), John Wiley & Sons, 2007.

[5] B. Chandrasekaran, Design problem solving: a task analysis, AI Mag., 11 (1990), pp. 59–71.
[6] J. Domingue and D. Fensel, Problem solving methods in a global networked age, Artif. Intell. Eng. Des. Anal. Manuf., 23

(2009), pp. 373–390.
[7] D. Fensel, F. M. Facca, E. Simperl, I. Toma, D. Fensel, F. M. Facca, E. Simperl, and I. Toma, The web service

execution environment, in Semantic Web Services, Springer Berlin Heidelberg, 2011, pp. 163–216.
[8] D. Fensel, E. Motta, F. V. Harmelen, V. R. Benjamins, M. Crubezy, S. Decker, M. Gaspari, R. Groenboom,

W. Grosso, M. Musen, Enric, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga, The unified problem-solving
method development language UPML, Knowledge and Information Systems, 5 (1999), p. 2003.

[9] M. Kerrigan, A. Mocan, E. Simperl, and D. Fensel, Modeling semantic web services with the web service modeling toolkit,
Journal of Network and Systems Management, 17 (2009), pp. 326–342. 10.1007/s10922-009-9130-8.

[10] M. Klusch and F. Kaufer, Wsmo-mx: A hybrid semantic web service matchmaker, Web Intelli. and Agent Sys., 7 (2009),
pp. 23–42.

[11] S. Komazec and F. Facca, Whats new in wsmx?, in The Semantic Web: Research and Applications, L. Aroyo, G. Antoniou,
E. Hyvnen, A. ten Teije, H. Stuckenschmidt, L. Cabral, and T. Tudorache, eds., vol. 6089 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2010, pp. 396–400.

[12] S. Ludwig, O. Rana, J. Padget, and W. Naylor, Matchmaking framework for mathematical web services, Journal of Grid
Computing, 4 (2006), pp. 33–48. 10.1007/s10723-005-9019-z.

[13] E. Maximilien and M. Singh, A framework and ontology for dynamic web services selection, Internet Computing, IEEE, 8
(2004), pp. 84 – 93.

[14] C. Mindruta and D. Petcu, A semantic services architecture for solving ODE systems, in Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), 2010 12th International Symposium on, sept. 2010, pp. 301 –307.

[15] V. Negru, S. Maruster, and C. Sandru, Intelligent system for non-linear simultaneous equation solving, in Technical
Report Report Series. No, 98-19. RISC-Linz, december 2003.

[16] M. j. O’connor, C. Nyulas, S. Tu, D. l. Buckeridge, A. Okhmatovskaia, and M. a. Musen, Software-engineering
challenges of building and deploying reusable problem solvers, Artif. Intell. Eng. Des. Anal. Manuf., 23 (2009), pp. 339–
356.

[17] D. Petcu, Expert system for ordinary differential equations. [Online] Available: http://www.info.uvt.ro/ petcu/epode/-
main.htm.

[18] C. Sandru and V. Negru, Validating UPML concepts in a multi-agent architecture, in Schedae Informaticae, vol. 15, 2006,
pp. 109–126.

[19] V. Sorathia, L. Ferreira Pires, and M. S. van, An analysis of service ontologies, Pacific Asia Journal of the Association
for Information Systems, 2 (2010), pp. 17–46.

[20] The OpenMath Society, Openmath. [online] available: http://www.openmath.org/.
[21] Typesafe Inc, Akka Documentation Release 2.0. [Online] Available: http: // doc. akka. io/ docs/ akka/ 2. 0/ Akka. pdf ,

March 2012.
[22] W3C, Mathml. [online] available: http://www.w3.org/math/.
[23] M. Wilkinson, B. Vandervalk, and L. McCarthy, The semantic automated discovery and integration (sadi) web service

design-pattern, api and reference implementation, Journal of Biomedical Semantics, 2 (2011), p. 8.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 85–98. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

A RING-BASED PARALLEL OIL RESERVOIR SIMULATOR∗

LEILA ISMAIL†

Abstract. We develop and implement a ring-based parallel 3-D oil-phase homogeneous isotropic reservoir simulator and
study its performance in terms of speedup as a function of problem size. The ring-based approach is shown to result in significant
improvement in speedup as the problem size increases. This improvement stems from the reduction in communication costs inherent
in a ring-based approach. The simulator employs a parallel conjugate gradient (CG) algorithm that we develop for solving the
associated system of linear equations. The parallelization uses an MPI programming model. Previously proposed parallel oil
reservoir simulators focus on data parallelism and load balancing and gives less attention to the communication cost. Performance
analysis is given showing that the parallel algorithm results in a speedup of more than 42 times compared to a sequential simulator
for a large simulation problem. This major improvement occurs for larger problem sizes, since the communication savings become
significant. We compare our results to the implementation of the parallel oil reservoir simulator using the Portable Extensible
Toolkit for Scientific Computation (PETSc). Oil reservoir simulators are used for forecasting reservoir potential before costly
drilling, and are essential for improving oil recovery from existing fields, helping to maximize oil production. The speedup gained
through the technique presented here can result in major savings of engineering time and more accurate reservoir management, and
in turn higher oil production. Existing simulators suffer from limited performance due to the huge numerical operations involved.
To cope with the issue, engineers usually reduce the size of the simulation model to get results in an acceptable timeframe, sacrificing
accuracy of the predictions. This article describes the proposed ring-based algorithm for parallelization and development of a 3-D
oil phase reservoir simulator. The work is a prelude to further planned research to develop an extended simulator that applies to
three phases (oil, gas, and water) and to a heterogeneous and non-isotropic.

Key words: Parallel Computing, Oil Reservoir Simulator, Conjugate Gradient Method, Performance Evaluation

1. Introduction. Oil reservoir simulators ([1]- [2]) are important tools in the petroleum industry. They
help decision makers in oil reservoir forecasting, analysis, history matching, and recovery. To correctly make
decisions regarding recovery of hydrocarbons, an accurate numerical model of the reservoir must be established
to predict outcomes and performance under various operating conditions. These include location and rate of
injection in wells, and the recovery techniques, the selection of which has a great impact on oil field operation
from a financial perspective. It is well known that the accuracy of a simulation depends upon the resolution
used. Finer resolutions of discretization grids improve the accuracy of the simulation [3], but are accompanied by
an increase in problem size. Therefore, the CPU time required for the simulator to run increases considerably
with granularity due to the huge number of equations that must be included in the model. The conjugate
gradient method (CG) (initiated in [4]; see also [5]) is one of the best known and most powerful iterative linear
system solvers used in many simulation problems.

There is a great interest in parallelizing oil reservoir simulators to increase simulators’ precision and con-
sequently oil production. On one hand, existing parallel oil reservoir simulators focus on data parallelism and
load balancing and gives less attention to the resulting communication cost. They often use domain decompo-
sition techniques and parallel solvers which in turn use matrix decomposition techniques and give less attention
to the resulting communication overhead. On the other hand, the parallelization may involve the numerical
representation of the field, resulting in a change in the numerical equations.

In this work, we develop a parallel oil reservoir simulator which uses a parallel CG method to solve its
associated system of linear equations. Our parallel oil reservoir simulator has the following advantages:

• Preserving the oil reservoir simulator numerical equations. Our parallel simulator focus on reducing
communication overhead generated from data parallelization of the reservoir without any change in
the numerical representation of the oil reservoir simulator. This allows the portability of our parallel
solution to many of the existing oil reservoir simulators, as opposed to a parallelization approach which
introduces a change in the numerical representation ([6], [7], [8], [9]).

• Scalability. Our parallel implementation scales well with increasing problem size and increasing number
of computing resources. For instance, [10] used a parallel CG (using row-wise distribution of the
coefficient simulation matrix) for a 3-D, 3-phase oil reservoir simulator and obtained a speedup of
nearly 4.5 using 32 processors for a medium size problem (19,584 equations) using CS-2 with 100 MHz
HyperSPARC architecture (see Figure 3 in [10]). Our parallel implementation in our experimental
environment leads to a similar speedup for a Class A problem size (14,000 equations) and to a speedup

∗This work was supported by the United Arab Emirates University
†Faculty of Information Technology, United Arab Emirates University, P.O.Box 17551, Al-Ain, UAE. (leila@uaeu.ac.ae).

85

86 L. Ismail

of 23.63 for Class C problem (150,000 equations), indicating that our parallel approach becomes more
effective as the problem size increases.

• Reducing communication overhead. Our scheme uses the ring-based technique to reduce communication
overhead generated from parallelization. Parallel oil reservoir simulator needs to exchange data between
its parallel computational elements.

• Load balancing. To maximize the parallel computing efficiency of the simulator and the use of the
parallel computing environment, i.e., the processors involved in the computation, it is important to have
a load balanced distribution of the computational load. We implement a load-balanced distribution of
the CG computation among the processors involved in the parallel computation. This is obtained by
using the greedy approach in distributing the reservoir coefficients among the available processors.

For an efficient parallel oil reservoir simulator, it is essential to have a scalable approach with increasing
problem size and increasing number of processors. In this work, we propose a parallel algorithm that is optimized
by a ring-based approach to reduce communication cost. The ring-based approach is a known technique to
reduce communication cost [11]. Combing this technique with the data decomposition approach has led to a
speedup of 42 times in our experimental environment using 128 computing processors for large problem size
(Class C). However, to our knowledge, the technique has not been brought to bear on oil applications. This
result is promising in the oil industry as it can save significant engineering time and facilitate more accurate
reservoir management. We apply the ring-based approach to achieve parallelism and communication in multiple
steps. We use a distributed memory environment consisting of 128 cores of Intel Xeon 5355 to evaluate the
performance of the parallel 3-D oil-phase reservoir simulator. To maximize the parallel computing efficiency of
the simulator and the use of the parallel computing environment, i.e., the processors involved in the computation,
it is important to have a load balanced distribution of the computational load. We implement a load-balanced
distribution of the CG computation among the involved processors. Our parallelization technique is evaluated
by measuring the speedup gain of our parallel simulator compared to the scalar sequential, the former being
demanding in terms of design efforts. We compare our results to a parallel implementation using the Portable
Extensible Toolkit for Scientific Computation (PETSc) [12]. PETSc is a suite of data structures and routines for
the parallel solution of scientific applications modeled by partial differential equations. It is widely used in many
scientific simulations including oil reservoir simulator ([13], [14]). PETSc implements row-wise distribution of
matrices and does not consider a load-balanced approach. It uses a one-step overlapping mechanism, in which
a matrix is divided into submmatrices; processors send data asynchronously and start computing with diagonal
submatrices in parallel, hoping that global data is collected meanwhile the local computation is taking place to
continue with the remaining submatrices [15].

The rest of the paper is organized as follows. Section 2 overviews related works. In section 3, we describe the
oil reservoir model’s partial differential equations. In section 4, a numerical model for the reservoir is presented.
The programming model including the parallel approach and its implementation are described in section 5. Our
experiments and the associated results are presented in section 6. Concluding remarks are given in section 7.

2. Related Works. Several works developed parallel oil reservoir simulators on a distributed memory
environment. Many of the existing parallel oil reservoir simulators rely on parallel library routines for parallel
distribution of their linear solvers. For instance, in [10], the parallel oil reservoir simulator implements a
parallel Conjugate Gradient method which uses the Sparse Distributed Data Library (DDL), for a 3-D, 3-phase
oil reservoir simulator. The DDL implements a row-wise distribution of the coefficient simulation matrix. The
implementation r for the implementation of a parallel CG linear solver uses all-to-all communications technique.
By using this technique, the size and the number of messages exchanged between the different computing
processors increase with increasing problem size and number of processors, inducing scalability issues. Figure 3
in [10] shows a speedup of nearly 4.5 using 32 processors for a medium size problem (19,584 equations) using CS-2
with 100 MHz HyperSPARC architecture. Reference [14] relies on PETSc library [12] which implements parallel
linear solvers based on the library parallel routines. Reference [16] developed a parallel oil reservoir simulator
based on the overlapping domain decomposition, in particular Additive Schwarz with Overlap linear solver,
and the parallel Singular Value Decomposition linear solver, using multi-core multi-processor shared-memory
(SMP) desktops, and obtained a speedup of 1.6 on 2 CPUs and of 1.7 on 4 CPUs. Reference [17] developed a
parallel oil reservoir simulator based on domain decomposition and parallelized its underlying linear solver; i.e.,
the strongly implicity procedure (SIP). The simulator is implemented using MPI on CRAY T3E system and
IBM SP2 systems. The speedup obtained was 14 using 80 processors on CRAY T3E system, and 30.6 using

A Ring-Based Parallel Oil Reservoir Simulator 87

80 processors on IBM SP2 system. However, on IBM SP2 system, the performance did not scale beyond 62
processors with increasing number of processors.

Other works involves a change in the numerical solution to incorporate more parallelism. For instance,
reference [8] is based on the constrained pressure residual (CPR) a multi-stage parallel linear solver [9], and
the ILU0 parallel iterative solver. Figure 4 in reference [8] indicates a speedup of 28 using the CPR solver and
a speedup of 12 using the ILU0 on 64 processors for a 3-D, an incompressible water oil 2-phase for 1,094,721
grid blocks; a very large problem size. Reference [18] tested combination of multiscale (in time and in space)
simulation and compared them to single-spatial dual-temporal simulations and concluded that the best combi-
nation is the dual-spatial dual-temporal. References [6] and [7] rewrite the Conjugate Gradient method linear
solver algorithm into blocks of algorithms to reduce synchronization between among its iterations and therefore
communication cost, and consequently incorporate more parallelism.

Several algorithms have been published for parallelizing CG as a standalone application [19], [20], [21], [22].
They are developed for general-purpose engineering applications and are not tailored to oil reservoir modeling.
In [19] and [20], algorithms have been implemented on a specialized event-driven multi-threaded platform. In [21]
and [22], algorithms have been implemented on a distributed shared memory cluster. Field [23] optimizes CG
for regular sparse matrices and studies the impact of mesh partitioning on the performance. In references S [24]
and [25], the authors introduce data decomposition strategies for CG on hypercubes and mesh networks for
unstructured sparse matrices. Blocks of matrices are assigned to processors to achieve a partial result of the
matrix-vector multiplication in the CG algorithm. In reference [24], a ring-based overlap mechanism is used
for global summation within the CG method, a speedup of of 2.5 was obtained on 128 cores compared to
the original National Aeronautics and Space (NAS) benchmark [26] on Intel iPSC/860 hypercube architecture.
Reference [11] presents communication-avoiding algorithms to decrease communication costs of applications.
Reference [20] used also the ring-based algorithm for the CG method as a standalone application and obtained
a speedup of 41 on 65 processors of type ChibaCity. We obtained almost the same speedup [20] for big problem
size (Class C matrix size), though [20] performed measurements on unstructured matrices with more non-zeros
than our heptadiagonal matrices, thus more computations are involved to overlap communication cost.

3. 3-D Oil-Phase Reservoir Partial Differential Equation Model. Development of a parallel reser-
voir simulator includes the following steps:

• Develop the partial differential equations of the model based on the oil reservoir characteristics. For
the 3-D oil-phase reservoir model, the equations have one unknown variable, namely pressure.

• Divide the oil reservoir into grids and discretize the partial differential equations in space and time. In
the case of a homogeneous and isotropic reservoir, the discretization of the equations produces a linear
system of equations.

• Determine an ordering scheme from stencils to obtain an order of the coefficients of the linear system
of equations and choose a linear solver which will be used to find the solution; i.e., the pressure per
grid element of the oil reservoir. In case of a homogeneous isotropic oil reservoir, all the coefficients are
constants in space and time.

• Parallelize the model and code it.
• Test the simulator by comparing results it gives to known results obtained from another proven simu-
lator.

The partial differential equations reflect the reservoir characteristics, such as the reservoir boundaries,
rock properties including porosity and permeability, and well production and injection data input [1], [27]. In
this study, we consider a simulator for a 3-D homogeneous and isotropic oil-phase reservoir. The differential
equations of the reservoir model are derived from Equations 3.1, 3.2, and 3.3. Equation 3.1 is Darcy’s law. It
represents a relationship between the field velocity u and the field pressure p. Equation 3.2 is a statement of
mass balance. Equation 3.3 represents the formation volume factor per bulk volume of the reservoir:

u = −βc

k

µ
(∇p− γ∇Z) (3.1)

−
∂

∂x
(ṁx)−

∂

∂y
(ṁy)−

∂

∂z
(ṁz) =

∂(mv)

∂t
− qs (3.2)

Bo =
ρosc

ρo
(3.3)

88 L. Ismail

Here βc is a unit conversion factor for the permeability coefficient, k is the rock permeability, µ is the
dynamic viscosity of the fluid, Z is the elevation (positive in downward vertical direction), and γ is the fluid

gravity, which is the fluid density in terms of pressure per distance. (̇m) denotes the mass flow rate per unit of
time and per unit area, qs is the mass density source or sink (mass per unit of time), mv represents the mass
of fluid contained in a unit of volume of the reservoir. Bo is a formation volume factor which is the ratio of the
density of the oil at standard conditions (ρosc) to the density of the oil at reservoir pressure and temperature
ρo. Standard conditions are usually 60oF and 14.7psia in oil fields [27].

Mass flow rate is expressed as the product of the oil density (ρ) and Darcy’s velocity (u). The mass per unit
volume (vm) is represented by the product of oil density and porosity (φ). The mass flow rate qs is formulated
as the product of the fluid density and volumetric flow rate q. Then we have the following formulas [1]:

ṁx = αcρux (3.4)

ṁy = αcρuy (3.5)

ṁz = αcρuz (3.6)

mv = ρφ (3.7)

qs = αcρq (3.8)

Based on Equations 3.4, 3.5, 3.6, 3.7, 3.8 and 3.3, Equation 3.2 becomes

−
∂

∂x

(

ux

Bo

)

−
∂

∂y

(

uy

Bo

)

−
∂

∂z

(

uz

Bo

)

=
1

αc

∂

∂t

(

φ

Bo

)

− qsc (3.9)

The equation 3.9 involves two unknowns: the velocity field and the porosity. The closure model used to complete
the model is the Darcy’s law (Equation 3.1). For simplicity, we assume negligeable gravital forces. Equation
3.9 becomes:

∂

∂x

(

βc

kx

µBo

∂p

∂x

)

+
∂

∂y

(

βc

ky

µBo

∂p

∂y

)

+
∂

∂z

(

βc

kz

µBo

∂p

∂z

)

+ qsc =
1

αc

∂

∂t

(

φ

Bo

)

(3.10)

where Bo is the formation volume factor of the oil phase, αc is the volume conversion factor, φ is the porosity.
We consider a slightly compressible flow, then the formation volume factor Bo is defined as:

Bo =
B0

o

1 + c(p− p0)
(3.11)

where c is the compressibility factor, B0
o is a reference formation volume factor and p0 is a reference pressure.

For a slightly compressible flow, we assume 1+c(p−p0) ≈ 1, and that the porosity is constant [1]. Consequently,
Equation 3.10 becomes:

∂

∂x

(

βckx
∂p

∂x

)

+
∂

∂y

(

βcky
∂p

∂y

)

+
∂

∂z

(

βckz
∂p

∂z

)

+ B0µqsc =
µφc

αc

∂p

∂t
(3.12)

In the homogeneous isotropic case, we have:

kx = ky = kz (3.13)

Based on Equation 3.13, and by dividing both sides of the Equation 3.12 by βck, Equation 3.12 becomes:

∂

∂x

(

∂p

∂x

)

+
∂

∂y

(

∂p

∂y

)

+
∂

∂z

(

∂p

∂z

)

+
B0µqsc

kβc

=
φµc

βcαck

∂p

∂t
(3.14)

As mentioned previously, an oil reservoir simulator uses division into a grid. Equation 3.12 is then discretized
in space and time expressed over this grid to produce a linear system of equations. We use the CG method
which is one of the popular iterative solvers widely used in oil reservoir simulation to solve the equations and
find the unknown values which are the pressure for each element of the oil reservoir grid.

A Ring-Based Parallel Oil Reservoir Simulator 89

4. 3-D Oil-Phase Reservoir Numerical Model. Time discretization of Equation 3.12 gives

pn+1
i−1jk − 2pn+1

ijk + pn+1
i+1jk

∆x2
+

pn+1
ij−1k − 2pn+1

ijk + pn+1
ij+1k

∆y2
+

pn+1
ijk−1 − 2pn+1

ijk + pn+1
ijk+1

∆z2
+

B0µqsc

kβc

=
φµc

βcαck
(
pn+1
ijk − pnijk

∆t
) (4.1)

Equation 4.1 can be represented as a linear system of equations of the form

Ax = b

where A is a matrix which reflects the coefficients in Equation 4.1. The vector variable x represents the unknown
pressures (one unknown per grid cell) and b is a constant which is computed based on the pressures calculated
at the previous time step. Equation 4.2 provides the solution to a pressure per grid cell. Figure 4.1 shows a
numerical stencil for a 3-D block:

xijk = pijk i = 1 . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz (4.2)

where Nx is the number of cells of the oil reservoir in the x direction, Ny is the number of cells of the reservoir
in the y direction and Nz is the number of cells of the reservoir in the z direction. From a programming model
point of view, and for the rest of the paper we will use A, x, and b as notations to represent the linear system
of equations generated in a time step.

Figure 4.2 shows a computational mesh for a discretized 3-D oil reservoir of size N (N = NxNyNz),
which is the size of the generated matrix A. The mesh reveals the way the unknown vector is composed. By
numbering the unknowns, the resulting linear system of equations following a discretization is represented by a
heptadiagonal structured sparse matrix as shown in Figure 4.3.

Fig. 4.1: A numerical stencil for a 3-D oil reservoir block.

5. Programming Model.

5.1. Sequential CG Algorithm. As shown in Figure 5.1, the CG method starts with a random initial
guess of the solution x0 (step 1). Then, it proceeds by generating vector sequences of iterates (i.e., successive
approximations to the solution (step 10)), residuals corresponding to the iterates (step 11), and search directions
used in updating the iterates and residuals (step 14). Although the length of these sequences can become large,
only a small number of vectors need to be kept in memory. In every iteration of the method, two inner products
(in steps 9 and 13) are performed in order to compute update scalars (steps 9 and 13) that are defined to make
the sequences satisfy certain orthogonality conditions. On a symmetric positive definite linear system these
conditions imply that the distance to the true solution is minimized in some norm (step 12).

90 L. Ismail

Fig. 4.2: Computational mesh for discretized 3-D oil reservoir.

Fig. 4.3: Heptadiagonal coefficient matrix formed from a discretized 3-D oil reservoir.

5.2. Parallel Computation Approach. An oil reservoir simulator along with its CG method solver can
be parallelized in different ways. Time parallelism, data parallelism and functional parallelism are common
approaches for parallelizing applications. In this work, we choose a mix of functional and data parallelism to
parallelize the simulator. The simulator is intuitively divided into 2 functional parts: the simulator itself which
includes the numerical discretized part and the CG method iterative solver for solving the numerical system of
equations. The CG method is used at every time step. Every time step of the oil reservoir simulator produces
a linear system of equations.

We chose the master-worker model [28] as an underlying mechanism of parallelization. The simulator
itself is executed sequentially by the master processor. The master processor computes various coefficients
and parameters and distributes the matrix relative to the resultant linear system of equations to the available
processors who will start the parallel processing of finding a solution. The master processor gathers the output
from the different processors involved in the computation which forms the global solution. In each iteration of
the CG method, each computational component can be parallelized to compute part of the output values: αk,
xk+1, rk+1, βk, and pk+1. To achieve the load balancing the number of non-zero values is distributed equally
over the number of processors in a greedy-based approach.

5.3. Parallel Implementation. The main goal here is to divide the number of operations of the CG
method by the number of available processors to increase its performance vis-a-vis its sequential execution. The
flow chart presented in Figure 5.1 presents 2 types of divisible loads: 1) the sparse matrix-vector multiplication

A Ring-Based Parallel Oil Reservoir Simulator 91

1. x0 = 0
2. r0 := b−Ax0

3. p0 := r0
4. k := 0
5. Kmax := maximum number of itera-

tions to be done
6. if k < kmax then perform 8 to 16
7. if k = kmax then exit
8. calculate v = Apk

9. αk :=
rTk rk
pT
k
v

10. xk+1 := xk + αkpk
11. rk+1 := rk − αkv

12. if rk+1 is sufficiently small then go to
16 end if

13. βk :=
rTk+1rk+1

rT
k
rk

14. pk+1 := rk+1 + βkpk
15. k := k + 1
16. result = xk+1

Fig. 5.1: CG method sequential algorithm.

(SpMV) presented in step 8 of the flowchart, and 2) the scalar-vector and/or vector-vector operations presented
in steps 9, 10, 11, 13, and 14 of the flowchart. However, CG method presents interdependency between its com-
putational elements. In previous work [29], we defined a dependency graph among the different computational
parts of the CG as shown in Figure 5.2. This dependency graph gives directions of data flow within one iteration
within a processor and among the processors of the system. The graph shows values which are dependent on
other values which are connected to and which are higher in the graph representation. For example, αk is
dependent on rk and pk.

Fig. 5.2: Dependency graph among the different computational elements of the CG method.

For storing the matrix, we use our indexing approach, where the matrix is stored in 2 arrays: a first array
which holds the non-zero values and a second array which holds the coordinates of the value in the matrix.

Load balancing is done using a greedy approach by the master processor. The master processor first divides
the number of nonzero values in the matrix A by the number of parallel processors to compute the average
load per processor. Then the master processor allocates the first n number of rows to the first processor where

92 L. Ismail

total number of non-zeros in those n rows are exactly equal to or just more than the calculated average load
value. Once the load for a processor in terms of the non-zeros allocated to the processor is calculated, the
master processor recalculates the new remaining non-zeros in the matrix by subtracting the number of non-
zeros allocated to the processor from the existing value of the remaining non-zeros. Initially all the non-zeros
in the matrix A are the remaining non-zeros. Then, the master processor calculates a new average load value
(in terms of non-zeros) from the number of remaining non-zeros and the number of remaining processors. The
master processor allocates the average number of non-zero elements to the next processor and repeats the same
steps till all the non-zero values of the matrix A are allocated to the processors. Since we are using greedy
approach for the load distribution purpose and the rows are considered as a unit (fraction of the rows are not
given to any process), the method is semi-optimized. Appendix A shows the load balancing algorithm.

Given the interdependency nature of the CG method among its computational steps at each each iteration,
the SpMV in step 8 should be distributed in a way to decrease communication cost [30]. We rely on a ring-based
approach which allows communications and computations to overlap [11] for the SpMV part in each iteration of
the CG. The algorithm works as follows. For the entire local SpMV, every processor needs the whole p vector.
Every processor divides its local SpMV into N steps, where N is the number of processors involved in the
computation. Initially, every processor has its own part of the vector p. In each step, before starting the local
SpMV, a processor sends its own part of the vector p, in a non-blocking communication, to the left neighbor
and simultaneously receive part of the vector p from right neighbor forming a ring of communication. The
communication takes place in the form of a ring. Figure 5.3 illustrates the starting computational part in each
processor. The local SpMV starts on the block number for which the processor has its own chunk of p. The
local SpMV is performed using the non-zero elements of the respective blocks. Figure 5.4 shows an example of
the computational steps of the processor of rank 0. Appendix B shows the algorithm of the ring-based approach
applied to the matrix-vector multiplication step of the CG method.

Fig. 5.3: Initialization of Computing at every processor.

6. Evaluation of the Parallel Algorithm. In this section, we evaluate the performance of the ring-
based parallel oil-phase reservoir simulator in our experimental environment. We compare the performance of
our approach to PETSc-based parallel oil reservoir simulator.

6.1. Experimental Environment. The experiments are conducted on a grid of Xeon Intel Quad Core
5355 machines with 2.66 GHz of CPU. Each machine has a dual CPU. Each core has 4MB of cache, 1GB of
memory, 2.66 x 4GFLOPS of peak performance. The machines are connected using InfiniBand (IB) standard.
The operating system used on the machines is Red Hat Enterprise Linux Server release 5.2. Message Passing
Interface [31] (Open MPI version 1.3.2) library is used for implementing the parallel oil reservoir simulator. We
used the mpicc compiler along with gcc version 4.1.2. We used the O3 optimization flag option when compiling
the parallel oil reservoir simulator code.

A Ring-Based Parallel Oil Reservoir Simulator 93

Fig. 5.4: The different computational steps for computing the local SpMV in each processor.

Table 6.1: Experimental Runs

Run Workload
Benchmark
Name

Matrix
Size(A)

1 S 1400
2 W 7000
3 A 14000
4 B 75000
5 C 150000

6.2. Experiments. The experiments use matrices of different dimensions to assess the performance of
the parallel oil reservoir simulator within one step on a single Intel parallel machine and on a grid of Intel
parallel machines. The matrix sizes used are as per NAS CG parallel benchmark [26], as shown in Table 6.1.
The parallel oil reservoir simulator is measured by horizontally scaling the number of cores up to 128 cores,
and vertically scaling the simulation size. The speedup of the parallel parallel oil reservoir versus its sequential
execution is measured. We implemented 2 versions of the parallel oil reservoir simulator, one which uses our
ring-based approach, and one which uses the PETSc approach in parallelization.

In our experiments, one core acts as a master which distributes the tasks to the other cores that we call
workers. The master core runs the simulation, updates and distributes the coefficients; i.e. the matrix, to
the workers cores. The gettimeofday function is used to compute the elapsed time of the parallel oil reservoir
simulator on the master in a single time step. In the sequential execution case, the gettimeofday function is
used as well to compute the overall run time. In all our experiments, each experiment was run 100 times and
the average was computed. The speedup is then measured.

6.3. Performance Evaluation. As discussed previously, our proposed parallel algorithm follows the
functional along with data distribution strategy to distribute the oil reservoir simulator computation load
among the processors. The simulator itself is run by a master processor, while the parallel CG method is run
by a number of parallel processors. In that way, every processor can perform the operations on the data chunk
available to it from the master processor. The master processor participates in the computation as well. In
devising our parallel algorithm, the numerical representation of the oil reservoir simulator and its CG linear
solver were preserved. We worked on functional parallelism, data parallelism and communication strategies to
decrease the simulation total execution time. Figure 6.1 shows the speedup performance of the proposed parallel

94 L. Ismail

algorithm, which is 42 times faster than the sequential execution of the simulation using 128 processors . It also
shows that our parallel implementation scales well with increasing number of processors and large matrix sizes.
For instance class C matrix size scales well with increasing number of processors. This is explained by a good
overlap between computation and communication for large matrix sizes thanks to a higher number of non-zeros
which is allocated to each processor compared to smaller matrix sizes. While our PETSc-based implementation
indicates a good speedup of 42.7, as shown in Figure 6.2 for class B matrix size, the speedup performance does
not scale with increasing number of processors. The PETSc-based approach has lower scalability compared
to our approach with increasing matrix size and increasing number of processors. This is due to the PETSc
using asynchronous all-to-all broadcast of the vector p while a local matrix-vector multiplication is taking place.
Consequently, the size and the number of vectors exchanged between the processors increase with increasing
matrix size and increasing number of processors.

For smaller matrix sizes (classes S and W), our parallelization approach does not scale beyond 8 cores. This
is because some processors receive little or no data and therefore the actual computing time can be much shorter
than the time spent in communicating the vector p to other processors; i.e., the processors spend the time waiting
for the vector p to arrive than computing. Therefore, more time is spent in communicating than computing
and consequently the overall execution time of the application will become longer in case the computation is
divided further over a larger number of processors. The PETSc-based approach has better performance than
our approach for small matrix sizes and small number of processors, where the communication time spent
communicating the vector p between the processors is overlapped with the local computing on each processor.

Implementing a ring-based required more design efforts for the code for communicating the vector p than
implementing using PETSc approach. Using PETSc, the code calls high level methods and the parallel im-
plementation is done by the underlying library, while in a ring-based approach, the dispatch of the vector p

to the next neighbor and the reception of the vector p from the previous neighbor have to be done before the
matrix-vector multiplication within each processor as shown in Appendix B.

The greedy approach we use for distributing data ensures load balancing as shown in Figure 6.3. However,
Figure 6.3 shows slight discrepancies in load among the processors. This is due to the fact that we do not allow
for a partial distribution of a matrix row to the processors. Consequently, some processors may be allocated
more non-zero values than others.

Fig. 6.1: Overall speedup of a parallel 3-D oil-phase reservoir simulator using our approach vis-a-vis its sequential
execution.

7. Concluding Remarks. Parallel oil reservoir simulators provide an important computational tool for
the oil industry. An oil reservoir simulator involves numerically solving systems of linear equations. The
conjugate gradient (CG) method is one of the most popular iterative methods in flow simulation problems. We
implemented a parallel oil reservoir simulator using parallel CG. Existing oil reservoir simulators concentrate
on data parallelism and load balancing issues and pay less attention to the generated communication cost from

A Ring-Based Parallel Oil Reservoir Simulator 95

Fig. 6.2: Overall speedup of a parallel 3-D oil-phase reservoir simulator using PETSc vis-a-vis its sequential
execution.

Fig. 6.3: Distribution of execution time taken across the parallel cores.

parallel implementations. In this work, we implemented a ring-based parallel reservoir simulator to reduce
communication cost. Our implementation scales well with problem size and with number of processors. A
speedup of 42 times was achieved for large problem size vs. a 3-D oil-phase reservoir simulation with sequential
execution. We compared our results to the performance of a parallel implementation of the oil reservoir simulator
using the Portable Extensible Toolkit for Scientific Computation (PETSc). Our parallel approach scales well
with increasing problem size and increasing number of processors compared to our PETSc-based implementation.
Our result should be valuable for the oil industry as it should facilitate major savings in engineering effort
and result in better oil reservoir management. This work is part of an ongoing project aimed at developing
a parallel 3-D multi-phase (oil, gas, and water) reservoir simulator, that applies to heterogeneous and non-
isotropic models. The project will develop a model of dynamic distribution of the parallel oil reservoir simulator
on a heterogeneous Grid infrastructure of Intel Xeon and IBM Cell processors. Performance evaluations will

96 L. Ismail

then be conducted similar to the one performed for our work published in IEEE Transactions on parallel and
distributed systems [32].

8. Acknowledgements. The author would like thank the UAE University for supporting this work, which
was funded following a national funding competition organized by the UAE National Research Foundation. She
would also like to thank Professor Jamal Abou-Kassem from Petroleum Engineering of the UAE University for
his help and availability on many useful discussions on oil reservoir simulator. Special thanks to Professor Eyad
Abed, the Dean of the Faculty of Information Technology of the UAE University for his inputs and feedback on
the paper. Also, thanks to the anonymous reviewers for their feedbacks which have contributed to the paper.

Appendix A. Load Balancing Algorithm.

loadBalance(){
//nnz is the number of non-zero values in the matrix
//nnzLeft is the number of non-zeros left out of the cumulative distributions
int i=0,j=0,k=0;
//The starting row index of the matrix part and the number of rows to be allocated to a process
int *procStartRow, *procCalcRowCount;
//stores number of non zeroes in each row
int *rowDataCount;
//The number of non-zeros allocated to a processor
int *nnzProc;
//Average load (number of non-zeros) to be distributed to each worker
avgLoad = nnz/size;
//Loop over the number of available processors
for(i=0; i ≤ numberOfProcessors-1; i++) {

//The beginning row index of the next process is equal to the previous process row index
// added to the load allocated to the previous processes
processStartRow[i] = processStartRow[i-1] + procCalcRowCount[i-1]
//Compute the actual load to be allocated to the process
for (j=0; j ≤ N-1, j++) {
k = 1;
nnzProc[i]= nnzProc[i]+rowDataCount[k];
k = k+1;
procCalcRowCount[i]=k;
nnzProc[i]= nnzProc[i]+rowDataCount[k];
if (nnzProc[i] ≥ avgLoad)
break;

}
nnzLeft=nnzLeft-nnzProc[i];
int remainingProcessors = numberOfProcessors-1;
avgLoad = nnzLeft/remainingProcessors;

}
}

REFERENCES

[1] Abou-Kassem, J.H., Farouq Ali, S.M., and Islam, M.R., 2006, ”Petroleum Reservoir Simulation: A Basic Approach”, Gulf
Publishing Company, Houston, TX, USA, 480 pp.

[2] J. Aarnes et al, ”Towards Reservoir Simulation on Geological Grid Models”, 9th European Conference on the Mathematics of
Oil Recovery, Cannes, France, September 2004.

[3] Dogru, Ali h., ”From Mega-Cell to Giga-Cell Reservoir Simulation”, Saudi Aramco Journal of Technology, Spring 2008.
[4] M.R. Hestenes and E. Stiefel, ”Methods of conjugate gradients for solving linear systems”, J. Research of the National Bureau

of STandards, Vol. 49, No. 6, pp. 409-436, 1952.

A Ring-Based Parallel Oil Reservoir Simulator 97

Appendix B. Ring-Based Distribution Algorithm.
parallelMultiplyBlocks(double *vecResult, double **AMatrix,double *p, int *nnzLocalBlock){
//List of parameters of the function parllelMultiplyBlocks:
// vecResult stores the result of the local SpMV by the processor
// AMatrix: Matrix A, stored in a 2D array to represent blocks
// nnzLocalBlocks is the number of local blocks in a local matrix to a processor
// neighbourBack,neighbourNext are ranks of neighbours:
// back is the one to send to ahead and next is the one from whom to receive
// pChunkNumber is the id of the processor which uses the current part of P (the chunk from where the
MVM will start for a processor
// pChunkNumberNext is the ID for processor from whom to receive chunk of P

int neighbourBack,neighbourNext, pChunkNumber, pChunkNumberNext;

pChunkNumber = processorNumber; // we shall start from blockid = processorNumber.
pChunkNumberNext = (processorNumber + 1) % numberOfProcessors; // we will recveive from next
// neighbour
for(int h = 0;h≤numberOfProcessors-1;h++){// h loops over blocks
if(h= numberOfProcessors-1){
//Asynchronous send of the part of the vector p that the processor has updated it to the back neighbor
asynchronousSend(&p[pChunkNumber], neighbourBack);
//Asynchronous received of the part of the vector p from the next neighbor
asynchronousReceive(&p[pChunkNumber], neighbourNext);
}
//local matrix-vector multiplication on the current block
for(int i = 0;i≤nnzLocalBlock[pChunkNumber]-1;i++){

vectorResult=AMatrix*p;
}

//wait to receive the chunk of the vector p from the neighbor
if(h= numberOfProcessors -1){
Wait(p);
}
pChunkNumber = pChunkNumberNext;
pChunkNumberNext = (pChunkNumberNext+1) % numberOfProcessors;
}

}

[5] Jonathon Richard Shewchuk, ”An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”, School of
Computer Science, Carnegie Mellon University, Edition 1 1/4.

[6] Dianne P. O’Leary, ”Parallel Implementation of the Block Conjugate Gradient Algorithm”, Parallel Computing, Vol. 5, pp.
127 - 139, 1987.

[7] Dianne P. O’Leary, ”The Block Conjugate Gradient Algorithm and Related Methods”, Linear Algebra and its Applications,
Vol. 29, pp. 293 - 322, 1980.

[8] J. M. Gratien, T. Guignon, J. F. Magras, P. Q. Quandalle, and O. R. Ricois, ”Scalability and Load Balancing Problems in
Parallel Oil Reservoir Simulation”, 10th European Conference on the Mathematics of Oil Recovery, September 2006.

[9] Cao, H., Tchelepi, H. A., Wallis, J. R., and Yardumian, H., 2005, ”Parallel Scalable Unstructured CPR-Type Linear Solver for
Reservoir Simulation,” paper SPE 96809 presented at the 2005 SPE Annual Technical Conference and Exhibition, Dallas,
Texas, USA, Oct. 9 - 12, 2005.

[10] Jesper Larsen, Lars Frellesen, John Jansson, Flemming If, Cliff Addison, Andy Sunderland and Tim Oliver, ”Parallel Oil
reservoir Simulation”, Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science Lecture
Notes in Computer Science, 1996, Volume 1041/1996, 371-379.

[11] Mark Hoemmen, ”Communication-Avoiding Krylov Subspace Mehthods”, PhD Disseration, Spring 2010,
http://www.cs.berkeley.edu/ mhoemmen/pubs/thesis.pdf

[12] Portable, Extensible Toolkit for Scientific Computation, http://www.mcs.anl.gov/petsc/index.html
[13] The Center for Petroleum and Geosystems Engineering, University of Texas at Austin,”Reservoir Simulation Joint Industry

Project”, http://www.cpge.utexas.edu/rsjip/
[14] Jason Abate, ”Parallel Compositional Reservoir Simulation on a Cluster of PCs”, December 1998.

98 L. Ismail

[15] Lois Curfman Mcinnes, and Barry F. Smith, ”PETSC 2.0: A Case Study of using MPI to Develop Numerical Software
Libraries”, Proceeding of the Euro-Par’99 parallel processing: 5th International Euro-Par Conference, 1999.

[16] Lu, P., Shaw, J.S., Eccles, T.K., Mishev, I.D., Usadi, A.K., Beckner, B.L., ”Adaptive Parallel Reservoir Simulation,” paper
IPTC 12199 presented at the International Petroleum Technology Conference, December 2008.

[17] Khashan, S.A., and Ogbe, D.O., and and Jiang, T.M,, 2002, ”Development and Optimization of Parallel Code for Large-Scale
Petroleum Reservoir Simulation,” J. Can. Petrol. Techno., vol. 41, no. 4, 33-37.

[18] Atan, S., Kazemi, H., and Caldwell, D.H., 2006, ”Efficient Parallel Computing Using Multiscale Multimesh Reservoir Simu-
lation,” paper SPE 103101presented at the 2006 SPE Annual Technical Conference and Exhibition held in San Antonio,
Texas, U.S.A., 24-27 September.

[19] Kevin B. Theobald, Gagan Agrawal, Rishi Kumar, Gerd Heber, Guang R. Gao, Paul Stodghill, and Keshav Pingali, ”Landing
CG on EARTH: A Case Study of Fine-Grained Multithreading on an Evolutionary Path”, Proceedings of the ACM/IEEE
conference on Supercomputing, pp. 4 - 4, 2000

[20] Fei Chen, Kevin B. Theobald, and Guang R. Gao, ”Implementing Parallel Conjugate Gradient on the EARTH Multithreaded
Architecture”, Sixth IEEE International Conference on Cluster Computing, pp. 459 - 469, 2004.

[21] Piero Lanucara, and Sergio Rovida, ”Conjugate Gradients Algorithms: An MPI-OpenMP Implementation on Distributed
Shared Memory Systems”, First European Workshop on OpenMP, 1999.

[22] P. Kloos, P. Blaise, and F. Mathey, ”Open MP and MPI Programming with a CG Algorithm”, Proceedings of the European
Workshop on OpenMP, 2000.

[23] Marty R. Field, ”Optimizing a Parallel Conjugate Gradient Solver”, SIAM Journal on Scientific Computing, Vol. 19, issue 1,
pp. 27 - 37, 1998.

[24] Lewis and Van de Geijn, ”Distributed memory matrix-vector multiplication and conjugate gradient algorithms”’, in Proc.
Supercomputing’93, Portland, Oregon, pp. 484-492.

[25] John G. Lewis, David G. Payne, ”Matrix-vector multiplication and conjugate gradient algorithms on distributed memory
computers”, in Proc. Scalable High Performance Computing Conference, 1994, pp. 542-550.

[26] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski,
R. Schreiber, H. Simon, V. Venkatakrishnan and S. Weeratunga, ”The NAS Parallel Benchmarks”, RNR Technical Report
RNR-94-007, March 1994.

[27] John R. Fanchi, ”Principles of Applied Reservoir Simulation”, ISBN 13: 978-0-7506-7933-6, Elsevier, 2006.
[28] Ian Foster, Designing and Building Parallel Programs, Addison- Wesley (ISBN 9780201575941), 1995.
[29] Leila Ismail, ”Communication Issues in Parallel Conjugate Gradient Method using a Star-Based Network”. 2010 International

Conference on Computer Applications and Industrial Electronics (ICCAIE 2010),December 2010.
[30] Leila Ismail, k. Shuaib, ”Empirical Study for Communication Cost of Parallel Conjugate Gradient on a Star-Based Network”,

ams, pp.498-503, In Proceedings of The 2010 Fourth Asia International Conference on Mathematical/Analytical Modeling
and Computer Simulation, 2010, May 2010.

[31] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir and Marc Snir, ”MPI:
The Complete Reference”, Vol. 2, ISBN-10:0-262-57123-4, ISBN-13:978-0-262-57123-4.

[32] Leila Ismail, Driss Guerchi, ”Performance Evaluation of Convolution on the Cell Broadband Engine Processor,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 22, no. 2, pp. 337-351, Feb. 2011, doi:10.1109/TPDS.2010.70.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:
• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-
ciency.

System engineering:
• programming environments,
• debugging tools,
• software libraries.

Performance:
• performance measurement: metrics, evalua-
tion, visualization,

• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

